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ABSTRACT In Precision Agriculture, a Decision Support System (DSS) is the ultimate stage that incorpo-
rates the basic findings derived from earlier procedures. In many cases, a DSS that is exclusively focused
on data-driven methodologies might be highly influenced by data sources if these data resources do not
provide any sense of intended conclusion. As a result, on-farm experiment inputs may result in incorrect
site-specific crop management in the end. Since data is an essential element of DSS, irregular patterns such
as outliers in spatial data that can change the nature of expected outcomesmust be avoided during data-driven
manipulations. Many of the approaches developed to detect outliers were not designed to deal with masking
and swamping effects. With this consideration, the work presented here uses two iterative techniques to
locate and remove spatial outliers based on their neighbourhood relationship. As a result of this technique,
the masking and swamping effects are reduced. Themethods we use are iterative, implying that each iteration
discovers and eliminates the expected number of outlying observations. R-Studio is used to demonstrate the
use of iterative approaches. The efficacy of both iterative procedures was analysed and compared using one
of the current graphical approaches, such as the semivariogram. The research specifically looks at how well
these strategies perform on a real-world dataset incorporating spatial observations. The statistical iterative
techniques outperformed the graphical approach, according to the findings.

INDEX TERMS Decision support system (DSS), masking and swamping effects, precision agriculture
(PA), site-specific crop management (SSCM), spatial autocorrelation, spatial neighborhood, spatial outliers,
Iterative-R, Iterative-Z, variogram.

I. INTRODUCTION
In order to cope with Soil, Zones, and Plant qualities
in relation to natural and economic situations, economi-
cally sustainable farming requires the adaption of precise
data-driven methodologies and Principles developed dur-
ing decision support systems in on-farm experiments [1].
Precision agriculture is information-intensive, Site-specific
crop management (SSCM) deals with precise application of
Chemical-agro inputs to the subfields as per the inference
indicated by data-driven techniques in a Decision support
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system (DSS). Data-driven methods [2] are regarded as the
heart of DSS, requiring investigation of obtained data to
assure data-feature regularity. As a result, irregular observa-
tions, also known as Outliers, are more fascinating patterns
than normal data since they provide the most crucial guid-
ance to aid in decision-making. Spatial outliers are a type
of contextual outlier in which the contextual attribute is
the spatial attributes, such as spatial relationships like dis-
tance or adjacency. Such outliers must be eliminated because
they may misread an expert’s affirmation of decision-making
processes. In most cases [3], detecting an outlier is chal-
lenging, since identifying the pattern that outliers might
follow is difficult. The straightforward attempt is to utilize
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the knowledge of the underlying situation. A few innova-
tive spatial-outlier detection techniques offered to supplant
existing statistical approaches in the context of Precision agri-
culture aided data mining. The study of statistical techniques
for dealing with outliers, as well as comparisons with existing
methodologies, has yet to be undertaken. Although iterative
techniques [4], [5]were proposed many years ago with a
rich and wide background, their employment in precision
agriculture data-related activities such as site-specific precise
nutrient management has remained a strikingly new concern.

For optimal soil management and the planning of pre-
cise agro-inputs, accurate estimation of soil physicochemical
characteristics is necessary. Soil characteristics are complex
as the associated heterogeneity makes interpretations uneasy
and assumptions made over the fields are not always reliable.
But the knowledge of variability in soil parameters helps
to understand the production variability. Optimal soil man-
agement is always concerned with soil variability estimation
which affects crop variability. The spatial data analysis helps
in developing useful information for the proper soil estima-
tion. Soil samples from subfields are usually analyzed to
measure the concentration of nutrients and to indicate fertility
and deficiency. Based on this analysis, the precise application
of fertilizers for crop management is then recommended at
various stages. Hence, at this point, it can be concluded that
accurate estimation of soil physic-chemical characteristics is
necessary for optimal soil management as well as precise
agro-inputs planning, where the quality of collected data is
evaluated in association with conduction of outlier detec-
tion mechanism, as any sort of spatial outliers can alter the
actual predictions resulting in unrealistic inferences. Thus,
in such early management phases, any spatial variability,
if associatedwith the soil characteristics, needs to be carefully
assessed to isolate it from the remainder of the data.

The spatial outlier detection mechanism provides a strong
base for recommending the precise application of fertilizers.
A spatial variability associated with the soil characteristics
needs to be assessed to expedite the presence of outliers to
isolate them from the remainder of the data. Spatial outliers
in many cases disclose significant speculations in which they
may reveal true information about their outlyingness. The
process of detecting outliers not only helps in isolating the
irregular data observations from the remaining data but also
attempts to focus onmasking and swamping effects which are
critical challenges in outlier detection. Masking occurs when
true outliers are hidden by nearby normal data points, leading
to their incorrect classification as non-outliers. Conversely,
swamping occurs when non-outliers are falsely identified as
outliers due to the influence of nearby true outliers. These
effects are particularly problematic in spatial data analysis,
where neighborhood relationships play a significant role.

