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ABSTRACT Automated manufacturing systems require effective supervisory control mechanisms to ensure
their efficient operation and prevent fatal errors. Majority of the deadlock supervisory control policies for
automated manufacturing systems are formulated based on the presupposition that the systems’ resources
are all reliable. However, in actuality systems’ resources experience failure. Deadlocks and blockages could
still occur in a system with failure-prone resources to which a supervisory controller is deployed if a
failure-prone resource in the system fails. Extra buffers (redundant buffers) are usually used on production
floors to store work-in-process parts in order to prevent deadlocks or blockages caused by the failure of
failure-prone resources. However, additional buffers signify extra costs to the enterprise. To this end, this
paper presents a robust supervisory control framework for automated manufacturing systems that utilizes
minimum amount of decentralized buffer units and switch controllers, viz., switch-buffer controllers. The
policy combines control places computed to prevent deadlocks in the system and switch-buffer controllers to
prevent deadlocks/blockages in the event of failure-prone resource failure. Both the plant and the proposed
supervisory controller are modeled using Petri nets. Examples are used to validate and demonstrate the
effectiveness of the proposed approach. Furthermore, the results, compared with some existing techniques,
indicate that the proposed technique has more advantages over them.

INDEX TERMS Robust supervisory control, automated manufacturing system, deadlock, Petri net, resource
failure.

I. INTRODUCTION
Efficient operation of modern manufacturing industry heav-
ily relies on automated manufacturing systems (AMSs)
that produce high-quality products with minimal human
intervention. The effectiveness of these systems is highly
dependent on their supervisory control ability to ensure their
safe and efficient operations. The literature abounds with
deadlock supervisory control policies, such as [1], [2], [3],
and [4], without considering possible failure of systems’
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components. However, AMSs are susceptible to various
uncertainties such as unexpected faults and disturbances
that may lead to catastrophic failures. Therefore, developing
robust supervisory control mechanisms that can mitigate the
impact of these uncertainties and ensure that the systems
operate reliably is imperative.

In recent years, the emerging supervisory control policies
reflect the growing concern over deadlocks and blockages
that may occur as a result of failure of systems’ resources.
Majority of the existing studies use automaton or Petri net to
model and design the supervisory control policies. As a result
of Automata’s structural characteristic limitations, they can
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only be utilized to model simple systems. By contrast, Petri
nets can represent the majority of the behaviors of discrete
event systems, including concurrency, synchronization and
conflict. Thus, Petri nets are more potent modeling tools
than automata and more effective in modeling, identifying
and resolving deadlock issues. Liu et al. [5] propose a
robust supervisory controller using Petri nets. The policy
requires addition of failure and recovery subnets to each
operation place that is a holder of a failure-prone resource.
Monitors are connected to recovery subnets by normal and
inhibitor arcs, ensuring that no empty siphon is present at any
moment. However, there is a wait-for-repair state whenever
a resource fails to function, which implies that no operation
can be carried out until the failed resource is repaired.
Wu et al. [6] improves the robust supervisory controller in [5]
by eliminating the wait-for-repair states and inhibitor arcs,
which significantly reduces the structural complexity of the
controller.

The work [7] utilizes the powerful modeling capabilities of
Petri nets to model AMSs with multi-type and multi-quantity
resource acquisition and proposes a robust supervisory
controller. First, to ensure the system remains live, strict
minimal siphons are managed by adding control places
to prevent them from becoming under-marked. Second,
in order to address blocking problems that arise from resource
failures, a set of shared resource constraints are constructed
as inequalities based on the minimal resource requirements
of processes and the available capacity of shared resources.
Robust monitors are added to restrict tokens distribution
in failure-prone resource’s neighboring places. Based on
a reachability graph technique, [8] introduces a robust
optimization Petri net controller for AMSs with failure-
prone resources. The strategy divides reachability graph of
an AMS into forbidden markings and robust legal markings.
An invariant-based controller is computed that guarantees
no forbidden markings are reachable while robust legal ones
are reachable. Furthermore, the idea of improved recovery
subnets is introduced for the first time. This notion of
improved recovery subnets represents a resource failure event
in which, upon failure, the failed resource is taken away for
repair and the work-in-process part is subsequently returned
to the system for processing. Another method that develops
modified recovery subnets is [9], albeit it is an adaptive
supervisory control policy and it is a siphon control-based
technique.

A number of robust supervisory control policies propose
different ideas of utilizing buffer slots of AMSs’ workstations
to achieve systems’ robustness. Chew and Lawley [10]
present a robust supervisory control strategy for AMSs
with multiple failure-prone resources by combining two
policies. The first policy is a combination of a neighborhood
policy, which permits system states that comply with the
run-time requirements of the neighborhood constraints and
a modified banker’s algorithm. The second policy combines
the neighborhood policy with a single-step look ahead policy.
In both policies a part type can only require one failure-prone

resource in its processing route. The study [11] proposes
the idea of single-route neighborhood policy in conjunction
with a siphon-based policy in the framework of Petri nets.
The single-route neighborhood policy is a modification of
the neighborhood policy in which neighborhoods of every
failure-dependent resource is computed according the pro-
cessing routes of part types. The single-route neighborhood
policy could be more permissive in behavior than the
neighborhood policy in [10].
Yue et al. [12] tackle the deadlock and blockage problems

in AMSs with multiple failure-prone resources. The study
establishes a robust control policy that enables the system to
continue handling all part types without human involvement
as long as no failed resource is needed. The policy employs a
set of remaining resource capacity constraints and a modified
banker’s algorithm. A directed graph for the residual resource
capacity is constructed by treating each failure-dependent
resource as a vertex. Through the computation of a set of
strongly connected components within the directed graph,
a set of inequality constraints are generated that guarantee
only a single resource within a strongly connected component
shall have all its buffer spaces completely occupied. Based on
the shared resource capacity, [13] establishes a supervisory
control policy for AMSs with failure-prone resources that
distributes all parts that require failed resources on their
remaining routes among the shared resources’ buffer spaces.
However, it requires constructing inequality constraints,
which increases exponentially with the size of the system.

Wang et al. [14] categorize the robust control policies into
two types. The first type, referred to as the ‘‘absorbing’’
type, involves assimilating all the parts that require failed
resources in their remaining routes into the buffer slots
of failure-dependent resources. The second type, known as
the ‘‘distributing’’ type, involves distributing the parts that
require failed resources in their remaining routes among
the buffer slots of shared resources. The research in [15]
centers around addressing the issue of resource failure in
AMSs, and proposes a solution through the control of
buffer space allocation without utilizing central buffers. The
study’s findings indicate that implementing the buffer space
allocation control method can yield notable improvements in
the throughput of AMSs. All these policies so far, utilize the
buffers of the AMSs’ workstation without extra (redundant)
buffers.

Chew et al. [16] use automaton to design a robust
supervisory controller for AMSs with multiple failure-prone
resources in which part types require more than one
failure-prone resource in their processing routes. The policy
utilizes the same policies as the ones in [10] but with
additional central buffer. Either of the policies divides the
processing paths into subroutes and uses the central buffers to
temporarily store part types in case a failure-prone resource
fails. Central buffer constraints are formulated in order to
determine the capacity of the central buffer. The approach
makes an assumption that if a workstation’s server fails,
it can still allocate buffer spaces up to its capacity. However,
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any waiting parts cannot be processed, resulting in delays
along their routes until the server is repaired. In [17] an
adaptive supervisory control policy in the framework of Petri
net is proposed. The method employs additional buffers
in combination with switch controllers and observers that
observe resources’ failures. If a resource fails, the switch
controllers are activated in order to remark siphons that may
become unmarked through the buffer places. However, the
work fails to specify the capacity of the extra buffers required
for the design of the controller.

