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ABSTRACT 3D spatial perception is one of the most important abilities for autonomous mobile robots.
In environments with unknown objects, the ability to perform a local planner, which modifies the global path
based on the perception results, is also required as an indispensable capability. In this paper, we propose
a method based on Growing Neural Gas with Different Topologies (GNG-DT), which can be applied to
unknown data, as a method for 3D spatial perception and local planner in unknown environments. First,
we propose a method for extracting travelability perceptions from the features estimated by the topological
structure of the GNG-DT. Next, we learn the topological structure of passability information based on the size
of the robot from the extracted traversability percepts. Furthermore, we propose a local planner that uses the
topological structure of traversability and passability learned from the point cloud currently perceived by the
robot. In the experiments, we compared the cases where only traversability was used and where passability
information was used in actual environments, and showed that the proposed method can plan a route that
determines the area that the robot can actually pass through.

INDEX TERMS Autonomous mobile robot, growing neural gas, local planner.

I. INTRODUCTION
With the development of robotics and networking technolo-
gies, autonomous mobile robots have been becoming popular
in various locations [1], [2], [3], [4]. In particular, there are
growing expectations for autonomous mobile robots in out-
door environments [5], [6], where they can be used for a wide
range of applications, from transportation tasks to exploration
at disaster sites. In moving in outdoor environments with
many dynamic objects and unknown targets, robots need
to adaptively detect traversable surfaces, and the ability to
perceive 3D space in real time has become an indispensable
technology. To achieve such adaptive 3D space perception,
many environment recognition techniques based on deep
learning using large datasets have been proposed in recent
years, and highly accurate space perception is becoming a
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reality [7], [8]. However, since these methods are basically
based on supervised learning, they require labeling work on
large data sets and still have poor adaptability to unknown
situations. This is due to the fact that 3D point cloud data
is unstructured data, which prevents proper recognition of
clusters for unknown objects. Moreover, real-time perception
is required for autonomous movement, and learning based on
deep learning requires parallel processing onGPGPUs. In this
study, we propose a method that can be applied to unknown
data distributions without the need for a large data set by
structuring the data through learning 3D point cloud data
based on unsupervised competitive learning. Furthermore,
we propose a 3D space perception and movement planning
method that utilizes the topological structure constructed by
competitive learning to solve the above-mentioned problems.

As such an approach, the authors have studied a 3D space
perception method based on Growing Neural Gas (GNG) [9],
[10], [11], which is one of the unsupervised learning methods
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and learns the topological structure described by nodes and
edges [12]. GNG includes dynamic addition and deletion of
nodes and edges in the learning algorithm, and thus can accu-
rately learn the geometric information of 3D point cloud data
measured from LiDARs and RGB-D cameras mounted on a
robot while building the topological structure. Learning with
GNG not only enables downsampling and noise reduction
of huge point cloud data, but also enables feature extraction
such as normal vectors and topological clustering necessary
for space perception using the neighborhood structure by
using the topological structure. On the basis of the above,
we believe that a unified framework for 3D space perception
systems can be realized by using GNG-based methodologies.
However, conventional clustering in GNG involves learning
the geometric information of a set of points using GNG and
then removing edges using attribute values such as color
information, making it impossible to obtain clustering results
with different attributes at the same time.

To solve this problem, the authors proposed GNG with
Different Topologies (GNG-DT) [13], which generates
multiple clustering results with different interpretations by
learning the topological structure for each different attribute
[14], [15]. GNG-DT has enabled clustering of reference
vectors with different attributes such as position, color, and
normal information. We have also proposed a traversability
clustering system based on GNG-DT as a perception system
for autonomous robots, and have verified its effectiveness by
global path planning in simulation and real environments.
However, the robot needs to adapt to obstacles and dynamic
objects that did not exist in the path when moving, and a local
planner is required to correct the path for safe movement.
A local planner that corrects the path is necessary for the robot
to move safely.

What is required of the local planner of an autonomous
mobile robot is the ability to perceive unknown objects in
real time, to perform traversability perception, and to plan
a route that the robot can pass according to the robot’s
embodiment. Therefore, this paper proposes a control method
based on real-time passability node detection and obtained
local planner paths using GNG-DT. The contributions of this
paper are (1) realization of passability clustering perception
by combining multiple feature attributes using GNG-DT,
(2) proposal of a local planner based on physicality-based
passability determination, and (3) demonstration of flexible
route modification in real environments.