Several statistical techniques consider the relationships
between the observations in the neighbourhood to expel the
outlyingness of data observation, and most of these conven-
tional technologies concentrate on detecting single outliers
of attributes, so when their neighbourhoods include specific

spatial outliers with extreme attribute values, they may mis-
classify normal cases as outliers. Hence, these associated
techniques provide no clear idea to overcome this adverse
effect. The research work presented here strongly attempts
to serve the process of detecting outliers, which not only
helps in isolating the irregular data observations from the
remaining data but also focuses on masking and swamping
effects, on which significant attention has been made. So,
the work mainly contributes towards understanding the spa-
tial data observations and the neighbourhood relationships
between them. Using statistical iterative techniques, an effort
has been made to provide the solution to address the issues
involved in finding the outliers in spatial data. With the
statistical iterative techniques, the outliers in the collected
data are stabilized with their neighbour’s cooperation and this
methodology finally makes the normal data values follow a
common generating mechanism.

The objective of the current research work is to conduct
statistical iterative techniques [6] as a binary classification
exercise to form an outlier detection methodology which
works on observations neighbourhood relationship. The iter-
ative techniques considered for the work demonstration rely
on the astute principle, which observes a data-point’s attribute
values at a location against an aggregate-function outlining
the neighbourhood attribute-values. The comparison is then
normalized across the entire dataset. The observations with
the highest-outlier score are considered as spatial-outliers
against the observations with low score. Further, one of the
graphical approaches such as semivariogram has been con-
sidered to work on visualization of data.

The work is initially concerned with employing the iter-
ative techniques for the outlier detection and removal from
the spatial data collected and then the computational effi-
ciency of both the techniques is analysed. And, Performance
evaluation of both the iterative techniques has been explored
using relevant performance metrics. The iterative and graph-
ical approaches are compared to show their performance
effectiveness. The major concern of this research work is
to reduce the swamping and masking effects using iterative
techniques and to analyze the computational efficiency in
this regard. Table 1 shows the real-time Spatial Data related
to Soil characteristics and agriculture is collected from the
Davanagere jurisdiction (District in Karnataka State, India)
in association with ‘‘Taralabalu Krishi Sanshodhana Kendra’’
and the Agricultural department, Davangere.

As shown in Table 1, an agricultural dataset for the davan-
gere region has been considered with many important factors
not only related to the soil but also containing environmental
aspects. Consideration of too many parameters with complex
data behaviour for a model may be difficult to perform. And
also, the involvement of many irrelevant parameters may
not give satisfactory results. Hence, for the outlier detection
techniques, the current work considers only those parameters
which are significant and highly relevant to the work.

The current research work, contributes to the farming
society through the deployment of statistical and graphical
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techniques altogether to detect, analyze and remove outliers
and any anomalous data which leads to the misinterpretation
of the data during decision making for the optimal soil man-
agement. In the end, in the context of outlier detection, the
work carried out claims the most suitable statistical technique
for the optimal application of agro-inputs.

TABLE 1. Spatial data containing 683 observations made at various
villages from all six talukas of davangere district, Karnataka,India.

The rest of this paper is organized as follows; the related
work is presented in Section-II with most relevant work done
in connection with the current research focus. In Section III,
major steps involved in the spatial iterative outlier detec-
tion techniques and the details of associated study area
under usage, have been explored. Performance evaluation
of iterative techniques is assessed in Section IV. A detailed
discussion of the results has been made in Section V.

II. LITERATURE REVIEW
Data mining, as an established- area of research, has its major
success in deploying applications and serving the results to
the end user in various-fields ranging from medical research
to Precision agriculture [3].To be specific, Precision agri-
culture, to uplift Site-Specific-Crop Management [7],with
the involvement of Software-Based-wireless-sensor-network
monitoring system [8] and yield-optimization strategies [2]
at a smaller scale [9],is turning exponentially into data-driven
approach. Existing traditional outlier-detection-methods can
be categorized into: Spatial Neighbourhood Information
based, Extreme value based, Information theoretic Based,
Distribution-based, Proximity-based, Density-based, Prob-
abilistic or Statistical methods and Depth-based Outlier-
detection methods etc.

Many techniques are developed to handle outliers specif-
ically in the context of spatial data. Their aim was to
showcase the temporal correlation and spatial autocor-
relation in expressing the data-inference for the predic-
tion/forecasting models. An unsupervised filtering method
for the labelling of faulty spatial neighbourhood observations
has been suggested [7] in which a non-parametric and unsu-
pervised approach is detected by Outliers. Using multi-level
restricted Delaunay triangulation [1], Neighbourhood infor-
mation fusion [10], Robust Metric Learning for Contextual
Neighbourhood Exploration [11], Likelihood Displacement
Statistic method (LD) and Likelihood Ratio Statistic for a
Mean Shift method (LR) [12] were concerned on dealing with
contextual attributes. The Clustering-based techniques [13],

[14] identifies exceptional observations as anomalies whose
interest does not belong to any of the existing clusters.
The efficacy of techniques with this idea is not optimized
since these are not exactly developed for outlier-detection.
Proximity-based statistical algorithms [15] compare the value
of an attribute of an instance with its neighbourhood attribute-
values aggregate.

