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ABSTRACT The primary aim of this study was to assess the classification performance of deep
learning models in distinguishing between resting state and motor imagery swallowing, utilizing various
preprocessing and data visualization techniques applied to electroencephalography (EEG) data. In this
study, we performed experiments using four distinct paradigms such as natural swallowing, induced saliva
swallowing, induced water swallowing, and induced tongue protrusion on 30 right-handed individuals (aged
18 to 56).We utilized a 16-channel wearable EEG headset.We thoroughly investigated the impact of different
preprocessing methods (Independent Component Analysis, Empirical Mode Decomposition, bandpass
filtering) and visualization techniques (spectrograms, scalograms) on the classification performance
of multichannel EEG signals. Additionally, we explored the utilization and potential contributions of
deep learning models, particularly Convolutional Neural Networks (CNNs), in EEG-based classification
processes. The novelty of this study lies in its comprehensive examination of the potential of deep learning
models, specifically in distinguishing between resting state and motor imagery swallowing processes, using
a diverse combination of EEG signal preprocessing and visualization techniques. The results showed that
it was possible to distinguish the resting state from the imagination of swallowing with 89.8% accuracy,
especially using continuous wavelet transform (CWT) based scalograms. The findings of this study may
provide significant contributions to the development of effective methods for the rehabilitation and treatment
of swallowing difficulties based on motor imagery-based brain computer interfaces.

INDEX TERMS Deep learning, EEG, motor imagery, scalogram, spectrogram, swallowing.

I. INTRODUCTION
Swallowing is a fundamental function for daily life activities,
and swallowing difficulties can significantly affect the quality
of life of individuals [1]. Swallowing difficulties, known
as dysphagia, affect a significant portion of the population,
particularly among those with neurological disorders or
aging-related diseases. Swallowing difficulties, which can
arise from various reasons such as neurological disorders,
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muscle diseases, injuries, or other medical conditions, can
lead to challenges in nutrition and fluid intake, resulting in
malnutrition and hydration issues [2], [3], [4], [5]. Therefore,
developing effective assistance methods for individuals with
swallowing difficulties is of critical importance. Particularly,
recognizing this condition and implementing appropriate
interventions can enhance patients’ quality of life and
regulate their dietary habits [6].

Current methodologies for detecting and treating dyspha-
gia include a range of invasive and non-invasive techniques.
While invasive methods, such as endoscopic [7] and
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fluoroscopic [8] evaluations, provide detailed anatomical
information, they are often uncomfortable for patients
and carry certain risks. Non-invasive techniques, such as
electroencephalography (EEG) [9], functional magnetic
resonance imaging (fMRI) [10], positron emission tomog-
raphy (PET) [11], near-infrared spectroscopy (NIRS) [12],
and magnetoencephalography (MEG) [13], are becoming
the preferred choice for detecting dysphagia due to
their advantages over invasive techniques in assessing
brain activity. Various techniques have been explored for
controlling Brain-Computer Interfaces (BCIs) in patient
populations, particularly due to the non-invasive nature and
low cost of electroencephalography (EEG) and near-infrared
spectroscopy (NIRS) [14]. Various approaches exist for
the detection and analysis of motor imagery swallowing
and motor imagery tongue movement based on elec-
troencephalography (EEG) and near-infrared spectroscopy
(NIRS). The comparable and overlapping activation of brain
areas for motor imagery swallowing and motor execution
swallowing can support the use of motor imagery swallowing
in developing practical rehabilitation tools for training
stroke-related dysphagia patients. Kober et al. investigated
hemodynamic changes in the brain in response to motor
execution andmotor imagery of swallowing using NIRS [15],
[16]. They demonstrated for the first time that motor imagery
of swallowing could be successfully used as a mental strategy
in a neurofeedback training paradigm. Before and after
training, they assessed cortical activation patterns during
motor execution and imagery of swallowing [17]. They
compared the hemodynamic response observed during the
swallowing of water or saliva [18]. Among these, EEG has
been widely utilized in the field of brain-computer interfaces
(BCIs) due to its ability to capture rapid changes in brain
activity with high temporal resolution. Its non-invasive nature
and relative cost-efficiency make it a preferred choice for
many research and clinical applications. However, EEG
signals are often susceptible to noise, which can complicate
data interpretation. Despite this limitation, advances in EEG
signal processing techniques have improved the reliability
of EEG-based assessments, particularly in the context of
motor imagery tasks relevant to swallowing rehabilitation.
Electroencephalogram (EEG) signals are used to measure
brain activity and can be employed to monitor the electrical
activity occurring in the brain during swallowing [19].
Swallowing is a complex process managed by the brain
and nervous system, resulting in specific patterns and
changes in brain activity during this process [20]. EEG
signals provide an essential tool for examining these
patterns and associating them with swallowing. Specifically,
monitoring brain activity related to swallowing through EEG
is a crucial step in understanding the neurological basis
of swallowing difficulties and developing more effective
treatment strategies [21]. Additionally, numerous studies
use surface electroencephalography to detect cortical signals
related to swallowing. Huckabee et al. found differences