II. RELATED WORKS
A. COMPETITIVE LEARNING BASED POINT CLOUD
PERCEPTION METHOD
In this study, as a learning method for 3D space perception,
we use a competitive learning method that builds a topolog-
ical structure among unsupervised learning methods. Except
for GNG, which is used in this method, other commonly
used competitive learning methods include Self-Organizing
Map (SOM) [16], Neural Gas with Competitive Hebbian
Learning (NG-CHL) [17], Growing Cell Structure (GCS)

[18], and so on. SOM is a method that uses high-dimensional
feature vectors to construct a low-dimensional visualizable
dimensionality. SOM is the most commonly used competitive
learning method because it can transform high-dimensional
feature vectors into low-dimensional visualizable dimen-
sional reference vectors and is easy to implement. However,
SOM retains a fixed topological structure and cannot properly
learn the geometric structure of 3D point cloud data.
However, in 3D space perception, where the probability
density distribution of data and the number of data itself
change from moment to moment, NG-CHL is a learning
method that does not add or delete nodes, making it
difficult to construct topological structures with appropriate
granularity. In this context, GCS and GNG are learning
algorithms that can add and delete nodes, and are applicable
to cases with non-stationary data such as space perception.
However, GCS does not remove edges as a process, and has
the disadvantage of generating redundant nodes that become
dead nodes when learning the data distribution of a point
cloud. On the other hand, GNG is an algorithm that can add
and remove nodes and edges, and thus can learn and preserve
the geometrical feature of the point cloud data appropriately.

The topological structure of GNG can be utilized for
clustering, noise reduction, feature extraction, and so on.
Many examples of applying GNG to space perception have
been done for learning 2D/3D point cloud data [19], [20],
[21]. As examples, space perception methods using GNG
have been proposed in many fields such as 3D reconstruction
and motion recognition [22], [23], [24], [25], [26], [27].
In particular, in the research applied to space perception of
mobile robots, there are examples of path planning using
2D maps and 3D space perception. For 2D path planning,
a method has been proposed in which a 2D occupied grid
map is learned by GNG and utilized for path planning
by constructing the topological structure [28], [29]. These
methods are one of the methodologies based on the global
planner, and it is difficult to deal with the case where a
dynamic object enters the map in real time. Therefore, a local
planner is also necessary for learning such 2D environmental
maps in GNGs. Refs. [30] and [31] have applied GNG to
3D point cloud data for real-time recognition. Ref. [30]
proposed GNG-DD, which learns the topological structure
of nodes that are dense for the object of interest and sparse
for other objects. Ref. [31] proposed Add-if-Silent Rule-
Based GNG with Amount of Movement, which applies the
Add-if-Silent Rule to GNG as an extension of GNG-DD.
This methodology is based on a rule that adds a node at
a point for data that does not fire by setting a threshold,
instead of only adding a node based on the totalization
error. Ref. [32] also proposed a clustering method of feature
vectors using GNG for detecting the traversablity perception
of a multi-legged robot. This method consists of normal
vectors and shape features as feature vectors by performing
3D point cloud analysis based on Principal Component
Analysis (PCA) as in the present study. However, these
methods focus on perception and global planning, and to
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the authors’ knowledge, there are no studies that focus on
local planners, which can make appropriate path changes
in dynamic environments. Therefore, this paper focuses on
GNG based 3D space perception and the local planning
method utilizing the topological structure of GNG.

B. GROWING NEURAL GAS WITH DIFFERENT
TOPOLOGIES
In order to perceive the traversability of a road surface,
it is necessary to combine not only a single feature but
also multiple features to make a decision. The authors have
proposed GNG-DT [13] as a GNG method to achieve such
clustering. In this study, we will introduce the algorithm of
GNG-DT, since the methodology is developed based on a
real-time perception system using GNG-DT. To explain the
learning algorithm, we define the main variables used in
GNG-DT. First, the set of attributes in this study is defined as
S = {Position(pos), Normalvector(nor), Traversability(tra),
Passability(pass)}, and the input vector and reference vector
are defined as v = {vpos}, and hi = {h

pos
i ,hnori }, respectively.