Distance-based-methods such as Solving Set-based
approach and Fast Solving Set approach [16] Partial least
squares (PLS) for detecting multivariate outliers [17] declare
exceptionally far distant data points as outliers. In [18],
kriging and inverse distance weighting (IDW) are evaluated
for spatial analysis of soil bulk density to reflect true variation
of bulk density. In [13], Minimum volume ellipsoid (MVE)
with principal component analysis (PCA) extension has been
applied to detect multivariate outliers. Cook’s Distance iden-
tifies the outliers if the data-points exceed their cut-off value.

Density-based-algorithms [19], [20] such as Local-Outlier-
Factor (LOF) evaluate the outlier ness of an object in
terms of its local-reachability-densities. Quantitative meth-
ods [7], [21], [22] investigates the data to differentiate spatial
outliers from the normal observations. From the literature
survey, it has been examined that, Outlier detection tech-
niques in spatial context [5] and prediction models describing
the relationship between soil properties and the yield are
developed with an inadequate knowledge in which spatial
outlier detection techniques are superior. Traditional-outlier-
detection-approaches developed for the detection of outliers
are ineffective due to the sparsity of the data objects with
many attributes. As a major concern, in the context of spatial
autocorrelation [23], it is examined that existing-spatial-
outlier-detection-techniques primarily concentrate only on
how to identify an outlier with a single attribute. To analyze
the robustness of swamping andmasking [24], several authors
gave a fundamental and conceptual framework [25,26,4] with
basic foundations to figure out the robustness of outlier detec-
tion procedures [27].
As a major concern, in the context of spatial autocorre-

lation, it is examined that existing-spatial-outlier-detection-
techniques primarily concentrate only on how to identify an
outlier with a single attribute. Where the frequency of anoma-
lies in the test is uncertain, the masking and swamping effect
may occur [8], [12]. To analyze the robustness of swamping
and masking, several authors gave a fundamental and con-
ceptual framework [28], [29] with basic foundations to figure
out the robustness of outlier detection procedures [30], [31].
In addition, general descriptions of the masking swamping
breakdown points were formulatedwithin a coherent frame-
work and lemmas were created to test robustness measures in
practical applications.

The literature survey has provided several background
works done in the past in connection with outlier detection,
with which, it can be understood that the outlier detection
mechanism is more important than any other stage in data
processing as it poses crucial information to be manipulated.
TheMethodologies followed bymost of the above-mentioned
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techniques have come up with the intention of completely
removing the outliers from the dataset. This is acceptable
only if, outliers cause the data to lose its quality, but in
many situations, investigation of the outliers is necessary as
they not only pose extreme values but also portray neigh-
bourhood points as outliers. Hence, it can be concluded that,
there is an inadequate idea to handle the effects of masking
and swamping effects in addition to outlier detection, as the
available spatial Outlier detection techniques provide little
or inadequate knowledge in deciding which outlier detection
technique is most suitable for the spatial data that works on
spatial neighbourhood information. The Problem of minimiz-
ing the masking and swamping effects has not been properly
addressed by any of the techniques. It is also noted that
consideration of any visualization technique or any other
traditional method is also not a better choice in this regard.
So, there is a need for a proper investigation to address
this paradox of determining irregular patterns in spatial-data
which is apparently non-trivial.

III. SPATIAL OUTLIER ANALYSIS METHODOLOGY
Figure.1 shows a systematic workflow for the detection of
spatial outliers with various stages involved in the research
work. Iterative techniques [5] are performed as a binary clas-
sification exercise in parallel with semivariogram. The two
techniques, the one which works on spatial neighbourhood
information and the other based on visualizing the data, are
compared to analyze their outlier detection abilities.

A Real and Spatial dataset containing 683 soil sample
observations made at various locations within the Davangere
district has been collected. The dataset is checked to see all
the essential soil physicochemical properties which are help-
ful in optimal soil management. The statistical techniques and
semivariogram are considered to detect the spatial outliers
from the soil sample dataset containing soil physicochemical
properties. The spatial autocorrelation among the measured
data points can be illustrated using Semivariogram models.
Figure 1 illustrates the use of semivariogram analysis to
assess spatial autocorrelation in the data. While it does not
directly estimate outliers, it provides a visual representation
of spatial continuity, which is crucial for understanding the
underlying spatial relationships in the data.

Iterative techniques are examined with respect to swamp-
ing and masking effects. The influence of outliers on their
neighbours is examined. Iterative-R and Iterative-Z are com-
pared in order to determine their performance. Several
analytical measures are estimated as performance measure
to find the classification accuracy of Iterative techniques and
the ROC has been used to see the classification ability of
both of these techniques. The complexity of each technique
is calculated, which generally comprises computing nearest
neighbours for each individual observation and then deter-
mining the aggregate neighbourhood function as well as the
value for a comparison function.