in brain activity between tasks by examining healthy
individuals performing repetitive finger movements and dry
swallows [22]. Nonaka et al. observed earlier brain activity
onset and larger amplitudes during voluntary and command
dry swallowing tasks [23]. Hiraoka found differences in brain
potentials between dry and water swallowing tasks [24].
Cuellar et al. identified sensorimotor control and right-
lateralized processing during swallowing tasks [25].
Koganemaru et al. detected changes in brain activity during
voluntary swallows with water bolus application [26].
Jestrovic et al. investigated the impact of liquid viscosity on
EEG signals during swallowing [27]. Jestrovic et al. explored
brain network features during swallowing in different head
positions and with various liquid viscosities [28], [29],
[30]. Jestrovic et al. analyzed brain network differences
during swallowing with distractions and varying water bolus
volumes [31].
Brain-Computer Interface (BCI) technology has the poten-

tial to rehabilitate the functional capacity of impaired limbs
following paralysis, with its efficacy largely dependent
on output units such as robots, orthoses, and computers.
Motor imagery is employed to better comprehend the
impact of BCI therapy on post-stroke rehabilitation [32].
Motor imagery is the process in which individuals men-
tally visualize movement before physically executing it.
Technologies that measure brain activity, such as EEG,
can be utilized to observe these mental actions [33]. The
differentiation between imagination and resting processes in
the context of swallowing disorders allows for amore detailed
examination of brain activity related to the swallowing
process and a deeper understanding of the neurological
underpinnings of swallowing dysfunctions. Moreover, this
differentiation enables the development of rehabilitation
and therapeutic strategies for individuals with swallowing
disorders. Distinguishing imagination from resting processes
allows for the assessment of individuals’ ability to mentally
simulate the swallowing movement and the customization
of therapy protocols to enhance this ability when necessary.
However, EEG signals are often noisy, making such analysis
challenging. Therefore, various preprocessing techniques,
such as Independent Component Analysis (ICA), Empirical
Mode Decomposition (EMD), and bandpass filtering, are
commonly employed to analyze EEG signals related to motor
imagery. These techniques are essential for isolating relevant
brain signals from noise and artifacts such as eye blinks or
muscle activity. In the context of motor imagery swallowing,
previous studies have utilized these methods with varying
degrees of success, but a comprehensive comparison of
their impact on classification performance remains limited.
This study builds on existing approaches by systematically
comparing the effectiveness of these preprocessing methods
in differentiating between motor imagery and resting states.
These preprocessing techniques play a significant role in
measuring and understanding brain activity associated with
motor imagery more accurately [34], [35], [36]. Methods
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such as spectrograms and scalograms are commonly used to
visualize and understand the time-frequency characteristics
of EEG signals. Spectrograms represent the frequency
components of the signal over time visually, while scalograms
provide a more detailed analysis, visualizing the changes of
different frequency components over time. These methods
are crucial for reducing the complexity of EEG signals and
better understanding the time-frequency characteristics of
brain activity [37]. Particularly, time-frequency analysis is
considered a valuable tool for examining complex brain
activities such as motor imagery [38].

Deep learning is a technology that has made significant
advancements in the field of artificial intelligence, providing
effective results in various application areas [39]. One of the
most widely used models of this technology is Convolutional
Neural Networks (CNNs). While traditional machine learn-
ing algorithms such as Support Vector Machines (SVMs)
and k-Nearest Neighbors (k-NN) have been applied to EEG
signal classification [40], CNNs offer the advantage of
automatically learning hierarchical features from raw data,
reducing the need for manual feature extraction. CNNs have
demonstrated exceptional performance, especially in tasks
such as image recognition and classification [41]. However,
recent studies have shown that CNNs can also be used to
analyze time series data such as EEG [42]. This has enabled
the expansion and development of EEG-based applications.
Specifically, the use of CNNs may offer a more accurate
and effective approach to analyze and classify complex brain
signals [43].
In this study, we aim to investigate EEG signals related to

the swallowing process through four different experimental
paradigms. The utilization of various experimental paradigms
aims to determine the variability in EEG signals during
swallowing, providing insights into various aspects of
swallowing-related brain activity. Additionally, we evaluate
the impact of preprocessing methods, such as Independent
Component Analysis, Empirical Mode Decomposition, and
bandpass filtering, on the classification performance of EEG
signals. We focus on classification results to determine the
effectiveness of these methods in the rehabilitation and
treatment of individuals with swallowing difficulties.

Furthermore, we investigate the effectiveness of methods
such as spectrograms and scalograms in visualizing and
understanding EEG signals’ time-frequency characteristics.
We analyze these methods to determine which one provides
more accurate representations of EEG signals and contributes
to a better understanding of swallowing-related brain activity.

Along these lines, the proposed approach in this study
involves the classification of EEG signals to differentiate
between imagination and resting processes in the context
of swallowing using a deep learning model, Convolutional
Neural Networks (CNNs). The results of this study showed
that CNN model can be utilized to accurately classify
brain activity associated with swallowing, offering a novel
approach for the rehabilitation and treatment of individuals
with swallowing difficulties. The findings of this study may

contribute to the development of more effective rehabilitation
and treatment strategies to enhance the quality of life for
individuals with swallowing difficulties (dysphagia) and may
offer a safe, patient-friendly, and affordable way to treat
individuals with dysphagia.

II. MATERIALS AND METHODS
A. PARTICIPANTS
The experiments involved 30 right-handed individuals
aged 18 to 56, all without diagnosed neurological issues
(15 male, 15 female).