Next, we define the distance doi between the input vector
and the reference vector of the ith node for an attribute o as
follows.

doi = ||v
o
− hoi || (1)

GNG-DT learns multiple topological structures, and the edge
set of the oth property is defined as Co

= {co1,2, · · · c
o
i,j, · · · }.

The detailed learning algorithm is described as follows.
Step 0. Randomly generate reference vectors h1 and h2 for

two nodes, initializing the coupling relation co1,2 = 1 (∈ S)
and the age of the edge g1,2 = 0.
Step 1. Select one input vector v at random from the

dataset.
Step 2. Determine the first winner node s1 and the second

winner node s2 from the input vector v as follows,

s1 = argmin
i∈A

dposi

s2 = arg min
i∈A\s1

dposi (2)

where A is the set of node numbers.
Step 3. Add the squared error between node s1 and the

input vector v to the integration error Es1 as the following
equation.

Es1 ← Es1 + (dposs1 )2 (3)

Step 4. Update the reference vectors of node s1 and the
nodes that have a connection with node s1 in each attribute,
using the following equation. Note that η1 and η2 are learning
coefficients, and η1 > η2.

hs1← hs1 + η1(v− hs1)

hoj ← hoj + η2(v− hoj ) if cos1,j = 1 (4)

Step 5.Reset the age of the edge between nodes s1 and s2 to
0 and create a new connection of the position information
if no connection of the position information exists between

nodes s1 and s2 (Cpos
s1,s2 = 1). The creation of edges for

the other attributes o(∈ Spos) is performed by the following
equation. {

cos1,s2 = 1 if e(hos1 ,h
o
s2 ) = 1

0 otherwise
(5)

where e(hos1 ,h
o
s2 ) represents the decision function for the

attribute, which takes the value 1 if the similarity between
attributes is high and 0 otherwise.

Step 6. Increment the age of all the edges that have a
connection with the first winner node s1.

gs1,j← gs1,j + 1 if cposs1,j
= 1 (6)

Step 7. Remove edges of all attributes whose age exceeds
the set threshold gmax . (cos1,s2=0). As a result, nodes without
any connection of the position information are deleted.

Step 8. Perform the following operations for each λ data
input.

i. Select the node u with the largest accumulated error.

u = argmax
i∈A

Ei (7)

ii. The node with the largest accumulated error among the
nodes connected to u is f , and insert r between nodes u and f .

hr = 0.5(hu + hf ) (8)

iii. Remove all attribute o(∈ S) edges between nodes u
and f (cou,f = 0) and add edges of the position information
between nodes u, r and r , f (cposu,r = 1, cposr,f = 1).

coi,j =

{
1 if e(hos1 ,h

o
s2 ) = 1

0 otherwise
(9)

For attributes other than position information o(∈ Spos), add
the edges by considering similarity as in step5.

iv.Update the accumulated error of nodes u and f using the
decay rate αdec(0 ≤ α ≤ 1) by the following equation.

Eu← Eu − αdecEu
Ef ← Ef − αdecEf (10)

Step 9.Decay the errors of all nodes by a decay rate β(0 ≤
β ≤ 1).

Ei← Ei − βEi (∀i ∈ A) (11)

Step10. If the termination condition is not satisfied,
go back to Step 1.

GNG-DT learns topological structures using the above
algorithm steps. This paper proposes a local planner that adds
and utilizes the topological structures C tra of traversability
and Cpass of passability as new topological structures.
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FIGURE 1. Autonomous mobile robot.

FIGURE 2. Road surface recognition range by RGB-D camera.

III. SYSTEM CONFIGURATION
The autonomous mobile robot used in this study is shown in
Fig.1, and the robot specifications are shown in Table 1. The
autonomous mobile robot uses Dynamixel XH430-V210-
R motors on both wheels. Azure Kinect DK, an RGB-D
camera, is used for environment recognition. To detect the
road surface, the camera is mounted at a 45◦ downward
angle, 650 mm above the floor. The downward-facing RGB-
D camera can acquire information on the road surface
immediately in front of the robot, and the measurement range
is shown in Fig.2 when the floor surface is perfectly flat.
In this research, the 3D point cloud data measured in this
range is used as input to learn GNG-DT to perceive the
traversability of the road surface.