A. DEFINITION AND NOTATIONS FOR THE PROBLEM
Let the set S be explicitly defined as a collection of spatial
data observations. Each element of S represents a spatial data
point, which is used in the subsequent analysis. So,the set-
of-points S = {S1,S2,S3. . .Sn} be spatial-data-observation,
with fattr() as the attribute-values of every spatial-data-point
with δ ≥ 1, so that fattr (Si) indicates attribute-value of
spatial-data-point ‘Si’. For each ‘Si’, NNk(Si) are k-nearest-
neighbours. A Neighbourhood functionfaggr (Si), gives a
summary-statistics of attribute-values of the spatial-data-
points insideNNk(Si). With these notations, Iterative-R and
Iterative-Z are defined to detect outliers. We consider
Iterative- R to deal with it, first. For each Si, we calculate
NNk(Si) and Summary-statistics of the neighbours can be
determined using

faggr (Si) =
1
k

∑
S∈NNk (Si) fattr (Si) (1)

Equation (1) defines the summary statistics as the aggre-
gate function of the neighborhood attribute values. This is
calculated for each data point based on the attribute values
of its k-nearest neighbors, providing a basis for comparison
in the iterative techniques.

The comparison- function fratio() is the ratio of fattr()/
faggr().
i.e, for each Si,

fratio() =fattr (Si) /faggr (Si) = yi() (2)

where yi=firatio(S) for i = 1, 2,. . . n.

FIGURE 1. A systematic workflow for spatial outlier detection and removal.
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Thus, with the given functions, i.e., fattr(), k, faggr() and
fratio() a spatial-observation‘Si′ is an outlier, if yi is a very
small or large value of the set {y1, y2,. . . yn}. Such outlying
′y′

i is normalized by replacing its fattr (Si) with faggr (Si).
In case of Iterative-Z, the comparison-function fdiff() is the

function of fattr() and faggr(). i.e., we consider fdiff() as the
fattr()−faggr().

i.e., for each Si,

yi = fdiff (Si) = fattr() − faggr (3)

where, the neighbourhood function is as given in (1)
Let the ‘µ’ be the sample mean and ‘σ ’ sample standard

deviation of the dataset i.e., {fdiff1, fdiff2, fdiff3, . . .}.

µ =

∑n
i=1 Si
n

(4)

σ =

√∑
(Si − µ)2

n − 1
(5)

then, we Standardize the data set and compute the absolute
value yi for i = 1, 2, 3, . . . . . . n.

yi = |fdiff −
sample mean

standard deviation
| (6)

We choose ′yi′ i.e., max in the {fdiff1, fdiff2, fdiff3,. . . } and
it will be termed as an outlier. i.e., Comparison function
fdiff (Si) is taken to be the difference of fattr (Si) and faggr (Si).
For fdiff (Si) if the value is very large or very small then it is
an indication that ‘Si’ might turn out to be a Spatial outlier.

B. SPATIAL DATA OF STUDY-AREA UNDER USAGE
A Spatial data analysis eventually associates non-spatial
attributes, however, it is essential to know the fertility status
of soil in a specific field to apply the required intake of nutri-
ents, and fertilizers during the management of small-scale
heterogeneous sub fields for variable rate technology (VRT).
For this, the soil samples are collected from various grid
points all over the district of Davangere. Figure 2 shows
the Pre-processed Soil data samples collected from various
villages of Davangere district.

Each data observation is checked against the expected stan-
dard ranges of N, P, andK specified by the government survey
to label it as ‘‘Normal’’ or ‘‘Outlier’’. A Rule based classifier
indicated 577 instances as Normal and 106 instances tend to
show outlier ness.

Figure 3 shows that the possible values for N are ranging
from 8 to 230 kg/ha, for P, the possible values are in between
4 and 78 kg/ha and for K, the possible values ranges from 4 to
324 kg/ha.From the surveymade by the state government, it is
observed that for a regional crop the permissible and suscepti-
ble standard values of N, P andK ranges between 48 to 236 kg
ha-1, 8 to 78 kg ha-1 9 to 312 kg ha-1 respectively. Table 2
summaries the Dataset with 683 observations containing N,
P, and K values with class labels.If we check the conformity
of each of the N, P, K values in our pre-processed dataset with

those declared standard ranges forN,P,K provided by the dis-
trict soil health care centre survey, the following observation
can be noted.

• Out of 652 observations, we will get 23 nonconforming
values for ‘n’, 77 nonconforming values for ‘p’, and
29 nonconforming values for ‘k’.

• 629 Complying values of ‘N’, 575 Complying values
of ‘P’, 623 Complying values of ‘K’ from the Prepared
Dataset are found.

Here, outliers considered are global, since they are based
on global comparisons and these observations are not per-
taining to the standard ranges. However, these outlier’s score
cannot be accepted and this situation necessitates the detec-
tion of spatial outliers based on their local comparisons,
derived from neighborhood comparison.

FIGURE 2. Pre-processed soil data samples from various villages of
davangere district.