B. MATERIALS
During the experiments, we utilized a 16-channel g. Nau-
tilus Research Wearable EEG headset (g.Tec, Schiedlberg,
Austria). EEG recordings were acquired following the 10-20
international system of electrode placement, with a sampling
frequency of 500 Hz and a range from 0.5 to 200 Hz. This
headset facilitated the continuous recording of brain activity
of the participants throughout the experiments.

1) EXPERIMENTAL PARADIGMS
Four experimental paradigms were used in the study, and they
were approved by the Erciyes University (Kayseri, Turkey)
Clinical Research Ethics Committee on July 12, 2023, with
approval number 2023/461. Each paradigm is explained in
detail below:

a: NATURAL SWALLOWING PARADIGM
The experiment was initiated after providing instructions
to the participants. Participants were instructed to execute
commands displayed on the computer screen. As illustrated
in Figure 1, each participant had a bottle of water positioned
in front of them andwas instructed to drink only upon prompt,
utilizing a pipette without moving. The experiment began
with a beep sound, and each trial lasted for 10 seconds.
A total of 15 repetitions were conducted. It is worth noting
that participants were not given a separate command for
imagination during the experiment. In the experiment, the
first one second after the beep sound was considered as
the rest phase, and one second preceding the initiation
of the movement/swallowing phase which started with the
‘‘drink water’’ command was considered as the imagination

FIGURE 1. Natural swallowing experimental paradigm.
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phase. This arrangement enables the analysis of the natural
swallowing imagination process.

b: INDUCED SALIVA SWALLOWING PARADIGM
Each trial of the induced saliva swallowing experiment
consisted of 9 seconds (see Figure 2). The experiment
began with the resting command during which participants
were instructed to focus on the circle in the center of
the plus sign. In the imagination phase, participants were
asked to imagine swallowing their saliva, and finally, in the
movement/swallowing phase, participants were instructed to
swallow their saliva. During the relaxation phase, participants
did not receive any command. Each participant underwent
this paradigm 15 times for data collection.

FIGURE 2. Induced saliva swallowing experimental paradigm.

c: INDUCED WATER SWALLOWING PARADIGM
In the induced water swallowing experiment, each participant
was presented with a bottle and a pipette. After providing
information related to the experiment, as depicted in Figure 3,
the experiment started by asking the participant to take a
sip of water. Participants were instructed not to swallow the
water in their mouths, aiming to observe whether the induced
imagination throughwater would create any differences in the
imagination phase. The experiment continuedwith the resting
command. Participants were asked to focus on the circle in
the center of the plus sign. During the imagination phase,
participants were instructed to imagine drinking the water in
their mouths, and finally, in the movement/swallowing phase,
participants were asked to swallow the water in their mouths.
During the relaxation phase, participants were given a free
period without any commands being issued. Each trial lasted
13 seconds, and data was collected from 15 repetitions.

FIGURE 3. Induced water swallowing experimental paradigm.

d: INDUCED TONGUE PROTRUSION PARADIGM
The induced tongue protrusion experiment is designed to
emulate the relationship between tongue protrusion and
swallowing. Additionally, this paradigm has been employed
in various previous studies as a surrogate for swallowing,

FIGURE 4. Induced tongue protrusion experimental paradigm.

particularly in the context of dysphagia rehabilitation [44].
As illustrated in Figure 4, the experiment was initiated
with the resting phase followed by a beep sound. In the
imagination phase, participants imagined protruding their
tongue, and then they performed the movement by protruding
their tongue. During the relaxation phase, participants were
presented a blank screen. The experimental process, which
lasted a total of 135 seconds, consists of 15 trials of 9 seconds
each.

III. DATA ANALYSIS
A. PREPROCESSING
The analysis of EEG signals is one of the main focal
points of this study, and we aim to evaluate the importance
of preprocessing steps in this analysis. In this section,
four methods for the preprocessing of EEG data were
examined: Empirical Mode Decomposition (EMD) Method,
Independent Component Analysis (ICA), and Bandpass
Filtering (BPF, 0.5-40 Hz), and the hybrid model.

To assess the contribution of preprocessing methods in
distinguishing rest and imagination of swallowing, initially
raw data was employed in the classification process, and later
data underwent preprocessing steps including EMD, BPF and
the hybrid model before the classification was performed.

1) EMPIRICAL MODE DECOMPOSITION
Empirical Mode Decomposition (EMD) is an effective
method for decomposing nonstationary and non-linear
data [45]. Using the EMD method to analyze EEG signals,
different frequency components contained within the signal
have been separated. The aim was to better understand the
time-frequency characteristics of the signal. In this study,
10 Intrinsic Mode Functions (IMFs) were obtained from
processing EEG signals with the EMD method, and the
summation of the first 3 IMFs were selected for further
analysis, as depicted in Figure 5.

FIGURE 5. Applying EMD to the EEG signal obtained from one channel.
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2) ICA FILTERING
In our experiments, we utilized Independent Component
Analysis (ICA) filtering, which is commonly used in EEG
studies to reduce noise artifacts such as eye blinking, muscle
movements, and other physiological interferences. Our goal
in applying ICA filtering is to enhance the accuracy of
subsequent analysis and interpretation by ensuring that the
resulting EEG data is cleaner and more reliable. Through
the application of ICA, we seek to enhance the quality of
EEG recordings, which is essential for obtaining robust and
reproducible results in neurophysiological research.