IV. PASSABILITY PERCEPTION BASED ON GNG-DT
In this section, we propose a perception method for realizing
a local planner utilizing the topological structure built by
GNG-DT. Specifically, the traversablity perception proposed
in Ref.[14] did not take the size of the robot into account,
resulting in perceiving nodes that the robot could not
actually pass through. In this paper, we propose a passability
perception that considers the size of the robot, thereby
extending the previous perception method to a method
applicable to local planners.

TABLE 1. Specification of autonomous mobile robot.

A. SLOPE ANGLE PERCEPTION
In Step 4 of the GNG-DT learning algorithm, the normal
vector is estimated by using a method based on PCA for the
first winner node s1 [33]. Specifically, the normal vectors are
calculated using the following equation for the covariance
matrix Fs1 with the first winner node s1 and its neighbors as
local surface elements.

Fs1 =

hpos1 − hposs1 i
...

hposk − hposs1


T hpos1 − hposs1

...

hposk − hposs1

 (12)

Next, eigenvectors and eigenvalues are calculated from
the covariance matrix Fs1 . The eigenvector with the smallest
eigenvalue λ3s1 among the eigenvectors (λ1s1 ≥ λ2s1 ≥ λ3s1 ) is
calculated as the normal vector of the node hnors1 is calculated.
Using the estimated normal vector of the first winner node s1
and the current robot posture pt , the slope angle of the first
winner node is calculated as follows.

degs1 = cos−1 (
hnors1 · pt
∥hnors1 ∥ · ∥pt∥

) (13)

where degs1 denote the slope angle of the first winner node.
Furthermore, if degmax is the maximum slope angle at which
the robot can travel, the property of the i-th node with the
slopes at which it can travel are determined as follows (pdegi ).

pdegi =

{
1 if degi < degmax

0 otherwise
(14)

The node attributes of the slope angle will be used as
information to calculate the traversability.

B. SURFACE ROUGHNESS PERCEPTION
In this study, the roughness of the road surface is added as
another feature for the traversability perception. The surface
roughness is calculated using the following equation for the
shape feature representing the 3D shape in Ref. [34],

hroui =
λ3i

λ1i
(15)

where λ
j
i represents the eigenvalues calculated during normal

vector estimation for the i-th node and j represents the order
of magnitude of the eigenvalues. Using these values, the
node property for road surface roughness are defined by the
following equation,

proui =

{
1 if hroui < thvrou

0 otherwise
(16)
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where thvrou represents the threshold of road surface rough-
ness that is traversable, and a node is treated as traversable as
long as the threshold is not exceeded.

C. TRAVERSABILITY PERCEPTION
In GNG-DT, each topological structure can be combined.
In this study, a topological structure C tra of traversablity is
constructed by combining the topological structures of slope
angle (pdegi ) and surface roughness (proui ) to determine the
traversablity of a node, which is then used for local planning.
Specifically, the traversablity property of the i-th node is
determined as follows (ptrai ),

ptrai = pdegi · p
rou
i (17)

where ptra = 1 indicates a node that is traversable, and
0 indicates a node that is untraversable. Furthermore, the
topological structure representing the traversablity of the i-th
node and the j-th node is updated as follows,

ctrai,j =

{
1 if ptrai = ptraj
0 otherwise

(18)

Thus, by taking advantage of the characteristics of GNG-DT
and combining clusters related to traversablity, more suitable
traversablity clusters can be generated and used for the local
planning.

D. PASSABILITY PERCEPTION
The robot can perceive the traversable area by using the
above-mentioned perception. However, there are cases in
which the area belonging to a plane that is judged to be
traversable is actually a narrow path bounded by walls,
or where the ceiling is so low that the robot’s upper part
could collide with it. Therefore, in order to utilize the robot
for the local planning, it is necessary to detect areas where
the robot can pass through, taking into consideration the
robot’s body size. Therefore, in order to include passability
information that is in accordance with the robot’s body size
in the traversability clusters, we propose a method to judge
whether or not a node in the traversable information is
passable, as shown in the following equation,

ppasi =

{
1 if disi < passthv

0 otherwise
(19)

where fisi is the shortest distance between a travelable node
(ptrai = 1) and an element of the set N of untravelable nodes
(ptrai = 0), calculated as the following equation.

disi = min
j∈N

dposj (20)

Specifically, as shown in Fig.3, for a node i, a circular
threshold distance is set around the node. If there is a node
that cannot be traveled, then node i is judged as an impassable
node (that cannot be passed). By performing this process
for all possible nodes, a traversability cluster with passable
information is created.When ppas is 1, it represents a passable

FIGURE 3. Passability node detection.