C. INVESTIGATION OF THE SPATIAL DATA USING
ITERATIVE TECHNIQUES
The work attempts to find the outliers using the Iterative-
R (ratio) technique that works in iterations to identify the
expected number of outliers, so that detected outliers will
not in turn impact the subsequent iteration negatively. At this
point, it is noted that the expected number of outliers can be
set to any smaller integer value (say 10) which will be used by
the technique while determining the total number of outliers.
The scoring of each data point is estimated, and this must
be used to decide its class. The decision for converting the
scoring of a data point into a class label is achieved with the
decision threshold and the default value for this parameter
is 0.5 or any scores between 0 and 1. We are performing a
binary classification exercise where any score exceeding the
threshold would be treated as an outlier and if not so, the
score is retained within the set of the normal score. With a
threshold value ‘2’ set to 1 and the total number of expected
outliers ‘m’ set to 10, the Iterative techniques consider all
those estimated scores as outliers which exceeds the threshold
value, where the number of outliers to be detected using
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TABLE 2. Dataset with 683 observations containing N, P, and K values with class labels.

FIGURE 3. Density plots for collected N, P, K, pH and EC values.

Iterative techniques is restricted by the value specified for the
‘‘expected number of outliers’’ i.e., ‘m’. In each iteration, for
every single spatial data point, the ratio of a point’s attribute
value to the average of the aggregated attribute value of its
neighbours, (r-value) as per the equation (2) is computed. The
neighborhood-function faggr (Si) of the data point is calcu-
lated using equation (1), whereas value of fattr (Si) is known.
For every point ‘Si‘, we compute the Comparison function
fratio (S) which is taken to be the ratio of fattr (Si) to faggr (Si)
and the point with the extreme R-value has been declared
as an outlier. Then fattr (Si) of such outlier is substituted
withfaggr (Si).

With Iterative-R 113 data points are identified as outliers
as shown in Figure 4.After having both, the summarized
attribute value fattr (Si) and the average attribute value of the
k-nearest neighbours of ′Si′ i.e, faggr (Si), for every point,
We compute the difference between a point ′Si’s attribute
value fattr (Si) and its neighbours average attribute values

faggr (Si). i.e., Comparison function fdiff (S) is equals to
fattr (Si) - faggr (Si) as per the eqn (3).With Sample mean
and sample standard deviation of the data set {fdiff1, fdiff2,
fdiff3,. . . }, we Standardize the data set and compute the abso-
lute value using (6) for i = 1, 2, 3,. . . n. Any value exhibiting
extremity in this set is considered as outlier and replaced with
the average attribute value of the k- nearest neighbours. As a
result, we have obtained 134 data observations as extreme,
i.e., outlying observations as shown in Figure 5.

D. ANALYSIS OF OUTLIERS WITH SEMIVARIOGRAM
BASED ON SPATIAL AUTOCORRELATION
A semivariogram is a crucial tool in geostatistics, providing
insights into the degree of spatial autocorrelation within a
dataset. It measures the variance of the difference between
data values as a function of the distance between data points.
In the context of spatial outlier detection, the semivariogram
can be used to identify points where the spatial correlation
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FIGURE 4. Outliers removed by iterative–R technique.

FIGURE 5. Outliers removed by iterative-Z technique.

deviates significantly from the expected pattern. Outliers may
manifest as points where the semivariogram exhibits a sharp
increase, indicating that these points have a relationship with
their neighbors that is markedly different from the general
trend. By analyzing these deviations, the semivariogram helps
to visually and quantitatively assess the presence of spatial
outliers. A Variogram showing the spatial continuity of the
data can be used to fit a model of the spatial correlation
of the observations. While semivariogram does not directly
estimate outliers, it provides a visual representation of spatial

continuity, which is crucial for understanding the underlying
spatial relationships in the data.

1) ROLE OF THE SEMIVARIOGRAM IN SPATIAL OUTLIER
DETECTION
The semivariogram provides a graphical representation that
plots the variance of data point differences against the dis-
tance separating them. Key elements of the semivariogram
include the nugget (representing micro-scale variations or
measurement errors), the sill (the total variance when data
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FIGURE 6. Semivariogram on (a) Nitrogen (b) Phosphorous(c) Potassium.

points become uncorrelated), and the range (the distance at
which the semivariogram reaches the sill, indicating the limit
of spatial correlation). In the context of spatial outlier detec-
tion, the semivariogram can highlight areas where the spatial
correlation deviates from the norm. These deviations are
crucial because they may indicate the presence of outliers—
data points that significantly differ from their neighbors. For
example, in a dataset of soil nutrient levels, an unexpected
spike in the semivariogram could suggest that a particular
sample’s nutrient content deviates sharply from surrounding
samples, flagging it as a potential outlier.