3) BANDPASS FILTERING
Bandpass Filtering (BPF) serves as a prevalent technique
for eliminating undesired components, such as power line
noise, and signals beyond the intended frequency range in
EEG signals. Given that bandpass filtering within the range
of 0.5-40 Hz is widely adopted in EEG studies, we imple-
mented filtering within this specified range for our
experiments.

4) HYBRID MODEL: EMD + ICA + BANDPASS FILTERING
(0.5-40 HZ)
The hybrid model used for the analysis of EEG signals
integrates Empirical Mode Decomposition (EMD), Inde-
pendent Component Analysis (ICA), and bandpass filtering
(BPF). Using the EMD method [46], different frequency
components contained within the signal were separated.
In this study, only the summation of the first 3 IMFs out
of 10 IMFs were utilized. Subsequently, ICA and BPF
were applied to the resulting signal using MATLAB and
EEGLAB [47], as shown in Figure 6. These steps enabled
further analysis of EEG data and facilitated the removal of
unwanted components.

B. GENERATION OF SPECTRAL IMAGES
After we performed preprocessing on EEG signals, we were
able to work on EEG signals coming from various

FIGURE 6. Raw and filtered signals from one EEG channel.

experimental paradigms that were i) untreated, ii) pro-
cessed only with Empirical Mode Decomposition (EMD),
iii) subjected only to bandpass filtering, and iv) pre-processed
with the hybrid model consisting of a cascade of EMD, ICA,
and bandpass filter.

Our aim was to extract features from these four different
signals. Given that EEG signals contain oscillatory and
non-stationary frequency components, we applied time-
frequency transformation techniques to obtain more infor-
mation from the signals. These techniques help us better
understand the relationship between the time and frequency
characteristics of the signals. Additionally, various methods
were employed to transform EEG signals into the time-
frequency domain. Initially, the 16-channel EEG signals were
combined into a single scalogram, resulting in scalogram
images (see Figures 7). Subsequently, Short-Time Fourier
Transform (STFT) was applied individually to each channel,
followed by obtaining scalogram images using Continuous
Wavelet Transform (CWT) with different wavelet types
for each channel (see Figures 8). Through the utilization
of these diverse transformation techniques, scalogram and
spectrogram images were obtained for each experiment.
These images were then adjusted to appropriate input
dimensions for classification purposes.

In this study, we initially derived black-and-white images
from EEG signals, where grayscale values visually rep-
resented signal intensities. To enhance the interpretability
of these signals, these grayscale images were subsequently
converted into color maps, thereby making the visualizations
more vivid and facilitating an easier understanding of the
signal characteristics. Each pixel in these visualizations cor-
responds to a specific time-frequency representation, where
the height and width of each pixel represent a frequency
and time interval, respectively. This pixel-based approach
enables a comprehensive analysis of frequency changes
over time, allowing for frequency-based comparisons across
data from different electrodes. Notably, we did not perform
normalization across channels, as we aimed to retain the raw
data to reflect natural variations inherent in each electrode due
to factors such as electrode placement, biological differences,
and measurement conditions. This decision allows for the
preservation of natural amplitude differences in the signals,
maintaining the biomedical significance of these variations.
The signal window size corresponding to each pixel’s width
was determined by the time-frequency analysis method and
sampling rate, optimized to capture frequency changes over
time accurately, thus facilitating a clear analysis of both the
temporal and frequency components of the signals.

1) IMAGE GENERATION FROM ALL CHANNELS
The EEG data was visualized to create a composite image
of all channels. This method allows for the creation of
an image using the entire color range of the color map.
We visualized EEG signal data as a 2-dimensional color
map, transforming signal values into color representations
where amplitude is mapped to specific colors, enhancing the
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FIGURE 7. Dividing the trials into rest and imagination segments one by one and transforming them into time-channel images.

FIGURE 8. Dividing each channel the trials into rest and imagination segments one by one and transforming them into a spectrogram.

understanding of signal strength variations over time and
across channels. Each pixel corresponds to an EEG channel
(electrode) on the vertical axis and a specific time interval
on the horizontal axis, with a 2-second signal window used
for visualization; thus, the width of each pixel represents a
millisecond change. Notably, normalization across channels
was not performed, allowing the signals to retain their
original amplitude variations, which enhances visibility of
inter-channel differences and provides clearer insights into
signal changes. It enables the representation of different
trials, each containing rest and imagination processes, across
different channels within the same visual. Each element in the
signal specifies the color of a pixel in the image.

Each y-axis label represents the electrode positions
associated with the EEG (see Figure 7). For example, for

a 16-channel EEG recording, the y-axis will display 16 dif-
ferent electrode positions.

The visualization demonstrates how signals from different
electrode positions change over time. These variations are
made suitable for classification processes, along with other
methods used to examine the time-frequency characteristics
of the signal.