FIGURE 4. Obstacle detection under moving.

FIGURE 5. Travelable area including passability information.

node, and when ppas is 0, it represents an impassable node.
A passable node is always a travelable node, but even the
traversable node may become the impassable node.

V. LOCAL PLANNER BASED ON PASSABILITY
INFORMATION
In order for a robot to move in a real environment,
it must perceive the environment and plan its path using the
information it obtains. The local planner plays an important
role in this process. It is used to plan a route to a destination
while avoiding dynamic obstacles that are not included in the
robot’s map information. In this study, we propose a local
planner that utilizes traversability and passability information
perceived by GNG-DT to select appropriate start and target
nodes.

A. CONTOUR NODE DETECTION
In this study, we propose a local planner that uses the
learned topological structure. The contour information of the
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FIGURE 6. Start node detection.

topological structure is very important because the boundary
with the unknown environment is a node located at the
contour (boundary) of the constructed topological structure.
Therefore, in this study, contour nodes are extracted in
Step 5 of the GNG-DT learning algorithm, as in the literature.
Specifically, we calculate the angle θk between the i-th node
and the i-th edge of each of its neighbors when the nodes
in the neighborhood of the i-th node hposi are sorted in
counterclockwise order, and perform a threshold judgment
as expressed in the following formula to The approximate
judgment of the contour node is performed by calculating the
angle θk of the edge with the i-th node of each neighbor node.
Since GNG-DT creates topological structures for multiple
attributes, the contour information possessed by a node differs
depending on the attribute. When zoi = 1, the node is a
contour node in attribute o.{

zoi = 1 if θmax > θ thv

zoi = 0 otherwise

θmax = max
k

θk (21)

B. START NODE DETECTION
Obtain a node that indicates the current position of the robot,
which is the starting point for local planning. A conceptual
diagram is shown in Fig.6. The light yellow background
represents the measurement area of the sensor, and the
gray dots and black lines represent the nodes and edges
constructed by GNG-DT. A candidate node of the start node
is determined by the following formula.

s = argmin
i∈A
||hposi || (22)

If the candidate node s is passable and exists in the area
indicated by the red dashed line (Fig.6), the candidate node
s is selected as the start node of the local planning. If the
start node is successfully selected, the target node described is
selected by using the target node detection method described
in subsection V-C. If the start node does not exist in the red
dashed line area, or if the candidate node s is not passable,
the selection of the start node fails and the avoidance action
described in subsection V-E is performed.

C. TARGET NODE DETECTION
When the robot searches in the unknown environment, the
robot can plan the path only within the current perception.
However, it is not possible to plan in detail the path from
the current position to the final destination in the unknown

FIGURE 7. The state of obstacle avoidance.

environment. In such an environment, subgoals are important.
By setting the subgoal in the current perceptual range, the
robot can expand its perceptual range during the search to
that point, update the path to the final destination. Therefore,
from the topological structure learned by GNG-DT, the robot
obtain a node that indicates the target position, which is the
end point of path generation by the local planner. In this study,
the contour information of the node described above is used
to detect the subgoal. Fig.7 shows the contour node according
to the position information and passability information.

From the contour nodes in the topological structures, the
robot can detect a set D of candidate nodes that contain
subgoal nodes as the following equation.