Utilization of buffers is one of the techniques used to
provide resilient operations in AMSs. Buffers are extra
resources assigned to different portions of an AMS that
can be utilized to alleviate the consequences of unexpected
factors that may interfere with the smooth operation of
production lines. It is feasible to absorb work-in-process
parts that require a failed resource in order to ensure
continued operation of other processes in the event of partial
system failure by distributing buffer spaces among many
components of the system. This improves the AMS’s overall
reliability and prevents deadlocks, blockages or complete
system breakdown [18]. In most of the existing supervisory
control techniques, if extra buffers are used, the buffers are
usually centralized. Therefore, allocation of buffer spaces
and assimilations of work-in-process part types into the
centralized buffer spaces require additional hardware such as
robots, automated guided vehicles, etc.

Leveraging the superior characteristics of Petri nets, this
paper explores a novel way by designing a robust supervisory
controller utilizing minimum amount of decentralized buffer
units to achieve systems operational robustness with respect
to resource failures. Additionally, the proposed policy can
enhance system’s robustness to resource failure by providing
redundancy and allowing processes in the system that
do not require the failed resource to continue without
interruption. The utilization of decentralized buffers can
significantly increase the permissive behavior of an AMS that
is prone to resource failures and reduce cost of implementing
the controllers. Furthermore, decentralizing the buffers by
situating them close to failure-prone resources can ease
relocation of part types from the failure-prone resources’
buffer spaces and vise versa in the event of the failure-prone
resources failure.

The amount of extra buffer units required for the design
of the proposed controller is minimized by solving a linear
integer programming problem in order to find the maximum
marking of a set of operation stages that require a failure-
prone resource. The supervisory control policy employs
switch-buffer controllers that change system’s operational
modes. When there is no resource failure the system operates
in a normal mode. In this mode, monitors designed to prevent
siphons from emptying keep the system live and prevent
the system from entering deadlock states. If a failure-prone
resource fails, the system enters a degraded mode. In this
mode, the switch-buffer controllers are activated in order to
move some of the part types requiring failed resources into

the decentralized buffer spaces. This allows other processes
not requiring the failed resource to proceed without blockage.
If the failed resource’s operation is recovered, the system
returns to its normal operational mode. To the best of our
knowledge, there is no existing policy that, in the design
of the supervisory controller with extra buffers using Petri
nets, attempts to minimize the extra buffers required to
absorb part types requiring a failed resource, and also
decentralize the extra buffers. Though the proposed policy is
not optimal in terms of permissive behavior since it is based
on siphons, it is has less computational complexity than the
reachability graph-based approaches that are known to have
better permissive behaviors.

The remainder of the paper is arranged as follows.
Section II is a preliminary section that recaps important
definitions, theorems, propositions and properties of Petri
nets that are crucial to understanding the work. Section III
delineates AMSs with unreliable resources and their charac-
teristics and introduces failure-prone resource’s server failure
and recovery subnets. The design of robust supervisory
controllers is presented in Section IV. Section V discusses
and compares this work with previous studies. Section VI
concludes the study.

II. PRELIMINARIES
A. BASICS OF PETRI NETS
Petri nets, commonly abbreviated as PNs, are widely
utilized for modelling the flow of products in automated
manufacturing systems (AMS). As a mathematical tool, PNs
possess interesting and beneficial properties. When applied
to a modeled manufacturing system, these properties enable
one to determinewhether the system has functional properties
or not. For a comprehensive understanding of PN theory and
its applications, interested readers can refer to [19]. In what
follows, we provide a concise review of specific definitions
that are relevant to our research.

A Petri net system is represented by the five-tuple N =

(P,T ,F,W ,M0), where P = {p1, p2, p3, . . . , pm} is a finite
set of places (m ≥ 0) and T = {t1, t2, t3, . . . , tn} is a finite set
of transitions (n ≥ 0) with P ∪ T ̸= ∅ and P ∩ T ̸= ∅. A PN
is actually a bipartite-directed graph. From the standpoint
of a graph, the elements of P ∪ T are regarded as nodes.
The set of all directed arcs between the nodes is denoted by
F ⊆ (T×P)∪(P×T ), where the output function T×P → N
determines the set of directed arcs from T to P, and the input
function is P× T → N, which determines the set of directed
arcs from P to T , where N = {0, 1, 2, . . . } is a set of non-
negative integers. By definition, there is never a directed arc
connecting any two items of the same type, such as a place
and a transition. The weight function W : F → N is a
mapping and the initial marking M0 : P → N. •p (resp.,
p•) represents the set of input (resp., output) transitions of
a place p. Likewise, •t (resp., t•) represents the set of input
(resp., output) places of a transition t . G = (P,T ,F,W )
is a PN structure with no initial marking specified. A net
structure G with a specified initial markingM0 is represented
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by (G,M0), which is a PN system, as described at the outset,
i.e., N = (G,M0). If its graph is interconnected, a Petri net is
considered to be interconnected.

A transition t is considered enabled or firable when all
input places p ∈

•t have a minimum of W (p, t) tokens,
where W (p, t) represents the weight of the arc from p to
t . If a transition is enabled, it can be fired. Upon firing an
enabled transition t , W (p, t) tokens are removed from each
input place p ∈

•t , and W (t, p) tokens are added to each
output place p ∈

•t , where W (t, p) represents the weight of
the arc from t to p. This entire process can be represented by
M [t⟩M ′. The modeled system is currently in its current state,
represented by the markingM , which displays the number of
tokens in each place. The firing of a sequence of transitions
σ = t0t1t2 . . . tk ∈ T ∗ from a marking M results in the
marking M ′, denoted by M [σ ⟩M ′, where T ∗ is the Kleene
closure of set T . The set of all reachable markings of a net
systemwith the initial markingM0 is denoted by RM (G,M0),
i.e., RM (G,M0) = {M ∈ N|P|

| ∃σ ∈ T ∗
: M0[σ ⟩M}.

If there is a place p and a transition t such that p ∈ t•

and p ∈
•t hold, then the combination of p and t is referred

to as a self-loop. A Petri net is considered pure if it has no
self-loops. A Petri net is considered ordinary if the weight of
every arc is 1. A net (G,M0) is referred to be simply bounded
or k-bounded if, at any reachable marking M ∈ RM (G,M0),
the number of tokens at any place p is not greater than a finite
number k , i.e., M (p) ≤ k , where k ∈ N is a non-negative
integer. If the number of tokens in a place p at any marking is
no greater than k , the place p is referred to as k-bounded. If a
net system satisfies the condition of being 1-bounded, then it
is characterized as safe. A place that satisfies the condition
of being 1-bounded is defined as a safe place. At the initial
marking M0, a transition t is considered live if there is a
sequence of transitions σ that can be fired from M0 to reach
a marking M0[σ ⟩M such that t is enabled at M . If M0 has
all transitions as live, then (G,M0) net system is considered
live. In case there exists a markingM ∈ RM (G,M0) at which
no transition is enabled, then a deadlock is present in the
net system (G,M0). Such a marking is referred to as a dead
marking.

Let σ ∈ T ∗ be a sequence of transitions of a Petri
net. The number of occurrences of a transition ti in σ ,
without regard to their positions, is represented by #σ (ti).
The parikh vector of σ is a column vector denoted by σ⃗ =

[#σ (t1), #σ (t2), . . . , #σ (tm) ]T , where m = |T |. A P-vector
is a column vector I : P −→ Z, indexed by P, where
Z = {. . . , −2, −1, 0, 1, 2, . . .}. A P-vector I is a place
invariant if I ̸= 0 and IT [N ] = 0T . A T-vector is a column
vector J : T −→ Z indexed by T . A T-vector J is a transition
invariant if J ̸= 0 and [N ]J = 0. The support of a place
(transition) invariant I (J ) is denoted by ∥I∥ = {p|I (p) ̸= 0}
(∥J∥ = t|J (t) ̸= 0). A P-invariant I is said to be a P-semiflow
if for all p ∈ P, I (p) ≥ 0. It is called a minimal P-invariant
if ∥I∥ is not a proper superset of the support of any other one
and its components are mutually prime.