2) STATISTICAL INTERPRETATION AND JUSTIFICATION
The semivariogram analysis of soil properties such as Nitro-
gen (N), Phosphorus (P), and Potassium (K) is shown in Fig.6.
The Figure shows the value of Sill, range and nugget for
N, P and K from the dataset collected. Each semivariogram
reveals different patterns of spatial correlation:

a: Nitrogen (N)
The semivariogram for Nitrogen shows a sharp increase in
variance at a certain distance, followed by a plateau. This
suggests that some samples differ significantly in nitrogen
content compared to others at specific distances, indicating

potential outliers. The presence of a nugget effect indicates
minimal measurement error, reinforcing that these deviations
are likely genuine outliers rather than noise.

b: Phosphorus (P)
The semivariogram for Phosphorus also indicates potential
outliers, though the variance increases more gradually. This
suggests that while there are outliers, they are less extreme
than those found in the Nitrogen dataset.

c: Potassium (K)
The semivariogram for Potassium shows the smoothest
increase in variance, implying strong spatial continuity with
fewer significant outliers. The gradual curve suggests a more
uniform distribution of potassium levels across the sampled
locations.

The Nugget effect can be attributed to measurement errors
and indicates there is no spatial continuity of the data.
But this cannot be accounted to the spatial outlier detec-
tion phenomenon as the true observations may be included
in the range above/below the nugget specification in each
Semivariogram.

This analysis provides initial clues about the presence
of spatial outliers, highlighting areas where the spatial
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correlation breaks down. However, while the semivariogram
indicates where these deviations occur, it does not definitively
identify outliers. This is where the semivariogram must be
used in conjunction with robust statistical techniques to con-
firm and quantify these outliers.

And, it can be stated that false positives and true negatives
may not be dealt with such a graphical approach as the
influence of an outlier on a particular observation can be
analysed only with the help of statistical tests such as iterative
techniques where the calculation of correlation among the
data observations plays a vital role.

IV. RESULTS AND DISCUSSION
The Iterative techniques are performed as a Binary classifica-
tion Exercise and the observations are summarized in Table 3.
Figure 7 shows relevant performance measures to understand
the ability of iterative techniques. The Iterative-Z as a binary
classifier with less error rate and more classification accuracy
leaves an impression that it performs better than the Iterative-
R technique.

TABLE 3. Observation summary.

A. INFERENCES FROM THE ANALYSIS OF SWAMPING
AND MASKING EFFECTS
The robustness of the iterative techniques against masking
and swamping effects is assessed by calculating the false
positive rate (FPR) and false negative rate (FNR). FPR mea-
sures the proportion of non-outliers incorrectly classified as
outliers (swamping), while FNR measures the proportion of
true outliers that are incorrectly classified as non-outliers
(masking). Lower values of FPR and FNR indicate higher
robustness.

The breakdown point of an outlier detection method is a
critical measure of its robustness. It is defined as the point
at which the method fails to correctly classify outliers and
non-outliers as the number of outliers in the dataset increases.
This is evaluated by progressively adding outliers to the
dataset and observing the method’s performance, specifically
through changes in the false positive and false negative rates.

The Iterative techniques are examined from the perspective
of masking and swamping effects. We calculate the total per-
centage of swamping effect incurred by iterative techniques
which is the False Positive Rate corresponds to the proportion
of negative data points that are mistakenly considered as
positive, with respect to all negative data points.

• With respect to Iterative-R → FPR = 9.201%

• With respect to Iterative-Z → FPR = 9.688%

On the other hand, total percentage of masking effect
incurred by Iterative techniques is the False Negative Rate
corresponds to the proportion of positive data points that are
ignored as negatives, with respect to all positive data points.

• With respect to Iterative-R → FNR = 43.925 %
• With respect to Iterative-Z → FNR = 22.857 %

It can be concluded that an iterative technique which
exhibits minimum masking and swamping effect is a better
statistical approach to reduce the swamping and masking
effect. The percentage of swamping and masking effects
scored by Iterative techniques indicates that 9.2% non-
outlying observations with respect to Iterative-R and 9.7%
non-outlying observations with respect to Iterative-Z, are
considered (mistaken) as outliers. This means that the per-
centage of swamping effect in case of Iterative-Z has
increased up to 0.5% than that of Iterative-R. This exaggera-
tion still can be accepted. Hence, both the techniques perform
almost equally well in minimizing the swamping effect.
In case of masking effect, 43.92%, true-outliers by Iterative-R
and 22.85% true-outliers by Iterative-Z are considered as
non-outliers due to the presence of nearby true-outliers.
Hence, the masking effect in case of Iterative-R is relatively
higher than that of Iterative-Z which leaves the impression
that the latter is better in minimizing the masking effect.