D := {i|zposi = 1 ∩ zpassi = 1} (23)

The points and lines in Fig.8 represent the topological
structure constructed by GNG-DT. Green dots represent
passable nodes, red dots represent impassable nodes, and
white dots represent contour nodes. The white dots high-
lighted on a yellow background represent candidate target
nodes; because the topological structure in GNG-DT can be
clustered, candidate nodes can only be detected within the
cluster where the acquired start node is located. Therefore,
the robot does not select a target node that requires the robot
to cross an impassable area.When the robot is given the target
position outside the current perception range, the candidate
node closest to the target vd is selected from the set of
candidate nodes D as the following equation,

g = argmin
i∈D
||vd − hposi || (24)

where g is the target node number.
When the target position is within the perception range of

the robot, there are four cases as shown in Fig.9. In Case 1, the
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FIGURE 8. Target node detection.

FIGURE 9. Cases of target node detection when the target position is in
the perceived range.

target position is located in the same cluster as the start node
s; in Case 2, the target position is located in an impassable
area and is completely unreachable. In these cases, the closest
node to the target position is found from the set of passable
nodes with the same cluster, P, as shown in the equation
below.

g = argmin
i∈P
||vd − hposi || (25)

Case 3 is a case where the target location is in a passable
region and can be reached, but there is no path to it. Case 4 is
a case similar to Case 2, where the target location is in an
impassable area, but the location is closer to other passable
clusters than the cluster to which the start node belongs.
In these cases, as in the case where the target position is
outside the current recognition range, the target node is
searched for as in Eq. (24).

D. LOCAL PLANNING
The local planner applies the Dijkstra method to the
topological structure learned in GNG-DT. The topological
structure used is the traversability cluster with the passability
information shown on the right side of Fig.5. Although
the traversability cluster detects the road surfaces on which
the robot can travel, which does not take into account the
robot’s body size. If a path is planned within only the
traversbaility cluster, the path will include areas that are
actually impassable. On the other hand, by using the travel

possibility clusters including the passability information for
local planning, the path can be planned that does not contact
any obstacles. The specific algorithm of Dijkstra’s method is
described below.

Step 0. Initialize by setting the cost from the start node s
to each node to infinity.

Step 1. Set the cost dcosi,j between all two vertices connected
by Cpass. In the following equation (26), dposi,j is the distance
between nodes i and j,

dcosi,j =

{
α(zpassi + zpassj )+ di,j if cpassi,j = 1

∞ otherwise
(26)

where zpassi represents the contour information in the
passability information of the i-th node. The α is a weight
coefficient, which is set for the reason described below.

Step 2. Among the nodes with undetermined minimum
cost, select the node i with the lowest cost to determine the
minimum cost.

Step 3. For a node j that has an edge with node i determined
in Step 2 but is not yet determined, if the sum of the cost with
node i is less than the previous cost, the cost is updated.

dcoss,j ← dcoss,i + d
cos
i,j if dcoss,j > dcoss,i + d

cos
i,j (27)

Step.4 Step. 2 and Step. 3 are performed until the minimum
cost to all nodes is determined, and the minimum cost from
node s to each node is calculated.

In this way, the robot can plan the path within the passable
area. However, when the robot passes through the passable
area, the start node detection may be unstable because the
passability information of candidate nodes is not stable and
frequently switches between passable and impassable states.
The topological structure learned by the GNG-DT is not
fixed at a certain position but changes dynamically. Since
the passability information is based on the distance between
nodes, it is very sensitive to this effect, which is more
pronounced for contour nodes. For this reason, in Eq. (26),
weight is added to the edges of the contour nodes to avoid
using the contour nodes for the path.

E. AVOIDANCE BEHAVIOR
In order to perform local planning, it is essential to determine
the start and target nodes. Therefore, if the nodes cannot be
detected, the local planner fails. For the robot to continue the
search, not only avoidance but also the direction of avoidance
is important. Therefore, in this study, the topological structure
is used to determine the direction of the robot’s avoidance.
Specifically, when the start node detection fails, the robot
is given an input to avoid the direction in which the nearest
passable cluster exists, as shown in Fig.10. In this example,
the robot performs avoidance by turning counterclockwise.

The above avoidance algorithm cannot handle situations
where there are no passable areas near the robot, such
as when obstacles are scattered around. In such a case,
the robot performs an avoidance behavior using passability
information. First, as shown in Fig.11(a), a detection area is
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FIGURE 10. An example of avoidance using passability information.

FIGURE 11. Avoidance behavior using only traversability information.