A siphon in a nonempty set S ⊆ P is defined as follows:
S is a siphon (trap) if the following condition holds: •S ⊆

S•. S ⊆ P is a trap if S•
⊆

• S. A siphon (trap) is said to
be minimal if there is no siphon (trap) contained in it as a
proper subset. A minimal siphon is said to be strict minimal
if it does not contain a marked trap. A strict minimal siphon
is abbreviated as SMS. The solution for SMS in a Petri net
is theoretically well-developed [20]. The approach involves
first identifying siphons, minimal siphons, and P-invariants
in a Petri net, and then eliminating the minimal siphons that
contain the support of a P-invariant.

Let (N ,M0) be ordinary, I be a P-invariant, and S ⊆ P
be a siphon of N . S is said to be controlled by P-invariant
I at M0if ITM0 > 0 and I (p) ≤ 0 for all p ∈ P \ S hold,
or equivalently, ITM0 > 0 and {p ∈ P|I (p) > 0} ⊆ S. Such a
siphon is called invariant-controlled. An invariant-controlled
S cannot be emptied.

B. S3PR MODELS
The AMS model that is used in this paper can be modelled
using systems of simple sequential processes with resources
(S3PR) sub-class of PN model. Therefore, it is vital for better
understanding of the paper to provide some definitions and
properties of S3PR that are relevant to the work.
Definition 1: A PN N = ({p0} ∪ PA,T ,F) is considered

a simple sequential process (S2P) if it satisfies the following
conditions: 1) The set of activity places PA ̸= ∅; 2) the idle
place p0 /∈ PA; 3) place p0 is present in every circuit of N ;
and 4) N is a strongly connected state machine; ⋄

Definition 2: A PN N = (PA ∪ {p0} ∪ PR,T ,F) fulfilling
the following requirements is referred to as an (S2P) with
resources (S2PR): 1) PR ̸= ∅;

(
{p0} ∪ PA

)
∩PR = ∅; 2) ∀p ∈

PA, ∀t ∈
•p, ∀t ′ ∈ p•, ∃rp ∈ PR, •t ∩ PR = t ′• ∩ PR =

{
rp

}
;

3) the subnet generated from X = {p0} ∪ PA ∪ T is an S2P;
4) ∀r ∈ PR, ••r ∩PA = r••

∩PA ̸= ∅; ∀r ∈ PR, •r ∩ r•
= ∅;

5) ••
(
p0

)
∩ PR =

(
p0

)••
∩ PR = ∅. ⋄

Definition 3: If an S2PR N=
({
p0

}
∪ PA ∪ PR,T ,F

)
is

given, an initial marking M0 is considered acceptable for N
if and only if the following criteria are satisfied: 1) M0(p) =

0, ∀p ∈ PA; 2)M0
(
p0

)
≥ 1; 3) M0(r) ≥ 1, ∀r ∈ PR; ⋄

Definition 4: A recursive formulation for an S3PR,
which represents a system of S3PRs, can be expressed
as follows: 1) An S2PR is an S3PR; 2) Let N1 =(
PR1 ∪ PA1 ∪

{
p01

}
,T1,F1

)
and N2 =

(
PR2∪ PA2 ∪

{
p02

}
,

T2,F2) be two S3PR, satisfying
(
PA1∪

{
p01

})
∩

(
PA2 ∪

{
p02

})
=

∅,PR1 ∩ PR2 = PC ̸= ∅, and T1 ∩ T2 ̸= ∅. The Petri net
N =

(
PR ∪ PA ∪ P0,T ,F

)
composed by N1 and N2 through

PC , denoted by N = N1 ◦ N2, is still an S3PR, defined as
PR = PR1 ∪ PR2 , PA = PA1∪ PA2 , P

0
=

{
p01

}
∪

{
p02

}
,

T = T1 ∪ T2, and F = F1 ∪ F2. ⋄

Definition 5: Let N be an S3PR. ( N ,M0) is called an
acceptably marked S3PR if one of the following conditions
is satisfied: 1) (N ,M0) is an acceptably marked S3PR.
2) N = N1 ◦ N2, where

(
Ni,M0i

)
(i = 1, 2) is an
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acceptably marked S3PR. Moreover, for all i ∈ {1, 2} and
p ∈ PAi ∪

{
p0i

}
,M0(p) = M0i (p); for all i ∈ {1, 2} and

r ∈ PRi\PC ,M0(r) = M0i (r); for all r ∈ PC ,M0(r) =

max
{
M01 (r),M02 (r)

}
. ⋄

C. ELEMENTARY AND DEPENDENT SIPHONS
In this section, we establish the notions of elementary and
dependent siphons within a PN.
Definition 6 [21]: Suppose that S ⊆ P is a subset of the

places of N . A P-vector λS is said to be the characteristic
P-vector of S if ∀p ∈ S : λS (p) = 1; otherwise λS (p) = 0. ⋄

Definition 7 [21]: Suppose that S ⊆ P is a subset
of places within N , and let ηS denote the characteristic
P-vector of S. The characteristic T-vector of S, denoted by
ηS , is defined as ηTS = λTS • [N ]. ⋄

Property 1 [21]: The T -vector that characterizes the
support of a P-invariant is 0 when the highest absolute value
of any element within the P-invariant is a unit. ⋄

Property 2: Suppose that S is a subset of a net N =

(P,T ,F), and let ηS denote the characteristic T -vector
of S. The sets of transitions that increase, maintain,
and decrease the number of tokens in S can be rep-
resented as {t ∈ T | ηS (t) > 0}, {t ∈ T | ηS (t) = 0}, and
{t ∈ T | ηS (t) < 0}, respectively. ⋄

In what follows 5 represents the set of SMS of a net N ,
while ηSi refers to the characteristic T-vector of siphon Si,
where i ∈ N.
Definition 8: ∀S0 ∈ 5, if ∄S1, S2, . . . , Sn ∈ 5(∀i ∈

{1, 2, . . . , n}, S0 ̸= Si ) such that ηS0 = a1ηS1 + a2ηS2+
· · · + anηSn holds, where a1, a2, . . . an ∈ N\{0}, then S0 is
referred to as an elementary siphon of N . ⋄

We use 5E to denote the set of elementary siphons in a
net N .
Definition 9: Let S0 ∈ 5\5E be a siphon in a net N and

S1, S2, . . . , Sn ∈ 5E be its elementary siphons. S0 is called
a strict redundant siphon w.r.t. S1, S2, . . ., and Sn if ηS0 =

a1 ηS1 + a2ηS2 + · · · + anηSn holds, where a1, a2, . . . an ∈

N\{0}. ⋄

III. S3PR WITH UNRELIABLE RESOURCE
In this section, a PN model of an AMS with a failure-prone
resource is presented. This PN model will be used as a case
study to develop the idea of the robust supervisory control
policy proposed in this study. Fig. 1 visualizes a PN model of
a single-unit resource allocation system (SU-RAS), which is
modeled as an S3PR subclass of PN model [20]. We consider
every resource of a system as workstation, consisting of
server or processor to process different types of parts. Each
workstation has buffer slots to hold part types that will be
processed by the workstation’s server or processor. The initial
marking of every resource place in a PN model represents the
resource’s or workstation’s buffer slots capacity (number of
buffer slots). Therefore, a net system represents the allocation
and de-allocation of buffer slots of anAMS and themovement
of part types within the buffer slots. This type of PN model
is called a buffer net [22]. The S3PRs considered in this

study are buffer nets. The buffer PN model in Fig. 1 has
six resources whose set is denoted by PR = {r1, r2 . . . , r6}.
It has one failure-prone resource r3, while the remaining
resources are all considered to be reliable. The buffer capacity
of a workstation or resource is donated by Bi, where i =

{1, 2, . . . , n}, n is the number of resources or workstations
in the system and Bi = M0(ri). As indicated in Fig. 1,
B1 = B3 = B4 = 2 and B2 = B5 = B6 = 1. Failure of a
resource is assumed to be the failure of the server and it does
not affect the buffer slots of the resource. Thus, the buffer
spaces of a workstation whose server fails can still be used to
store work-in-process parts until the server is restored.
P0 denotes the set of idle places in a PN model. P0

represents the set of part types processed in an AMS. A part
type pj ∈ P0 has a set of b-ordered processing stages, denoted
as Pj = {pj1, pj2, . . . , pjb}. In a PN model, each part type
stage is represented as an operation place, also known as an
activity place, where pjk represents the k-th processing stage
of part type pj. We denote by PA = ∪

m
j=1Pj the set of all

operation places in a PN model, where m = |P0| denotes the
number of part types in an AMS [23].