2) IMAGE GENERATION WITH SHORT-TIME FOURIER
TRANSFORM
Short-Time Fourier Transform (STFT) is a transformation
method used for analyzing the time-frequency characteristics
of a signal. Essentially, it is employed to determine how the
frequency components of a signal vary over time [48].
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The STFT applies a windowing process to determine the
frequency components of the signal at different time intervals
and calculates the Fourier transform for each window. The
resulting image visualizes the time on the horizontal axis,
frequency on the vertical axis, and the signal power as
color intensity, creating a 2-dimensional image. This image
allows for a detailed visualization of the time and frequency
characteristics of the signal (see Figure 7). Particularly, when
analyzing frequency components that vary over time, the
STFT image provides valuable insights.

3) IMAGE GENERATION WITH CONTINUOUS WAVELET
TRANSFORM
Continuous Wavelet Transform (CWT) is another method
used to analyze the time-frequency characteristics of a
signal [49]. Unlike STFT, which uses fixed-width windows,
CWT employs waveforms that can adapt to the local features
of the signal in both time and frequency domains.

CWT applies waveforms of varying width and position to
analyze the time and frequency characteristics of the signal.
This provides a more flexible and detailed analysis compared
to STFT. The resulting time-frequency image represents time
on the horizontal axis, frequency on the vertical axis, and
the magnitude or power of the signal as color intensity.
However, the adaptability of waveforms in CWT ensures
better localization in both time and frequency domains,
depicting the local features of the signal more effectively
compared to STFT.

In summary, the CWT time-frequency image provides a
detailed representation of the signal’s time-varying frequency
components and offers valuable insights into local features
and behaviors. Additionally, this article compares three
different waveforms – Generalized Morse Wavelet, Analytic
Morlet (Gabor) Wavelet (AMOR), and Bump Wavelet
– to determine the most suitable waveform for feature
extraction in motor imagery. The characteristics of these
waveforms can influence their effectiveness in determining
and analyzing the time-frequency features of motor imagery
signals. The comparison results enable the selection of the
most appropriate waveform for extracting the best features
from motor imagery signals.

C. DEEP LEARNING
Deep learning is a subfield of machine learning developed
to identify and analyze complex data patterns. This domain
has become a significant tool in various fields such as
neuroscience and brain-computer interfaces (BCI) [50].

Deep learning is typically implemented using artificial
neural networks with one or more hidden layers. These layers
are utilized to represent input data, with each layer taking
the outputs of the previous layer as inputs. Consequently, the
network learns more complex features and patterns [51].
Different architectures exist within deep learning, includ-

ing Artificial Neural Networks (ANNs), Convolutional Neu-
ral Networks (CNNs), Recurrent Neural Networks (RNNs)

[52], [53] [54]. When working with EEG data, particularly,
CNN architecture is often preferred as it can effectively
process time-series data and 2D/3D structures.

CNNs can be highly effective in extracting meaningful
features and identifying patterns from complex datasets such
as EEG data. CNNs offer distinct advantages, especially
when EEG data is visualized as image data. CNNs are
particularly adept at capturing local features and neighbour-
hood information robustly. This capability becomes highly
beneficial when EEG signals are represented as 2D or
3D structures, such as spectrograms or scalograms. CNNs
process features sequentially in away that helps in identifying
significant patterns within EEG data. Additionally, CNNs are
optimized for handling fixed-size inputs and outputs, which
enhances their efficiency in processing high-dimensional
EEG data. Therefore, in this study, CNN architecture was
chosen to classify EEG data. The study evaluated the
performance of the model on various experiments and
different preprocessing methods applied to the data [55].

1) ARCHITECTURE
The dataset has been evaluated using 5-fold cross-validation
techniques, where the entire dataset is partitioned into
training and validation sets across different folds. The dataset
has been divided into train and test sets using 5-fold cross-
validation techniques. Subsequently, labels are added to each
dataset. During the creation of the CNN architecture, various
layers, and parameters were experimented with multiple
times. As a result of these experiments, the layers and
parameters that yielded the most successful outcome for the
CNN model were identified. The CNN model with the most
successful performance was constructed. The CNN model is
sequenced starting from the input layer. The input layer is
defined for images of size 343× 434 for the first experiment
and 256 × 256 with 3 channels (RGB) for subsequent
3 experiments. Convolutional, pooling, normalization, and
fully connected layers are defined sequentially (see Figure 9).
The output layer of the model is a SoftMax layer for
classifying two classes (rest and imagination).

A detailed description of our CNN architecture, compris-
ing 12 layers, is provided in the following Table 1.

• Input Layer: Images of size 256 × 256x3 with
‘zerocenter’ normalization.

• Convolutional Layers: Processed with 3 × 3 filters.
‘same’ padding and [1, 1] stride is used.

• Batch Normalization Layer: Batch normalization is
applied.

• ReLU Activation Layer: ReLU activation function is
applied.

• MaxPoolingLayers: 2×2max pooling is applied. [2, 2]
stride and [0, 0, 0, 0] padding is used.

• Fully Connected Layers: Consists of two fully con-
nected layers.

• SoftMax Layer: SoftMax activation function is applied.
• Classification Output: Classification output is pro-
vided using cross entropy loss.
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FIGURE 9. CNN architecture.

TABLE 1. Detailed layer-wise description of the CNN architecture.