FIGURE 12. Experimental environment 1.

set in front of the robot. If an untraversability node is detected
within the area, indicated in red, the robot moves to avoidance
behavior. The direction of avoidance is the direction in which
there are many traversability nodes, which in this example
is counterclockwise. (For comparison, the experiment using
only the traversability information used only this algorithm
to perform avoidance.)

VI. EXPERIMENTAL RESULTS
A. VERIFICATION OF EFFECTIVENESS IN L-SHAPED
CORRIDOR
To verify the effectiveness of the proposed method, eight
runs were conducted in the environment shown in Fig.12.
In this experiment, a comparison was made between the
local planner using the proposed method with passability
information and the local planner using only the traversability
information. The parameters used in this experiment are
shown in Table 2, and the parameter passthv of the passability
information was set to 0.55m. The robot starts running from
the start position shown in Fig.12 and runs through the
environment to the goal line using only the local planner. The
width between the walls is 0.8m.

Fig.13 shows (a) the results of all trajectories using only the
traversability information and (b) the results of all trajectories
including the passability information.

TABLE 2. Experimental parameter setting.

FIGURE 13. Experimental results of travel trajectory.

FIGURE 14. Experimental results of yaw angle transition (Traversability).

FIGURE 15. Experimental result of yaw angle transition (traversability
and passability).

TABLE 3. Average and maximum of processing time.

From Table 3, it can be seen that there was no significant
difference in the computation processing time for each of the
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FIGURE 16. The state of movement (Traversability). The left side shows
the robot in motion, and the right side shows the learning process in
GNG-DT. The green nodes represent traversable node, the black nodes
represent untraversable, the white nodes are candidate subgoal nodes,
and the red nodes are obstacles. The green circle is the current node and
the light blue circle is the destination node, and the yellow line is the
result of local planning connecting these two points.

FIGURE 17. The state of robot motion (proposed method).

runs. However, as shown in Fig.13, the trajectory is angular
for the run using only the traversability information.

In our proposed method, a super-clear turn is incorporated
to avoidance behavior, and the posture of the robot body
changes abruptly during this behavior. Figure 14 shows
that the behavior occurs multiple times. The robot basically
moves forward by adjusting the output of both wheels based
on the results of path planning and avoiding obstacles in
advance. Figure 16 shows how the robot behaves when
traveling using only the traversability information. As shown
in the figure, a path is planned without considering the
robot’s body size, and it is considered that the robot
needs to take actions to avoid obstacles when it actually
follows the path. Fig.17 shows the situation in the run
with passability information. From the above comparison,
the proposed method detects a traversable area including
passability information and performs local planning within
the area, enabling smoother travel.

B. VERIFICATION OF EFFECTIVENESS IN ENVIRONMENTS
INCLUDING DEAD-ENDS
Next, to verify the effectiveness of the proposed method in
a more complex environment, we conducted 10 runs each
in the environment shown in Fig.18. The parameters of the
experiment were the same as in the experiment described

FIGURE 18. Experimental environment 2.

FIGURE 19. Experimental results of travel trajectory (Traversability
information only).

FIGURE 20. Experimental results of proposed method (Traversability and
passability information).

above. The robot started from the start position shown in
Fig.18, and a run in which the robot was able to escape from
the lower right corner of the figure was recorded as a success.
The width between the walls is 1.5m, and the minimumwidth
of the passage is 0.7m.

1) RESULT
Figure19 shows the results of all trajectories using only the
traversability information, and Fig.20 shows the results of
all trajectories including passability information. Figure 21
shows the trajectories of successful and unsuccessful cases
in each condition, and Table 4 shows the results of the
computation time of the perceptual processing by GNG-
DT. Table 5 shows the number of successes and failures
for each run. Table 4 shows that there was little difference
in the maximum processing time for each run. The average
processing time was about 2 or 3 ms faster for the runs using
only the traversavility information. The number of successes
was 9 out of 10 runs with the passability information, while
the number of successes was 0 for the run with only the
traversavbility information, and there were 5 contacts with
obstacles as shown in Fig. 22.

2) DISCUSSION
In the case of using only the traversability information, the
robot performs avoidance action when the robot detects an
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FIGURE 21. Experimental results of travel trajectories.

TABLE 4. Average and maximum of processing time.

TABLE 5. Experimental results of success rate.