Let R(pjk ) = ri represent the fact that ri supports part
type pj at its k-th processing stage. The set H (ri) = {pjk ∈

PA|R(pjk ) = ri} denotes the set of operation places that
are holders of resource ri, i.e., the set of operation stages
supported by ri. Let Tj = {tj1, tj2, . . . , tj(b+1)} be the set of
transitions of processing stages of pj, where tjk represents
the transition of part type pj from operation stage pj(k−1) to
operation stage pjk . We donate Rj to be the processing route
of the part type pj.

Let (N ,M0) = (PA∪P0∪PR,T ,F,M0) be a marked S3PR
PN model of an unreliable AMS. Let the set of resources of
(N ,M0) be PR = PrR ∪ PuR with PrR ∩ PuR = ∅, where PrR is
the set of reliable resources, and PuR is the set of unreliable
resources.
Definition 10: Let (N ,M0) = (PA∪P0∪PR,T ,F,M0) be

a marked S3PR and ru ∈ PuR be an unreliable resource. The
server failure and recovery subnet of an unreliable resource is
a PN (Nru,Mru0 ) = ({psu , p

′
su}, {tfu , tru , tjk ∈

•ru}, Fru ,Mru0 ),
where tfu denotes the occurrence of failure of the server of ru,
tru denotes the completion of repair and recovery of a failed
server, and Fru = {(psu , tfu ), (tfu , p

′
su ), (p

′
su , tru ), (tru , psu ), (psu ,

tjk ∈
•ru), (tjk ∈

•ru, psu )}. ByMru(psu ) = 1 signifies that the
server of ru is available and Mru(p′

svu ) = 1 indicates that ru’s
server is down. ⋄

(Nru,Mru0 ) is a marked server failure and recovery subnet
of a failure-prone resource in a PN model. At the initial
marking of the unreliable PN model, Mru0 (psu ) = 1 and
Mru0 (p

′
su ) = 0. This means that the server of a failure-prone

resource is available at the initial marking, indicating that
failure does not occur at the initial marking. Fig. 2 depicts
the server failure and recovery subnet.

Addition of server failure and recovery subnet to an S3PR
net model of an AMS generates an unreliable S3PR buffer net
model denoted by US3PR, which is defined as (Nu,Mu0 ) =

(N ,M0 )∥(Nru,Mru0 ). This is called a parallel composition
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FIGURE 1. Petri net model.

FIGURE 2. Server failure and recovery subnet.

of two net systems, where the symbol ∥ denotes parallel
composition of two PNs having no common place.

The self-loop (psu , tjk ∈
•ru), (tjk ∈

•ru, psu ) in Fig. 2
enables and disables tjk ∈

•ru in the following manner. If the
server of a failure-prone resource ru in a US3PR fails while
processing a part type pjk , the transition tjk+1 (with tjk+1 ∈
•ru) becomes disabled since Mu(psu ) = 0. This implies that
the part type pjk will remain in the buffer space of ru until the
server is recovered, i.e.,Mu(psu ) = 1, tjk+1 becomes enabled,
and ru resumes processing pjk . After the processing of pjk by
ru is completed, pjk , if allocated enough resources, moves to
the next workstation in its processing route (for the next stage
pjk+1 of pjk ) [23].
Example 1: Fig. 3 shows the unreliable buffer net model

US3PR of the AMS of Fig. 1 generated as a result of
the composition of PN model of Fig. 1 and server failure
and recovery subnet of the failure-prone resource r3. The
reachability graph of the PN model shown in Fig. 1 has
2448 reachable markings (states), whose live zone contains
2,304 good states and whose dead zone contains 144 bad
states, 1 of which is a deadlock state. The reachability graph
of the PN model shown in Fig. 3 with added failure and
recovery subnet, has 4,896 markings with 4,608 reachable
states, whose live zone contains 4,608 good states and whose
dead zone contains 288 bad states. The dead zone has no
deadlock state. The net system has a set of resources PR =

{r1, r2, . . ., r6} with a set of reliable resources PrR =

FIGURE 3. PN model with added server failure and recovery subnet.

{r1, r2, r4, r5, r6} and a set of unreliable resource PuR = {r3}.
If M (ps3 ) = 1 and M (p′

s3 ) = 0, it indicates that the server
of r3 is available. If M (ps3 ) = 0 and M (p′

s3 ) = 1, the server
of r3 is down, tf3 represents the occurrence of failure of the
server of r3, and tr3 represents the recovery of the failed server
of r3. ⋄

IV. ROBUST SUPERVISORY CONTROL
This section presents the robust supervisory control for a
US3PR PN model of an AMS with failure-prone resources.
The robust supervisory control can be applied to a US3PR
model with multiple unreliable resources in which each
part type may require more than one unreliable resource
in its processing stages. The proposed control policy is
composed of control places computed to prevent elementary
siphons from emptying and decentralized switch-buffer
controllers. The decentralized switch-buffer controllers are
activated only when a server of an unreliable resource fails
in order to relocate part types released into the system
that require the failed resource into the buffer spaces of
the decentralized buffers. After the recovery of the failed
resource, the decentralized switch-buffer controllers are
deactivated and the normal operational mode of the system is
restored. The following discussion and definitions are vital to
understanding the design of the proposed robust supervisory
control.
Theorem 1 [24]: Let (N ,M0) with N = (P,T ,F) be a

net system and S be a strongly dependent siphon of N . Let
S1, S2, . . . , and Sn be elementary siphons of S with ηS =

a1ηS1 + a2ηS2 + . . . + anηSn . S is invariant-controlled if
1) For all i ∈ {1, 2, . . . , n}, Ii is a P-invariant of N ,

∥Ii∥+
= Si, and for all p ∈ Si, I (p) = 1;

2) M0(S) >
∑n

i=1
∑

p∈∥Ii∥− (ai|Ii(p)|M0(p)). ⋄

Proposition 1: LetNu = (PA∪P0∪PR,T ,F) be a marked
US3PR and S be an SMS of Nu. Add monitor vS to Nu and the
augmented net is denoted by (Nv,Mv0 ), where p ∈ PA ∪P0 ∪

PR,Mv0 (p) = Mu0 (p),Mv0 (vS ) = Mu0 (S) − 1. vS is added
such that I = px + . . . + py + pα + . . . + pβ + vS is a P-
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invariant of N1, where {px , . . . , py} = [S], {pα, . . . , pβ} =

BS = ∪
n
i=1B

i
S , where Bi

S = {p ∈ Pi|p <N p′, p′
∈ [S] ∩

Pi, ∄p′′
∈ SP(p′, p0i )}, and BS ∩ [S] = ∅. Then S is invariant-

controlled. ⋄

Property 3 [24]: vS+
∑

p∈BS p+
∑

p∈[S] p is a P-invariant
of N . ⋄

Theorem 2 [24]: S is controlled if Mv0 (S) >∑n
i=1 aiMu0 (Si) −

∑n
i=1 ai, where ai ≥ 0. ⋄

A control place is usually designed to limit the number
of tokens in operation places in a PN model of an AMS to
prevent the system from reaching some undesired states. This
is achieved by restricting the flow of tokens from related
resources. Let P(vS ) =

∑
p∈BS p+

∑
p∈[S] p. If an operation

place pjk ∈ P(vS ), it is said to be associatedwith control place
vS . Similarly, if ∃pjk ∈ H (ri) such that v•S <N pjk , pjk <N

