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ABSTRACT The use of finger veins for biometric authentication is increasingly popular; however,
low-quality images present significant challenges that necessitate innovative approaches for accurate
identification. This study investigates the effectiveness of various image preprocessing techniques to enhance
and analyze finger vein images for biometric recognition. We utilized a finger vein dataset from Kaggle,
comprising diverse images captured under controlled conditions. Our preprocessing methods included
sharpening images using convolution kernels to improve edge definition, employing thresholding techniques
(simple binary, adaptive, and Otsu’s) for effective image segmentation, and applying morphological
operations (erosion, dilation, opening, and closing) to refine object shapes and reduce noise. We also
implemented edge detection methods, including Sobel, Laplacian, and Canny, to identify significant
boundaries within the images. Image resizing was performed using linear, cubic, and area interpolation to
assess their effects on image quality. Additionally, various filtering techniques–such as Kalman, median,
and Gaussian filters–were applied to reduce noise and enhance image clarity. The dataset comprised 3,816
images from 106 individuals, split into two configurations: 80-10-10 and 70-15-15. We assessed models
such as VGG16, VGG19, ResNet101, AlexNet, MobileNet, DenseNet201, and EfficientNet based on
metrics including accuracy, precision, recall, F1-score, and training time. VGG16, VGG19, and ResNet101
achieved accuracies of 99.9%, 99.8%, and 99.8%, respectively. Data augmentation techniques generated
76,320 augmented images, significantly improving model performance, especially for the 80-10-10 split.
Visualizations through radar and bar charts indicated that VGG16, VGG19, and ResNet101 delivered the
highest performance metrics, while DenseNet201 exhibited a slight decline in the 70-15-15 split due to
increased test data. Overall, the findings demonstrate the models’ efficacy for reliable finger vein biometric
recognition, contributing to advancements in biometric authentication systems.

INDEX TERMS Finger vein, biometric recognition, deep learning, image preprocessing, feature extraction,
biometric authentication.

I. INTRODUCTION
Biometric authentication has gained significant traction as
a secure and efficient way to verify personal identity
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in modern security systems. Among the diverse range
of biometric techniques, finger vein authentication stands
out for its unique advantages in terms of security and
reliability. This method involves capturing the vein patterns
beneath the skin of a finger using near-infrared (NIR) light,
making it particularly difficult to forge or counterfeit. Unlike
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surface-based biometric traits, such as fingerprints or facial
features, finger vein patterns are concealed within the body,
offering a higher degree of protection against tampering and
environmental degradation [1].

Finger vein authentication utilizes the distinct vascular
structure inside the finger, which is highly individualized and
remains stable over time. The uniqueness of vein patterns
from person to person and across different fingers of the same
individual provides an exact identification mechanism. NIR
imaging technology is employed to detect these vein patterns,
as the hemoglobin in the blood absorbs infrared light, creating
a clear and distinguishable contrast between the veins and
surrounding tissue. This method makes finger vein patterns
difficult to replicate, enhancing the modality’s security [2].
One of the critical benefits of finger vein technology is

its built-in liveness detection [3]. Since the system relies
on real-time blood flow within the veins, it can effectively
distinguish between a live person and an artificial attempt
to spoof the system using fake biometric samples [4]. This
characteristic provides a robust defense against presentation
attacks, where forged biometric data is used to deceive the
system. Additionally, finger vein recognition systems are
often designed to be non-contact or minimally invasive,
ensuring hygiene and ease of use, particularly in environ-
ments requiring frequent and secure authentication, such as
healthcare, banking, and high-security facilities [5]. When
combined with multi-factor authentication–pairing vein with
other biometric traits or security factors–finger vein systems
provide an even stronger layer of defense against various
cybersecurity threats, including identity theft and spoofing
attacks [6].
Key contributions of this work include: This study

evaluates the use of several popular pre-trained CNN archi-
tectures for finger vein authentication, including VGG16,
VGG19, AlexNet, MobileNet, DenseNet201, EfficientNet,
and ResNet101. These architectures, initially trained on
large-scale datasets like ImageNet, have demonstrated
remarkable performance in various image classification tasks
and are now adapted to optimize their effectiveness for
biometric recognition, specifically finger vein authentication.
To enhance the performance of these models, we implement
preprocessing techniques such as image resizing, grayscale
conversion, binarization, noise reduction, and morphological
processing. These preprocessing steps are crucial for improv-
ing the quality of the input images and ensuring that the CNNs
can effectively learn the distinguishing features of finger vein
patterns.

The remainder of this paper is organized as follows:
Section II describes the related work, Section III delves
into the image preprocessing techniques and the overview
of CNN Architectures for Finger Vein Recognition and,
Section IV describes the proposed methodology, Section V
presents the experimental setup utilizing CNN Architectures
and comparative results of each architecture, and Section VI
concludes the study by highlighting the key findings and
future research directions.