2) CNN MODEL COMPILATION
The CNN model was compiled using the specified training
options. Training was performed using the Adam optimiza-
tion algorithm. The maximum number of epochs for training
was set to 10, and the mini-batch size was set to 20. Shuffling
was performed at each epoch, and validation was performed
every 30 mini-batches. Training stages were not displayed,
but training progress was shown graphically.

3) CNN MODEL FIT
The training data was fitted to the CNN model using the
specified training options. The weights of the model were
updated to adapt to the characteristics of the dataset. After
the training process was completed, the model was prepared
to evaluate its performance on the test dataset.

4) PERFORMANCE EVALUATION
The trainedConvolutional Neural Network (CNN)model was
evaluated on the test dataset. The model performed classi-
fication using the test data and compared these predictions
with the ground truth labels. Based on this comparison,
the accuracy, AUC-ROC, and F1 score measures of the

model were calculated, and the results were presented as an
evaluation.

Accuracy (ACC): This metric indicates the overall cor-
rectness of the model by showing the ratio of correctly
predicted instances to the total instances. While accuracy is
straightforward to understand, it may not be sufficient when
dealing with imbalanced datasets.

AUC-ROC (AUC): The AUC-ROC curve is a graphical
representation of a model’s performance across different
classification thresholds.

F1 Score (F1): The F1 Score is the harmonic mean of
precision and recall, providing a balance between the two.

By using these evaluation metrics, a more detailed
understanding of the model’s performance is obtained.
Accuracy provides a general overview, while AUC-ROC and
F1 Score offer deeper insights into the model’s effectiveness,
especially in scenarios involving varying decision thresholds.
These metrics collectively ensure a robust evaluation of the
CNN model, highlighting its strengths and potential areas
for improvement. The robustness of the proposed model
is demonstrated through several key factors. It generalizes
well across multiple paradigms, ensuring applicability in
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diverse EEG settings. The model incorporates preprocessing
steps to mitigate the effects of noise and artifacts, and it
has been tested on raw data to assess performance in real-
world applications. Additionally, rigorous cross-validation
techniques, including k-fold and leave-one-out strategies,
were employed to confirm its stability and accuracy. The
CNN architecture further enhances the model’s ability to
extract features and classify data effectively, even in the
presence of variability and noise.

IV. RESULTS
In this study, we analyzed electroencephalography (EEG)
datasets derived from four distinct experimental paradigms
pertaining to both swallowing and the imagination of swal-
lowing. Each dataset encompasses four varieties of EEG data:
raw data, data refined through Empirical Mode Decomposi-
tion (EMD) or a bandpass filter, and data pre-processed via
a sequential application of EMD, Independent Component
Analysis (ICA), and bandpass filtering.

Each type of data underwent transformations into images
through various techniques. The first method involved con-
verting EEG data from all channels into a single image. The
second method used Short-Time Fourier Transform (STFT)
to produce spectrograms of the EEG data. Lastly, Continuous
Wavelet Transform (CWT) scalograms were generated using
various wavelet types. Figure 10 illustrates the diverse
EEG data types (raw, ica, emd, bpf, emd+ica+bpf) of the
same individual within the same trial, along with different
Continuous Wavelet Transform (CWT) visualization tech-
niques representing resting and imagination states. Different
visualization methods and data types yield distinct visual
representations within the same dataset. Furthermore, it is
observed that the resting and imagination images within the
same trial are also different.

The obtained results were used to evaluate the classifica-
tion performance of different EEGdata types under each visu-
alization method. This evaluation aimed to determine which
preprocessing method(s) and visualization technique(s) pro-
vided the best classification results.

In our study, we employed 5-fold Cross-Validation to
ensure the reliability and consistency of our model’s perfor-
mance on different data subsets. We divided our dataset into
5 parts to ensure equal representation of each class in the
folds. The model was trained on 4 folds and evaluated on the
remaining fold, with performance measured using specific
metrics for each test fold. This process was repeated by
rotating the folds, with each fold used exactly once for testing.
Finally, we calculated the average model performance across
all iterations. This approach helped guard against overfitting
and produced a more generalizable and dependable model.

Tables 2 to 5 demonstrate the classification performance
of EEG data types and various visualization methods.
The classification performance was assessed using three
different metrics. It was observed that the accuracy, AUC,
and F1 score rates decreased for hybrid models and data
with a bandpass filter applied. However, results obtained

from experiments with Raw data, pre-processed data with
Independent Component Analysis (ICA), and pre-processed
data with Empirical Mode Decomposition (EMD) showed
good results for accuracy, AUC, and F1 score metrics. Also,
low accuracy rates were obtained when all channels merged
into a single image in the channel stack.

Comparison of spectrograms obtained using Short-Time
Fourier Transform (STFT) and scalograms obtained using
Continuous Wavelet Transform (CWT) revealed that CWT
images outperformed STFT images. The type of success
varied among different CWT scalograms based on different
preprocessing methods. Despite variations across experi-
ments, the ‘bump’ type generally yielded the most superior
results.

Results from experiments with raw data, data pre-processed
with Independent Component Analysis (ICA), and data
pre-processed with Empirical Mode Decomposition (EMD)
exhibited variations across experiments. While data pre-
processed with EMD performed better in the natural swal-
lowing, induced saliva swallowing, and tongue protrusion
experiments, raw data results were superior in the remaining
experimental paradigm.