•vS ,
resource ri is said to be associated with control place vS .
Let P(ru) = {pjk |∃c ≥ 0, pj(k+c) = H (ru)} be the set of

operation stages that require a failure-prone resource ru now
or later in their processing stages. Let F(ru) = {ri ∈ PR |

∀pjk ∈ H (ri), ∃c ≥ 0, pj(k+c) ∈ H (ru)} be a set of resources
that process only part types that require a failure-prone
resource ru without any intervening failure-prone resource or
another resource that processes both part types pvw ∈ P(ru)
and pxy /∈ P(ru), including the failure-prone resource ru,
where pvw, pxy ∈ PA.
Example 2: In the PN model of Fig. 2, r3 is the only

failure-prone resource. The part type stage p22 of p2, which
is the only part type processed by the reliable resource r2 will
later require r3. Therefore, the set F(r3) = {r2, r3} and
P(r3) = {p21, p22, p23, p41}. ⋄

Example 3: The PN model of Fig. 3 has one SMS S1 =

{p32, p43, r4, r5} and its corresponding complementary set is
[S1] = {p31, p42}. Based on Proposition 1, Mv0 (vS1 ) = 3 −

1 = 2. The corresponding sets of input and output arcs of
the control place are •vS1 = {t32, t43} and v•S1 = {t31, t41}.
The resultant net system with added control places (Nv,Mv0 )
is depicted in Fig. 4. The resultant net system is live as long
as r3 does not fail, i.e., the system does not reach markings
at which Mv(ps3 ) = 0 and Mv(p′

s3 ) = 1. For instance, if the
system reaches a markingM ′

= p′
s3 +2p1+2p2+3p3+2p4+

2p21 + p22 + p33 + 2p41 + p43 + r4 + r5, the server of r3 fails
and the system enters a deadlock state. At this marking, the
server of r3 fails while it is processing two part type stages
p41’s of part type p4. Since the processing of the p41’s is not
completed by r3 before its failure, the two p41’s must stay
in the buffer spaces of r2 pending the repair and recovery of
the r3’s server. Under this situation, the part type p1, which
is not supported by the failed resource r3, is blocked from
acquiring the resource r1 by the two part type stages p21’s
currently occupying the two buffer spaces of r1. As a result,
the part type stage of p1, p11, cannot be processed by r1 as all
the buffer spaces of r1 are occupied by p21’s. ⋄

The occurrence of deadlock/blockage in the controlled
unreliable net system, as typifies in Example 3, is the
consequence of the failure of the failure-prone resource,
r3, in the system. The deadlock/blockage problem could be

avoided if the unreliable nature of the failure-prone resource
was taken into account in the design of the supervisory
controller. A robust supervisory control structure is expected
to guarantee that part types not requiring a failure-prone
resource can be processed if a failure-prone resource fails.
In Example 3, only two parts, p1 and p4 require failure-prone
resource r3 in their processing routes. However, if r3 fails, the
system becomes completely blocked. It can be observed that
the blockage of p1 from being processed due to the failure of
r3 is caused by part type stages p41’s requiring r3 occupying
all the buffer spaces. Conversely, the blockage of p3 is as a
result of vS1 becoming unmarked, i.e., Mv(vS1 ) = 0 at the
markingM ′, which is caused by the failure of r3.
Example 3 demonstrates that deadlock supervisory struc-

tures designed without considering the unreliable nature of
failure-prone resources may not be effective in the event of
the failure of the failure-prone resources. Hence, underscores
the urgency of situating the reality of resource failure by
supervisory control practitioners in the design of supervisory
controllers.

FIGURE 4. PN model with added control place vS1
.

A. DESIGN OF THE SWITCH-BUFFER CONTROLLER
The switch-buffer controller is composed of two parts: (1)
buffer subnet that provides the buffer spaces in order to store
part type stages temporarily in the event of a resource failure,
and (2) switch subnet. If a resource fails, the switch subnet is
immediately activated in order to stop any additional release
of the part types requiring the failed resource into the system.
This is necessary owing to the fact that if new part types
requiring the failed resource are released into the system, they
will occupy the buffer spaces reserved for staging part types
not requiring the failed resource. Thus, blocking them yet
again from being processed.
Definition 11: A US3PR model of SU-RAS is said to be

in its normal operation mode if there is no resource failure,
and it is said to be in its degraded mode if there is a resource
failure and recovery. ⋄

Definition 12: The supervisory control of a US3PR model
of a SU-RAS is said to be robust if it guarantees the
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deadlock/blockage-free operation of the system in both its
normal and degraded modes. ⋄

It has been established in the previous section that failure
of a failure-prone resource could block other processes that
do not require the failed resource. Conventionally, part types
requiring a failed resource that block other processes are
transferred to extra buffers to be stored temporarily pending
the repair and recovery of the failed resource. However, using
extra buffers to prevent deadlocks and blockages can increase
the cost of implementing a supervisory control structure.
Therefore, minimizing the number of extra buffers used
can reduce the cost of implementing a system’s supervisory
controller. To this end, it is imperative, after designing
monitors to prevent SMS from becoming unmarked in a
system, to check the possibility of the occurrence of either or
both of the scenarios depicted in Example 3. First, we check
the possibility of the failure of a failure-prone resource
causing part types requiring the failed resource to block other
processes that do not require the failed resource in the system.
If this situation could occur, we determine the minimum
number of buffer units required for a switch-buffer controller
to accommodate part type stages requiring the failed resource
in order to keep other processes in the system running without
interruption, otherwise no switch-buffer controller should be
added. Second, we investigate the possibility of the failure of
a failure-prone resource causing some monitors in the system
to become permanently unmarked, thereby interrupting other
processes that do not require the failed resource. If this
possibility exists, we design a buffer-switch controller to
remark the monitors in order to ensure uninterruptedness
of the other processes. The following are important to
understanding how these two possibilities can be checked in
a US3PR PN model.

To determine the minimum number of buffers required in
the design of a buffer-switch controller that should be added
to a failure-prone resource ru, we need to first ascertain the
maximum marking of P(ru) at any markingM ∈ R(Nv,Mv0 )
denoted by Mv(P(ru))max . Mv(P(ru))max can be found by
solving the linear programming problem in (1).

max Mv(P(ru))
s.t. M = Mv0 + [Nv]Y

Mv ≥ 0,Y ≥ 0 (1)

If ru supports more than one processing route, i.e.,
more than one part type, we find the maximum marking
of the set of part type stages in each route denoted by
Mv(P(ru))maxj .Mv(P(ru))maxj can be obtained by solving the
linear programming problem in (2).

max Mv(Pj(ru))
s.t. M = Mv0 + [Nv]Y

Mv ≥ 0,Y ≥ 0, (2)

wherePj(ru) denotes the set of operation stages of part type pj
with processing routeRj that require a failure-prone resource

ru now or later in their processing stages. Definition 13
describes the subnet of the proposed switch-buffer controller.
Definition 13: Let (Ns,Ms0 ) be the switch subnet

and (Nb,Mb0 ) be the buffer subnet for a failure-prone
resource ru with Ns = (psu , tj1,Fs) and Nb =

({pbjk , p
′
jk , pfjk , psu, p

′
su, ru, vs}, {t ′jk , t

′

j(k+1)}, Fb), where p
′
jk

represents the operation stage pjk at the decentralized buffer
slot, t ′jk and t ′j(k+1) are the pre and post transitions of p′

jk ,
respectively. ru is the unreliable resource. The marking of
pbjk represents the capacity (or units) of the buffer, pfjk ∈

H (ru), tj1 ∈ p•
j , and vS is the control place that ru, pjk are

associated with, i.e., pjk ∈ P(vS ), psu , if marked, denotes the
operation of the server of ru, and p′

su , if marked, represents
the failure of the ru’s server. The transition flow of the
switch subnet is Fs = {(psu, tj1), (tj1, psu)}, and that of the
buffer subnet is Fb = {(t ′jk , p

′
jk ), (p

′
jk , t

′

j(k+1)), (t
′

j(k+1), pbjk ),
(pbjk , t

′
jk ), (ru, t

′

j(k+1)), (t
′
jk , ru), (vS , t

′

j(k+1)), (t
′
jk , vS ), (pfjk , t

′
jk ),

(t ′j(k+1), pfjk ), (t
′
jk , p

′
su), (p

′
su, t

′
jk ), (t

′

j(k+1), psu), (psu, t
′

j(k+1))}. ⋄

FIGURE 5. Switch-buffer controller subnets: (a) Buffer subnet (b) switch
subnet.