FIGURE 22. An example of collision case in the case of using only the
tarversability information.

obstacle within the area indicated by the red frame, as shown
in Fig.23. When an obstacle that did not fall within the area
in the straight-line state is out of the perceptual range, the
robot is given the output to make a large left turn, which is
considered to be contact with the side of the robot’s body
(red circle in Fig.22). Even when the robot did not contact
the obstacle, it passed very close to the obstacles in all
paths depicted in Fig.24(a), (c), and (d). On the other hand,
in the proposed method, the robot passed by the obstacle
with a margin as shown in Fig.24 (b), and did not contact the
obstacle.

In Case 2 of Fig.21, the robot found a way out of the
environment, but failed because it could not pass through
a narrow space. The failure is shown in Fig.24 (c) and (e),
respectively. In Fig.24 (c), the robot performs the avoidance
behavior by turning when it finds an obstacle indicated by
the red dots in front of it. However, the local path planned
immediately after the avoidance behavior was completed
passed right next to the obstacle, as shown in Fig.24 (e).When
the robot follows the path, an obstacle appears in front of
the robot as before. The robot tries to avoid it and performs
avoidance again.

In the successful case of running with passability informa-
tion shown in Fig.24, the robot fails to acquire the current
location node due to the presence of an obstacle in front,

FIGURE 23. The sensor range of the robot and avoidance judgement.

FIGURE 24. Robot motions of avoidance behavior. The detailed
experimental video is uploaded as Supplemental items.

FIGURE 25. Examples of perception result before entering the dead-end.

as shown in (d), and performs avoidance behavior by turning
in the same way. The path planned immediately after the
successful detection of the start node and the end of the
avoidance behavior is based on the size of the robot, as shown
in (f), so that the same obstacle will not cause the avoidance
behavior even if the path is followed. Comparing the direction
of the robot’s body after the avoidance behavior by turning,
it can be seen that the robot turns to an angle at which it can
pass almost straight through in the case of the one including
the passability information.

In Case 1 of Fig.21, the robot failed because it entered
a dead-end. Fig.25 (a) and (b) shows the state of each run
before the robot entered the dead-end. The target point is
set at a position that the robot cannot reach, and the path
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FIGURE 26. Failure example in the proposed method.

is planned through an area between obstacles that the robot
cannot pass through. The robot followed this path and entered
the dead-end. On the other hand, in 25 (b), the robot does
not plan a path through the dead-end, but instead follows an
open path on the right side of the path from the robot. This is
because the use of passability information allows the robot to
perceive the dead-end, and thus is not a candidate for setting a
target point. These results indicate that the proposed method
can be used for appropriate local planning even when there
are dead-end in the environment that are not included in the
global information.

Figure 21 shows a case in which a robot entered a dead-end
even though it included passability information, as shown
in Case 4. Figure 26 shows the situation. The reason is that
the path was actually planned to avoid the dead-end, but the
output control could not follow it in time. The average and
maximum processing times of our local planner in Case 4 are
40.19 [ms] and 53.70 [ms], respectively, according to the
Table 4. This exceeds the sampling time of 33 [ms] of
the RGB-D camera used in this experiment, and as a result,
the robot could not follow the output control and continued
to move forward.

VII. CONCLUSION
In this paper, we proposed a 3D space perception method and
a local planning method for an autonomous mobile robot in
an environment that includes unknown objects. Specifically,
we proposed a method of extracting the traversable area
by learning the topological structure from 3D point cloud
data using GNG-DT and perceiving traversability clusters
based on the topological structure for 3D space perception
of an autonomous mobile robot. Furthermore, we proposed a
method for local planning based on the topological structure,
which is based on the passability information.

In the experiments, we compared the cases where only
traversability was used and where passability information
was used in an actual environment, and showed that the
proposed method can plan a route that determines the area
that the robot can actually pass through.

However, since the experiment was conducted on a flat
surface only, future work will include verification of the

effectiveness of the proposed method on slopes and terrain
with complex shapes. In addition, the limitations of our
proposed local planner include the inability to recover once
it falls into a dead end and the high possibility of taking a
longer path distance compared to the global planningmethod.
Therefore, integration with the global planner is one of our
future tasks.
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