In conclusion, the findings of this study demonstrate the
effectiveness of different preprocessing methods and visual-
ization techniques in the classification of rest and imagination
of swallowing and analysis of EEG signals. These findings
may contribute to the development of EEG-based medical
rehabilitation and treatment strategies in future studies.

V. DISCUSSION
Brain-computer interface (BCI) technologies, especially
methods developed using motor imagery (MI), have made
significant advancements in recent years. Motor imagery
allows individuals to alter their brain activities by imagining
specific movements without physically performing them.
These changes are measured through methods such as
electroencephalography (EEG) and are transmitted to and
analyzed by computer systems. In this way, physically
disabled individuals can control computers, robotic devices,
or prosthetic limbs solely with the power of their minds. The
development of these technologies holds great potential for
both medical applications and everyday use [56].

However, there are few approaches aimed at detecting
motor imagery swallowing for the rehabilitation of dysphagia
patients. Yang et al. conducted comparative studies to detect
motor imagery swallowing and imagery tongue movement
for post-stroke dysphagia rehabilitation [44], [57], [58],
[59]. These studies investigated the following hypotheses:
(1)motor imagery swallowing and imagery tonguemovement
can be distinguished from the background resting state for
use in post-stroke dysphagia rehabilitation, (2) a simple
and relevant model for detecting motor imagery swallowing
can be developed using imagery tongue movement EEG
signals, (3) the accuracy of these hypotheses can be tested
by determining classification accuracies across different
sessions and modes, and (4) classification accuracies can be
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FIGURE 10. Diverse EEG data types and CWT visualization techniques.

TABLE 2. Natural swallowing dataset classification results.

determined in a sample of ten healthy volunteers and one
chronic stroke patient. Additionally, swallowing and tongue
movements share some common brain activation areas, and
tongue movements are an integral part of the swallowing
process [58], [59]. Yang et al. conducted a study with

six healthy subjects using EEG to classify motor imagery
tasks with a Support Vector Machine (SVM), achieving
a cross-validation accuracy of 69.96% [57]. Yang et al.
continued the study with six healthy subjects, achieving
session-to-session accuracies of 74.29% and 72.12% using
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TABLE 3. Induced saliva swallowing dataset classification results.

TABLE 4. Induced water swallowing dataset classification results.

SVM classifiers and Dual-Tree Complex Wavelet Transform
(DTCWT) features [58], [59]. Yang et al. expanded the
study to include healthy and dysphagia patients, achieving
cross-validation accuracies of 70.89% motor imagery swal-
lowing and 73.79% imagery tongue movement for different
motor imagery tasks [59]. Yang et al. analyzedmotor imagery
correlations using EEG and spectral power analysis, showing
significant correlations between different motor imagery
tasks in a sample of ten healthy subjects and one stroke
patient [44], [60]. Considering these studies, it becomes
evident that research on motor imagery of swallowing is
relatively scarce and insufficient.

Based on the existing studies, we decided to design
four different experimental paradigms. We adopted a care-
ful approach in selecting the experimental paradigms for
our study. Taking into account the gaps and needs in
the literature, we investigated the relationship between
swallowing and motor imagery. Additionally, we aimed

to contribute to the development of rehabilitation tools
by focusing on the specific needs of dysphagia patients.
We also examined contemporary preprocessing techniques
and imaging methods. Preprocessing techniques are critical
for preparing data for cleaning, organizing, and analysis.
Methods such as Empirical Mode Decomposition (EMD)
and Independent Component Analysis (ICA) are commonly
used to separate the components of EEG signals and filter
out unwanted noise [61], [62]. Additionally, simple filtering
techniques are utilized to isolate specific frequency intervals
in the signal [63]. Visualization techniques are crucial
for understanding the complexity and temporal changes
of EEG data. For example, spectral analysis techniques
like Short-Time Fourier Transform (STFT) and Continuous
Wavelet Transform (CWT) are used to visualize the temporal
distribution of different frequency components [64], [65].
These visualization techniques aid in better understanding the
patterns and changing dynamics of brain activities.
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TABLE 5. Induced tongue protruding dataset classification results.

In conclusion, we leveraged advancements in technology
to enhance deep learning techniques and examined the
topic from different perspectives using various experimental
paradigms. It also demonstrates the effectiveness of var-
ious preprocessing methods and visualization techniques
in classifying resting and swallowing imagery, as well as
in analyzing EEG signals. In evaluating the performance
of our model, we opted to utilize three complementary
metrics: AUC (Area Under the Curve), F1 score, and
accuracy, to provide a comprehensive assessment of its
effectiveness across different dimensions. AUC serves as a
robust measure of the model’s ability to distinguish between
the two classes across various decision thresholds, making
it particularly useful for understanding performance in the
presence of class imbalance, which can occur in real-world
scenarios. It captures the overall discriminatory power of
the model, offering insights into its performance beyond a
single threshold. The F1 score, on the other hand, harmonizes
precision and recall, allowing us to evaluate the model’s
effectiveness in minimizing both false positives and false
negatives—critical in applications where misclassifications
can have significant consequences, such as in medical diag-
noses or safety-critical systems. Lastly, accuracy provides
an intuitive metric for assessing the overall correctness
of the model’s predictions. Given our balanced dataset,
accuracy reliably indicates how well the model performs
in classifying instances. By employing AUC, F1 score, and
accuracy together, we gain a holistic understanding of our
model’s performance, enabling us to identify strengths and
weaknesses in its predictive capabilities. This multi-faceted
approach not only enhances our confidence in the model’s
effectiveness but also guides potential areas for future
improvement.