Fig. 5 depicts the switch-buffer controller subnets. For a
US3PR with added control places to prevent siphons from
emptying (Nv,Mv0 ), if a buffer-switch controller is designed
and added to the system to prevent deadlocks/blockages in
the event of failure-prone resource failure, the final controlled
net system, which is the composition of (Nv,Mv0 ), switch
subnet (Ns,Ms0 ) and buffer subnet (Nb,Mb0 ), is denoted by
(NC,MC0 ).

Given aUS3PRwith a failure-prone resources, we compute
the elementary siphons in the system and add monitors in
the form of places to prevent the siphons from becoming
unmarked. For any failure-prone resource ru in the system,
we check if there exist ri and pvw, pxy ∈ PA such that
pvw ∈ P(ru), pxy /∈ P(ru) and pvw, pxy ∈ H (ri). If this holds
true, then we compute Mv(P(ru)maxv . If Mv(P(ru))maxv >

Mv0 (F(ru)), it indicates that, in the event of the failure of ru,
pvw could block pxy from being processed by ri. As a result,
we add a switch-buffer controller according to Definition 13.
The initial marking of pbjk , Mb0 (pbjk ), is determined by (3).

Mb0 (pbjk ) = Mv(P(ru))maxj −Mv0 (F(ru)) (3)

VOLUME 12, 2024 173707



U. S. Abubakar et al.: Robust Supervisory Control for Automated Manufacturing Systems

Mb0 (pbjk ) represents the minimum capacity or units of
buffers required to be added in order to avoid blockage in a
system. Here, we utilize two types of buffer spaces to store
the part type stages that require a failure-prone resource ru
in the event of its failure. The first type is the buffer spaces
of the resources in F(ru). If the capacity of F(ru)’s buffer
spaces cannot hold all the part type stages pvw ∈ P(ru), then
the second type of buffer spaces, which is the additional or
extra buffer spaces of the switch-buffer controllers, can be
utilized. This leads to the following result.
Proposition 2: Let (Nv,Mv0 ) be a marked US3PR net

system with added control places to prevent siphons from
being emptied. Let ru be a failure-prone resource, vS be
a control place added to the system and let there exist ri
and pvw, pxy ∈ PA such that pvw ∈ P(ru), pxy /∈ P(ru)
and pvw, pxy ∈ H (ri). If Mv(P(ru))maxv > Mv0 (F(ru)),
a switch-buffer controller added for ru with Mb0 (pbjk ) =

Mv(P(ru))maxj − Mv0 (F(ru)) ensures that pvw ∈ P(ru) does
not block pxy /∈ P(ru) from being processed by ri. ⋄

Similarly, if there exist vS and puv, pxy ∈ P(vS ) such that
pvw ∈ P(ru) and pxy /∈ P(ru). We then check if Mv(P(ru) ∩

P(vS ))max = Mv0 (vS ). If this holds true, it signifies that
vS could become unmarked if ru fails. Then we design a
switch-buffer controller based on 13 and the initial marking
of pbjk Mb0 (pbjk ) is determined by (4).

0 < Mb0 (pbjk ) ≤ Mv0 (vS ) (4)

For an US3PR, if Mv(vS ) > 0 at any marking
M ∈ R(Nv,Mv0), vS never becomes empty. Therefore,
deadlock/blockage cannot occur. To use a switch-buffer
controller as a mechanism to remark vS , the initial marking
of pbjk must be within the range specified in (4). This analysis
leads to the following proposition.
Proposition 3: Let (Nv,Mv0 ) be a marked US3PR net

system with added control places to prevent siphons from
being emptied. Let ru be a failure-prone resource, vS be a
control place added to the system and let there exist puv, pxy ∈

P(vS ) such that pvw ∈ P(ru) and pxy /∈ P(ru). If Mv(P(ru) ∩

P(vS ))max = Mv0 (vS ) holds, a switch-buffer controller added
for ru with 0 < Mb0 (pbjk ) ≤ Mv0 (vS ) can prevent vS from
becoming permanently unmarked in the event of ru failure by
ensuring thatMv0 (vS ) > 0. ⋄

Remark 1: Setting Mb0 (pbjk ) = 1 allows only one part
type stage pxy /∈ P(ru) to be processed at a time if ru fails.
Likewise, setting M0(pbjk ) > 1, as long as Mb0 (pbjk ) ≤

Mv0 (vS ), will correspondingly increase the number of part
type stages pxy /∈ P(ru) that will be processed at a time if
ru fails. However, setting Mb0 (pbjk ) > 1 requires increase in
the capacity of the additional buffers (number of buffer slots)
for the switch-buffer controller, which in turn increases the
cost of implementing the switch-buffer controller. Therefore,
increasing the number of part type stages pxy /∈ P(ru)
to be processed simultaneously when ru fails comes at a
cost. As a result, it is important to consider, in the course
of implementing the supervisory controller, the trade-off
between having a significant number of part types pxy /∈

P(ru) being processed simultaneously in the event of ru
failure and the cost of the additional buffer units. ⋄

In this study’s method of designing switch-buffer con-
trollers for a US3R to deal with failure-prone resource
failure and its concomitant deadlock/blockage could lead
to computing identical switch-buffer controllers. Such a
situation makes some switch-buffer controllers redundant.
For instance, suppose we first compute a switch-buffer con-
troller for a failure-prone resource ru with a set of operation
stages P(ru) as result of Mv(P(ru))maxj > Mv0 (F(ru)).
If there exist puv, pxy∈P(vS ) such that pvw∈ P(ru), pxy /∈P(ru)
and P(ru)∩P(vS )= P(ru), then the switch-buffer con-
troller computed due to Mv(P(ru)∩P(vS ))max = Mv0 (vS )
will be identical to the one designed as a result of
Mv(P(ru))maxj >Mv0 (F(ru)). Thus, the second switch-buffer
controller computed (due to Mv(P(ru)∩P(vS ))max =

Mv0 (vS )) becomes redundant since both controllers will have
the same structure and connected to the same place pfjk ∈

H (ru). The following Proposition immediately follows.
Proposition 4: Let (Nv,Mv0 ) be a marked US3PR net

system with added control places to prevent siphons from
being emptied. Let ru be a failure-prone resource and vS
be a control place added to the system. Suppose that a
switch-buffer controller is computed for ru with a set of oper-
ation stages P(ru) as result of Mv(P(ru))maxj > Mv0 (F(ru)).
If there exist puv, pxy∈P(vS ) such that pvw∈ P(ru), pxy /∈P(ru)
and P(ru)∩P(vS )=P(ru), then the switch-buffer controller
computed due to Mv(P(ru)∩P(vS ))max = Mv0 (vS ) is
redundant. ⋄

Algorithm 1 describes the proposed robust supervisory
control policy of this study.
Theorem 3: Algorithm 1 outputs a robust supervisory

control to failures of failure-prone resources of a US3PR
model of a single-unit resource allocation system.