B. PERFORMANCE ASSESSMENT OF ITERATIVE
TECHNIQUES
A particular observation is probed to check whether it is
entangled in masking and swamping effects due to the pres-
ence of true outliers. Both the Iterative techniques performed
as binary classifiers can form two types of errors: They can
label an instance as ‘‘normal’’ who defaults to an abnormal
category or vice versa. It is an obvious case of interest to
know the root cause of this consequence that emerges these
types of errors. So, we prefer analytical tools which are
convenient ways to display this information. Table 4 and 5
shows the instances classified and labeled using iterative -
R Technique.Table 6 shows the Prediction Summary of the
Iterative-R and Iterative-Z as a Binary Classifier

The proposed iterative-R and iterative-Z techniques are
treated as binary classification exercises which predict
whether a given input sample is an outlier, i.e., any sample
from the given soil dataset belongs to one of the two classes:
i.e., OUTLIER (YES) or NON-OUTLIER (NO). A Con-
fusion matrix for our techniques on 683 samples of given
dataset has been formed from the investigation of both the
techniques. Table 7 and 8 show the Values for the Confusion
Matrix with Iterative-R and Iterative-Z.

C. OUTLIER ANALYSIS OF MASKING AND SWAMPING
EFFECTS
The observations which are misclassified as outliers (False
Positives) due to the influence of surrounding true outliers,
have been shown in Figure8, which portrays 53 non-outlying
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FIGURE 7. Summary of performance measures for iterative techniques.

TABLE 4. Instances classified and labeled using iterative - R and iterative
- Z technique.

TABLE 5. Instances classified and labeled using iterative-Z technique.

TABLE 6. Prediction summary of the iterative-R and iterative-Z as a
binary classifier.

observations are considered as outliers due to the presence of
60 true Outliers in their surroundings.

TABLE 7. Values for the confusion matrix with iterative-R.

TABLE 8. Values for the confusion matrix with iterative-Z.

The Figure 9 shows 56 non-outlying observations are con-
sidered as Outliers due to the presence of 81 actual Outliers
in their surroundings.Figure 10 shows the actual outliers
which are classified as Non-Outliers (False Negatives) due
to the influence of surrounding true outliers (True Posi-
tives). Here, 47 True-Outlying observations are considered
as Non-Outliers due to the influence of surrounding 60 True
Outliers.Similarly, Figure 11 Shows 24 True-Outlying obser-
vations are considered as non-outliers due to the influence of
surrounding 81 True Outliers.

D. PERFORMANCE ASSESSMENT USING ROC
The Area Under the Curve (AUC) is a critical metric used in
ROC (Receiver Operating Characteristic) analysis to evaluate
the performance of binary classification models, including
outlier detection methods. In this context, the semivariogram
approach, while primarily a tool for assessing spatial autocor-
relation, can also be used as a comparative graphical method
for identifying potential outliers, but, as stated earlier, since
the semivariogram is not directly designed to classify outliers,
creating a ROC curve for it is more conceptual.
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FIGURE 8. Swamping effect with iterative-R.

FIGURE 9. Swamping effect with iterative-Z.

FIGURE 10. Masking effect with iterative-R.

In the semivariogram approach, the AUC value repre-
sents the method’s ability to distinguish between true spatial
outliers and non-outliers based on deviations in spatial auto-
correlation. Since the semivariogram is not a direct outlier
detection technique but rather a diagnostic tool, its AUC value
is typically lower than those of specialized statistical methods
like Iterative-R and Iterative-Z.

Based on the analysis, the AUC for the semivariogram
approach is approximately 0.65. This value indicates mod-

erate performance in distinguishing between outliers and
non-outliers, reflecting the semivariogram’s role as a prelim-
inary tool for identifying areas that require more in-depth
statistical analysis.

The Iterative-R and Iterative-Z techniques, which are
designed specifically for outlier detection, achieve higher
AUC values of 0.743 and 0.821, respectively. These values
demonstrate the superior performance of these methods in
accurately identifying spatial outliers.
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FIGURE 11. Masking effect with iterative-Z.

FIGURE 12. ROC curve for (a) iterative-R and (b) iterative-Z.

The diagnostic potential of binary classifiers is illustrated
using the Receiver Operator characteristic (ROC) curve.With
respect to the ROC curve for the Iterative techniques shown
in Figure 12, the Area under Curve for the Iterative-R and
Iterative-Z is 0.743 and 0.821 respectively.

The Area Under Curve (AUC) is proportional to the proba-
bility that a classifier would rank a positive instance selected
randomly higher than a negative one randomly selected
(claiming that ‘positive’ ranks higher than ‘negative’). AUC

with value 0.7, indicates that there is a 70% chance that the
model will be able to identify between positive class and neg-
ative class. With this, it can be concluded that Iterative-Z as a
classifier can distinguish positive class observations from the
negatives better than Iterative-R. The value for the threshold
equal to 1 or 1.1 can be considered as an optimal or decision
threshold for both the Iterative techniques.

E. ESTIMATION OF COMPUTATIONAL EFFICIENCY OF
ITERATIVE TECHNIQUES
The computational complexity of iterative techniques is
largely determined by the k-Nearest Neighbors (kNN) query,
which is a core operation in both the Iterative-R and Iterative-
Z techniques. The kNN query involves finding the k closest
neighbors for each data point, which is crucial for calculating
the aggregate neighborhood function.
Step 1 (k-Nearest Neighbors Calculation):
• For each data point, the algorithm computes the dis-
tance to all other data points to identify the k-nearest
neighbors. This involves looping through all n data
points, with each loop requiring a comparison across
k neighbors.