In our current study, performance was evaluated within
each experiment, ensuring that results were consistent within
their specific contexts. Notably, we did not perform cross-
experiment analyses, such as utilizing data from water

swallowing to train and classify other swallowing imagery.
This independent analysis approach allows for a clearer
understanding of each experimental setup’s effectiveness
and minimizes potential confounding factors that might
arise from integrating data across different contexts. These
approaches can help provide a comprehensive and in-depth
understanding of the subject. Identifying the limitations and
constraints of the study is essential. These limitations include
the sample size and diversity. In our study, we gathered
data from 30 right-handed individuals, which is a sample
size often utilized in EEG research. However, we recognize
that this limited sample size may restrict the generalizability
and validity of our findings. The limited sample size of the
study may prevent the results from being more generalizable.
While we view this study as a preliminary investigation,
we recognize the limitations imposed by our restricted sample
size. Moving forward, we plan to expand our participant
group to include a larger and more diverse population.
Additionally, we aim to conduct further studies to evaluate
the performance of our model across various demographic
groups. Additionally, some challenges may arise during data
collection when using EEG and brain imaging techniques,
which can affect the quality of the obtained data and make
the interpretation of the results more difficult. Moreover,
standardizing the experimental conditions used in the study
is crucial. Non-standard conditions can affect the consistency
of the results and reduce comparability. The absence of
individuals with dysphagia in our study is also a limitation.

VI. CONCLUSION AND FUTURE WORK
The primary aim of this study was to assess the classification
performance of deep learning models in distinguishing
between resting state and motor imagery swallowing, utiliz-
ing various preprocessing and data visualization techniques
applied to multichannel electroencephalography (EEG) data.

Firstly, the impact of preprocessing techniques on clas-
sification accuracy was examined. It was observed that the
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use of methods like Empirical Mode Decomposition (EMD)
and Independent Component Analysis (ICA) significantly
influenced the filtering of EEG data. However, in some
experiments, these techniques or their combination did not
show the expected performance. Particularly, it was noted that
bandpass filtering and hybrid models combining EMD, ICA,
and bandpass filtering had lower accuracy rates compared to
other methods in certain cases. These results emphasize the
importance of selecting preprocessing methods considering
the characteristics of EEG data and the classification tasks.

Secondly, the effects of different visualization techniques
on the classification performance of EEG data were exam-
ined. Comparing visualizationmethods such as visualizing all
channels together, individual Short-Time Fourier Transform
(STFT) spectrograms, and Continuous Wavelet Transform
(CWT) scalograms, it was shown that CWT images bet-
ter capture the time-frequency characteristics. Specifically,
it was generally found that ‘‘bump’’ type CWT scalograms
outperform other types and effectively represent complex
brain activities.

The effectiveness of these methods is critical in various
fields such as the recognition of EEG-based neurological dis-
orders, rehabilitation, and the development of brain-computer
interface technologies. Particularly, the accurate identifica-
tion of complex brain activities such as motor imagery and
swallowing is vital for early rehabilitation and treatment of
diseases.

Additionally, classification performance varies across dif-
ferent experimental paradigms, underscoring the importance
of considering different scenarios and contexts in EEG data
analysis. While EMD-applied data perform better in certain
experiments, raw data perform better in others, highlighting
the need for customized approaches depending on specific
tasks and datasets.

In conclusion, this study evaluates the impact of dif-
ferent preprocessing and visualization techniques on the
classification performance of EEG data. It offers 4 distinct
experimental paradigms for analyzing swallowing events,
along with a CNN model that produced superior results
in testing existing experiments. Future research can further
explore the optimization of preprocessing methods and
visualization techniques to enhance the classification per-
formance of EEG data.This study examines the potential of
motor imagery (MI) in swallowing rehabilitation. Although
the neuroplastic effects of motor imagery on swallowing
have gained increasing attention in the literature, research
in this area remains limited. Studies investigating the neural
correlates of swallowing movements using motor imagery
and classification approaches based on electroencephalogram
(EEG) technologies indicate that further research is needed
in this field. In this context, our study aims to contribute
to the development of motor imagery classification systems,
enhancing the effectiveness of MI in the treatment of
swallowing disorders. Consequently, it can be concluded
that the use of motor imagery holds significant potential
in swallowing rehabilitation, and further innovative studies

are needed in this area. These findings provide valuable
insights for the development of EEG-based rehabilitation
and therapeutic approaches and may lead to the creation
of a device specifically designed to effectively interface
with the small and complex muscles involved in swallowing
events.

For future studies, we aim to work with dysphagia patients
to better understand and improve the effectiveness of reha-
bilitation strategies tailored to this population. Additionally,
by examining the effects of different motor imagery tasks
on brain activity, we can gain a deeper understanding of
the relationship between swallowing and tongue movements.
The increased use of deep learning techniques can make
data analysis processes more efficient and yield more precise
results. Finally, by investigating the clinical application
potential of our findings, we can evaluate how dysphagia
patients can benefit in real-world conditions.
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