Proof: Algorithm 1 is executed in two stages of four
steps. The first stage covers Steps 1 and 2, which is the design
of monitors to prevent siphons from becoming unmarked.
Given a failure-prone US3PR, without resource failure,
it is has been established that executing Steps 1 and 2 of
the algorithm can guarantee deadlock-free operation in the
normal operational mode of the system. This follows imme-
diately from Proposition 1, Property 3 and Theorems 2. The
second stage is executed in Step 3, which involves designing
switch-buffer controllers to prevent deadlock/blockage as
a result of the failure of a failure-prone resources based
on Propositions 2 and 3, Definition 13, Eq. (3) and (4).
Step 4 is the addition of the computed switch-buffer
controllers and outputting the resultant controlled net system
(NC,MC0 ). Since Algorithm 1 can guarantee deadlock-free
operation in the system without resource failure, and also
can guarantee deadlock/blockage-free operation in the event
of a failure-prone resource failure, we can conclude that the
algorithm is robust to failures of failure-prone resources of a
US3PR model of a single-unit resource allocation system. ⋄

Example 4: In the PN model in Fig 4, F(r3) = {r2, r3}
and P(r3) = {p21, p22, p23, p41}. The failure-prone resource
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Algorithm 1 Robust Supervisory Control for US3PR (Nu,
Mu0 )

1: Input: US3PR (Nu,Mu0 )
2: Output: Robust controlled system (NC, MC0 )
3: Begin{
4: Step 1: Find the sets of elementary siphons 5E and
5: dependent siphons 5D
6: Step 2: Compute monitors vS for the elementary siphons
7: Step 3: Find ru and compute the set PuR.
8: for every ru do
9: if there exist ri and pvw, pxy ∈ PA s.t pvw ∈ P(ru),

pxy /∈ P(ru) and pvw, pxy ∈ H (ri) then
10: ComputeMv(P(ru))maxv based on (2)
11: if Mv(P(ru))maxv > Mv0 (F(ru)) then
12: Design a switch-buffer controller according
13: to Definition 13 and setMb0 (pbjk ) based on (3)
14: end if
15: if there exist vS and puv, pxy ∈ P(vS ) s.t pvw ∈

P(ru) and pxy /∈ P(ru) then
16: if Mv(P(ru) ∩ P(vS ))max = Mv0 (vS ) and

the computed controller is not redundant
based on Proposition 4 then

17: Design a switch-buffer controller accor-
18: ding to Definition 13 and setMb0 (pbjk )
19: based on (4)
20: else
21: Exit
22: end if
23: end if
24: else
25: if there exist vS and puv, pxy ∈ P(vS ) s.t pvw ∈

P(ru) and pxy /∈ P(ru) then
26: if Mv(P(ru) ∩ P(vS ))max = Mv0 (vS ) and

the computed controller is not redundant
based on Proposition 4 then

27: Design a switch-buffer controller accor-
28: ding to Definition 13 and setMb0 (pbjk )
29: based on (4)
30: else
31: Exit
32: end if
33: else
34: Exit
35: end if
36: end if
37: end for
38: Step 4: Add the buffer-switch controllers designed to
39: (Nv,Mv0 )
40: Step 5: Output (NC,MC0 )
41:

42: }End of the algorithm

r3 supports two routes R2 and R4 with P2(r3) =

{p21, p22, p23}, P4(r3) = {p41}, F2(r3) = {r2, r3} and

F4(r3) = {r3}. We need to investigate if the failure of r3 could
interrupt the processing of p1 and p3, which do not require
r3 since we have p11, p21 ∈ H (r1), p21 ∈ P(r3) and p11
/∈ P(r3). Solving the linear programming problem in (2),
Mv(P(r3))max2 = 5 and the marking of the places in P2(r3)
is 2p21 + p22 + 2p23.Mv0 (F2(r2)) = 3 andMv(P(r3))max2 >

Mv0 (F2(r3)). Therefore, we design a switch-buffer controller
for r3 according Definition 13. The initial marking of pb23 ,
Mv0 (pb23 ) = Mv(P(r3))max2 − Mv0 (F2(r3)) = 5 − 3 = 2.
Likewise, on R4, Mv(P(r3))max4 = 2 and Mv0 (F4(r3)) =

Mv0 (r3) = 2. Therefore, Mv(P(r3))max4 = Mv0 (F4(r3)), and
no switch-buffer controller is required.

There is only one control place vS1 in the system. We need
to verify if the failure of r3 could make vS1 unmarked since
we have p31, p41, p42 ∈ P(vS1 ), p41 ∈ (P(r3) ∩ P(vS1 ))
and p31, p42 /∈ P(r3). Therefore, we check whether vS1 may
become unmarked when r3 fails. This requires us to check the
maximum possible marking of the set P(r3) ∩ P(vS1 ), i.e.,
Mv(p41)max . By solving the linear integer programming we
findMv(p41)max = 2. SinceMv0 (vS1 ) = 2, thenMv(p41)max =

Mv0 (vS1 ). As a result, vS1 could become unmarked if
r4 fails. Thus, we design a switch-buffer controller based on
Definition 13 with Mb0 (pb41) = 1 according to (4). Fig. 6
shows the switch-buffer controllers designed for the system
in Fig 4. The resultant net achieves, without resource failure,
1,848 reachable states, which is 80.8% of the 2,304 legal
states. ⋄

FIGURE 6. Switch-buffer controllers for the unreliable PN model in Fig 4.

B. ROBUST SUPERVISORY CONTROL FOR US3PR WITH
MULTIPLE FAILURE-PRONE RESOURCES
In this section, we present a PN model with multiple
failure-prone resources in which a part type may require
multiple failure-prone resources in its processing route. The
proposed robust supervisory control policy is applied to the
PN model in order to demonstrate its applicability on such a
net system. We use the AMS in Fig. 7, which is first reported
in [23]. The uncontrolled net system has, in its normal
operating mode (i.e., without resource failure), 233,496
reachable markings of which 199,584 are live markings and
33,912 dead markings.
Example 5: Consider the unreliable US3PR PN model

in Fig. 7. The net system has nine resources PR =
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FIGURE 7. PN model with multiple failure-prone resources [23].

{r1, r2, . . . , r9} with two failure-prone resources whose
set PuR = {r2, r5} and the set of reliable resources
PuR = {r1, r3, r4, r6, . . . , r9}. The AMS has four SMSs
S1 = {p32, p42, r9, r10}, S2 = {p12, p27, r1, r2}, S3 =

{p13, p26, r2, r3}, S4 = {p13, p27, r1, r2, r3} The comple-
mentary sets of places of S1, S2, S3 and S4 are [S1] =

{p31, p41}, [S2] = {p11, p26}, [S3] = {p12, p25} and [S4] =

{p11, p12, p25, p26}, respectively. We use the steps laid down
in Algorithm 1 to design the robust supervisory control for the
AMS. To design monitors to prevent siphons from becoming
unmarked we execute the first two steps of the algorithm as
follows.

According to Property 1, η1 = −t31 + t32 − t41 + t42,
η2 = −t11 + t12 − t26 + t27, η3 = −t12 + t13 − t25 + t26, and
η4 = −t11 + t13 − t25 + t27. It is verified that η4 = η2 + η3.
Therefore, based on Property 2, S4 is a strongly dependent
siphon and S1, S2 and S3 are elementary siphons. As a result,
5E = {S1, S2, S3}, 5D = {S4}, and Mv0 (vS1 ) = Mv0 (vS2 ) =

Mv0 (vS3 ) = 2 based on Proposition 1. The corresponding
sets of input and output arcs of the control places are •vS1 =

{t32, t42}, •vS2 = {t12, t27}, •vS3 = {t13, t26}, v•S1 = {t31, t41},
v•S2 = {t11, t21}, and v•S3 = {t11, t21}. Fig 8(a) visualizes the
control places vS1 , vS2 and vS3 .