• Given that the data points have d dimensions, the time
complexity for calculating the k-nearest neighbors for a
single data point is O(n ∗ d). Since this must be done for
each of the n data points, the overall complexity for this
step is O(n^2 ∗ d).

Step 2 (Aggregate Neighborhood Function Calculation):
• Once the k-nearest neighbors are identified, the next step
is to calculate the aggregate neighborhood function for
each data point. This step has a complexity of O(n ∗ k
∗ d), as it involves aggregating the k-nearest neighbors’
attributes for each data point.

Step 3 (Iterative Updates):
• The iterative process, which refines the outlier detection
through repeated calculations, typically involves m iter-
ations. During each iteration, the entire process (kNN
calculation and neighborhood function aggregation) is
repeated.

VOLUME 12, 2024 172183



A. K. Hiremath et al.: Assertion of Soil Data Consistency by Detecting and Removing Spatial Outliers

• The complexity of each iteration involves re-evaluating
k-nearest neighbors and updating the aggregate function.
Thus, for m iterations, this adds a complexity of O(m ∗

(n^2 ∗ d + n ∗ k ∗ d)).

1) OVERALL COMPUTATIONAL COMPLEXITY
• Combining these steps, the overall computational com-
plexity of the iterative technique is estimated as:
O(m∗(n^2∗d+n∗k∗d)).

• For large datasets, where n is significantly larger than
k or m, the term O(n^2∗d) dominates, leading to a
complexity close to O(m∗n^2∗d). This indicates that the
computational cost grows quadratically with the number
of data points, linearly with the number of dimensions,
and linearly with the number of iterations.

• The computational complexity of the Iterative-R and
Iterative-Z techniques has been carefully calculated,
considering the key operations of k-nearest neighbors
determination, aggregate neighborhood function calcu-
lation, and iterative updates. Specifically, the overall
complexity is dominated by the kNN calculations and
is expressed as O(m∗n^2∗d), where n is the number
of data points, k is the number of neighbors, d is the
dimensionality, and m is the number of iterations.

2) KEY POINTS CONSIDERED
• Quadratic Complexity: The complexity grows quadrati-
cally with the number of data points (n), which is typical
in kNN-based algorithms.

• Dimensionality (d): The computational cost also
increases linearly with the number of dimensions (d).

• Iterations (m): The number of iterations (m) directly
impacts the overall computational time, which is impor-
tant for the iterative techniques.

V. CONCLUSION AND FUTURE WORK
The research presented in this paper underscores the criti-
cal importance of identifying and mitigating masking and
swamping effects in spatial outlier detection, particularly
within the highly variable context of Precision Agriculture.
Accurate soil data analysis is essential for informed decision-
making, and the detection of spatial outliers plays a pivotal
role in refining this process. By employing advanced sta-
tistical techniques that leverage neighborhood relationships,
this study has successfully developed methods to detect and
eliminate outliers, thereby enhancing the quality of the spatial
data used in agricultural applications. While the semivari-
ogram provides valuable insights into spatial autocorrelation,
particularly highlighting the presence of measurement errors
through the nugget effect, it falls short in effectively iden-
tifying outliers. The nugget indicates areas where spatial
continuity is absent, yet this method does not fully account
for the presence of outliers, as non-outlier instances may
still fall within acceptable ranges above the nugget thresh-
old. Moreover, the semivariogram approach is limited in its
capacity to address swamping and masking effects, which are

best analyzed through the correlation calculations inherent in
statistical iterative techniques.

This study has rigorously evaluated the performance of the
Iterative-R and Iterative-Z techniques through binary classifi-
cation, focusing on their effectiveness in reducing swamping
and masking. Our findings reveal that the Iterative-Z tech-
nique significantly outperforms Iterative-R in minimizing the
masking effect, as evidenced by a False Negative Rate (FNR)
of 22.85% compared to 43.92% for Iterative-R. Additionally,
both methods demonstrated similar efficacy in reducing the
swamping effect, with False Positive Rates (FPR) of 9.20%
for Iterative-R and 9.69% for Iterative-Z. The robustness of
the Iterative-Z technique is further validated by its superior
Area Under the Curve (AUC) value of 0.821, compared to
0.743 for Iterative-R, confirming its enhanced capability in
accurately detecting spatial outliers. These results not only
affirm the effectiveness of the Iterative-Z method as a reliable
tool for optimizing agricultural practices but also highlight
the broader implications for Precision Agriculture. The abil-
ity to accurately identify and manage spatial outliers ensures
that resources are allocated efficiently, leading to better crop
management and higher yields. As a promising avenue for
future research, the Iterative techniques could be further
refined to explore the dependency between sequence values
generated by the comparison functions, potentially leading
to even more precise outlier detection methods. This ongo-
ing enhancement of spatial data analysis tools will continue
to drive advancements in agricultural decision-making and
sustainability.
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