Now, we design switch-buffer controllers for the failure-
prone resource, r2 and r5 in the system. It can be verified
that P(r2) = {p11, p12, p21, . . . , p26}, F(r2) = {r2},
P(r5) = {p21, p22} and F(r5) = {r5}. If we consider the
failure-prone resource r2, it supports two processing routes
R1 and R2. Thus, we have P1(r2) = {p11, p12}, P2(r2) =

{p21, . . . , p26}, and F1(r2) = F2(r2) = {r2}. By solving
the linear programming problem in (2), Mv(P(r2))max1 =

2. This implies that Mv(P(r2))max1 = Mv0 (F1(r2)) since
Mv0 (F1(r2)) = 2. Therefore, according to Proposition 2
no switch-buffer subnet is required as all the part type
stages on R1 can be stored in the buffer spaces of F1(r2)
if r2 fails. Following the same procedure we find that
Mv(P(r2))max2 = 2, and Mv(P(r2))max2 = Mv0 (F2(r2)).
Hence, no switch-buffer controller is required for r2
on R2.

The failure-prone resource r5 supports only the processing
route R2 of part type p2 with F2(r5) = F(r5) = {r5}.
Therefore, solving the linear programming problem in (2)
yields Mv(P(r5))max2 = 2 and Mv0 (F(r5)) = 1. Thus,
Mv(P(r5))max2 > Mv0 (F(r5)). Therefore, a switch-buffer
controller is required for r5 on R2 with Mb0 (pb22 ) =

Mv(P(r5))max2− Mv0 (F(r5)) = 1.
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FIGURE 8. Controllers designed for the PN model in Fig 7: (a) Monitor part of the controller, (b) Switch-buffer controller.

Next, we check the possibility of control places becoming
permanently unmarked in the AMS as a result of the
failure of a failure-prone resource. We have P(r2) ∩

P(vS1 ) = ∅, and P(r5) ∩ P(vS1 ) = ∅. Therefore, failure
of r2 or r5 does not make vS1 permanently unmarked.
Thus, no switch-buffer controllers are needed. Similarly,
P(r2) ∩ P(vS2 ) = {p11, p21, . . . , p26} and P(r2) ∩ P(vS3 ) =

{p11, p12, p21, . . . , p25}. It is obvious that P(vS2 ),P(vS3 ) ⊆

P(r2). Therefore, there is no operation stage pjk ∈ P(vS2 ) or
pjk ∈ P(vS3 ) that does not belong to P(r2). Consequently,
no switch-buffer controller is required for remarking vS2 or
vS3 if r2 fails.
Since r5 supports only R2 and there are operation stages

on R2 that belong to P(vS2 ) and P(vS3 ), we need to verify
whether the failure of r5 can make vS2 or vS3 to become
unmarked or not. Similarly, P(r5) ∩ P(vS2 ) = {p21, p22}
and P(r5) ∩ P(vS3 ) = {p21, p22}. Obviously, P(r5) ∩

P(vS2 ) = P(r5) ∩ P(vS3 ) = P(r5). Therefore, these two
computed switch-buffer controllers are redundant since we
have already computed the same switch-buffer controller
due to Mv(P(r5))max2 > Mv0 (F(r5)). Hence, no additional
switch-buffer controller is needed according to Proposition 4.
The switch-buffer controllers designed for the system is
depicted in Fig 8(b). The controlled net system is live. ⋄

The last part of Example 5 demonstrates further how
Proposition 4 can be used to eliminate the possibility of
having redundant switch-buffer controllers. We can observe
this in the case where we have already found, by solving
the linear programming problem in (2), Mv(P(r5))max2 = 2,
Mv0 (vS2 ) = 2 and M0(vS3 ) = 2. If we add switch-buffer
controllers as a result of Mv(P(r5))max2 = Mv0 (vS2 ) and
Mv(P(r5))max2 = Mv0 (vS3 ) with capacity Mv0 (pb22 ) = 1, the
controllers will have the same structure and they will be con-
nected at p22, which is the same point the first switch-buffer
controller designed earlier for Mv(P(r5))max2 > Mv0 (F(r5))
is connected. Therefore, adding two more controllers will
be a duplicate and create redundant controllers. Thus, one
controller is enough to remark vS2 and vS3 to keep part type

p1 on R1 continuously processed and relocate p21 to the
additional buffer in order to allow p32 and p41 to be processed
by r9 in the event of r5 failure.

V. RESULTS AND COMPARISON WITH PREVIOUS WORKS
The studies that consider the same type of SU-RAS as this
work are found in [10], [12], [13], [14], [16], [25], [26], [27],
and [29]. However, in most of them the systems modeling
and supervisory control policies proposed in these studies are
in the framework of automata, and are implemented online.
Therefore, these policies are deadlock avoidance as opposed
to the deadlock prevention proposed in this paper. So far as
we know, the majority of the deadlock avoidance policies
are based on automata. However, few studies [22], [28],
[29] utilize PN to model AMSs and design robust deadlock
avoidance policies for AMSs.

We compare the policy of this paper and those in [11],
[13], [23], and [29]. All these policies are based on Petri net
framework and are deadlock prevention policies except [13],
which is a deadlock avoidance policy and is in the automata
framework. However, the constraints formulated to achieve
robust control in [13] can also be implemented using Petri
nets. For the purpose of comparison, we implement the
policies in [13] as deadlock prevention policies, like in this
paper and [11], [23], [29], using PNs in which the original
unreliable PN model of a plant and controllers are unified as
one PNmodel (resultant controlled PNmodel). The technique
in [11] proposes an idea of single-route neighborhood policy
(a modified neighborhood policy) in conjunction with a
siphon based method to achieve robust control in an AMS.
The method in [23] uses three types of buffer spaces
scilicet, buffer spaces of failure-dependent resources, those
of sheared resources and buffer spaces borrowed from other
workstations if there are available ones. If a failure-prone
resource fails, part types requiring the failed resources are
advanced and redistributed into these three types of buffer
spaces in order to allow other processes to continue. The PN
model in Fig. 3 is used for the comparison. In this case, r2 and
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TABLE 1. Comparison between the policy in this paper and others as implemented in the PN model of Fig. 3.

r3 are the failure-dependent resources of the failure-prone
resource r3, and r1 is the shared-resource and also a buffer
slot borrower. Resource r4 is used as the buffer-slot lender.
Therefore, their buffer spaces can be used to store part stages
p21, p22 and p23 of p2. Details on these can be found in [23].
Table 1 sums up the comparison. All the five policies can

be applied to the same SU-RAS. We compare the policies in
terms of their capacity to handle failure of multiple failure-
prone resources, and to handle failure of multiple resources
at the same time. However, the policy in [11], [13], [23],
and [29] cannot be applied to systems where part types may
require multiple failure-prone resources in their processing
routes, while the policy in this paper can be applied to
such systems. Additionally, the policy in this paper is more
permissive than those in [11], [13], [23], and [29] due to
utilization of additional buffer units. The supervisory control
policy in this paper, without resource failure, achieves 1,848
of the reachable states, which is 80.20% of the reachable
legal states of the net system. The technique in [13] allows
730 states to be reached, which is 31.68% of the total legal
states. The policy in [29] achieves 1,536 of the legal states,
which is 66.67% of the legal states. The policy in [11]
achieves 1,664, which is 66.80% of the legal reachable states,
while [23] achieves 1,816 states, which is 78.80% of the legal
reachable states. Based on the comparison in Table 1, the
proposed technique has more advantages over those in [11],
[13], [23], and [29]. The only advantage these four techniques
have over the technique in this paper is the requirement of
extra buffers by the technique in this paper.

VI. CONCLUSION
This paper introduces a novel supervisory control framework
for AMSs that utilizes decentralized buffers and switch
to form a switch-buffer controller. The proposed approach
integrates resource failure detection and diagnosis techniques
to identify and isolate resource failures from affecting other
parts that do not require the failed resource. By providing
switch-buffer controllers, the decentralized switch-buffer
mechanism improves system robustness, allowing for contin-
ued operation in the event of a resource failure. To validate the
efficacy of the proposed approach, AMSs are used as case
studies to demonstrate its application. Results indicate that
the proposed approach effectively enhances the reliability and
efficiency of AMSs. Future work will focus on optimizing the

proposed concept in order to enhance the acceptability of the
concepts. The scalability of the proposed approach to more
complex manufacturing systems, such as more generalized
sub-classes of PN models, will also be investigated.
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