II. RELATED WORK
Hegde et al. proposed a novel approach for authentication
using finger-vein images, addressing the growing security
concerns of the current era. Recognizing that biometric
methods are more reliable and accurate for individual
authentication, the study utilized a basic CNN enhanced by
transfer learning. The model was pre-trained on a diverse set
of images from the ImageNet database using the ResNet-
50 architecture. The methodology involved running the
pre-trained model through the CNN framework, incorporat-
ing an appropriate number of hidden layers and activation
functions, while employing suitable optimizers and loss func-
tions for effective classification. The results demonstrated the
model’s effectiveness, achieving an impressive accuracy of
99.06% in classifying individuals based on their finger-vein
images [7].
Madhusudhan et al. proposed an intelligent deep learning-

based finger vein recognition (IDL-FVR) model to enhance
biometric authentication systems. This model analyzes finger
vein patterns for accurate identification by comparing
captured data with a database. It includes stages such as
acquisition using infrared imaging, preprocessing, feature
extraction, and authentication. A region of interest extraction
isolates the relevant finger portion, while a shark smell
optimization algorithm tunes the hyperparameters of a
bidirectional long-short-term memory (BiLSTM) network.
The authentication process relies on Euclidean distance to
assess similarity between images. The IDL-FVR model
achieved an impressive accuracy of 99.93%, demonstrating
effective authentication when the Euclidean distance is
minimal [8].
Boucetta et al. proposed a finger-vein identification system

that leverages vein patterns for biometric authentication,
highlighting its advantages over traditional fingerprint meth-
ods. The methodology utilized a Squeezenet pretrained
Deep-Convolutional Neural Network (Deep-CNN) as a
feature extractor for left and right finger vein patterns.
Features were combined using Discriminant Correlation
Analysis (DCA) to reduce dimensions, and the resulting
vectors served as input for a Support Vector Machine (SVM)
classifier. Evaluated on the SDUMLA-HMT and FV-USM
databases, the system achieved impressive accuracy rates,
reaching 97.78% with the right index finger and 98.64%
with the left middle finger. Notably, accuracy soared to
99.81% using five images for training on the SDUMLA
database [9].
Sathishkumar et al. proposed a biometric authentication

system utilizing finger vein recognition, which offered a
secure and accurate method for user verification. This
approach analyzed the unique vascular patterns beneath
the skin. The methodology began with capturing finger
vein images, which were preprocessed using Gaussian
median filters to reduce noise. Segmentation was conducted
through line tracking to improve image contrast. Features
were extracted using CNNs, followed by deep learning
classification to differentiate between genuine and impostor
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TABLE 1. Summary of biometric authentication techniques - feature engineering.

patterns. Real-time scanning was managed by an Arduino
board, with subsequent processing in MATLAB and results
communicated via a GSM module, while data was also
stored in an IoT framework. The system demonstrated an
accuracy of 96%, making it suitable for various security
applications [10].

Mathew et al. The author proposed a study to explore
the effectiveness of deep learning techniques for finger vein
biometric authentication, particularly in the context of low-
quality images. Utilizing a dataset of diverse low-quality
finger vein images, the research focused on two architectures:
U-Net for image segmentation and feature extraction, and a
modified Sequential Model incorporating VGG16 and LSTM
layers for temporal context. The results revealed that U-Net
achieved a precision of 0.9571, recall of 0.9702, and an F1-
Score of 0.9750, along with a Kappa Score of 0.973 and a
Matthews Correlation Coefficient of 0.664. In contrast, the
Sequential Model outperformed with a precision of 0.9976,
recall of 0.9742, and an F1-Score of 0.9976, as well as a
Kappa Score of 0.986 and aMatthews Correlation Coefficient
of 0.989 [11].

Wang et al. proposed a frequency-spatial coupling network
(FVFSNet) for finger vein authentication, integrating features
from both spatial and frequency domains to enhance accu-
racy. The model included three components: the frequency
domain processing module (FDPM), the spatial domain pro-
cessing module (SDPM), and the frequency-spatial coupling
module (FSCM). Experiments on nine publicly available
datasets, including USM-FV and SDUMLA-HMT, showed
that FVFSNet achieved state-of-the-art performance with
low computational cost. Notably, removing the FDPM
increased the weighted average equal error rate (EER) by

1.20%, highlighting its essential role in effective feature
extraction and confirming the benefits of combining spatial
and frequency domain features for improved biometric
authentication [12].

A. FINGER VEIN RECOGNITION BASED ON FEATURE
ENGINEERING
In the initial phase of research on finger vein authenti-
cation, feature engineering methods were widely adopted.
Numerous effective techniques emerged during this time,
which can be classified into three main categories: vein
pattern-based methods, local descriptor-based methods, and
subspace learning-based methods. Vein pattern-based meth-
ods specifically emphasize the characteristics of finger veins,
including their shape, position, and orientation. In a recent
study by Sai Kishore and Magesh Kumar [13], a finger
vein recognition method was evaluated using the PolyU
Fingerprint Database, achieving an impressive finger vein
accuracy of 98.56% compared to a Message Digest 5
(MD5) accuracy of 93.64%, with a statistically significant
p-value of 0.0218. The results indicate a higher accuracy
for the finger vein method, underscoring its effectiveness in
biometric recognition applications. However, the study was
limited in scope, involving only 170 individuals, divided
equally into two groups of 85, which may affect the
generalizability of the findings. This limitation highlights
the need for further research with larger and more diverse
populations to validate the robustness of the finger vein
recognition method [13]. Summary of Biometric Authenti-
cation Techniques based on Feature Engineering is given in
Table 1.
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TABLE 2. Summary of biometric authentication techniques - deep learning (Part 1).

B. FINGER VEIN RECOGNITION BASED ON DEEP
LEARNING
The swift advancements in deep learning have highlighted the
remarkable capabilities of CNNs in a wide range of image-
processing applications. This has garnered significant interest
among researchers focusing on finger vein authentication.
Consequently, deep learning techniques have emerged as a
vital resource for enhancing the accuracy and effectiveness of
finger vein authentication systems. Through the application
of these methods, researchers have introduced several inno-
vative approaches to address various challenges within this
field. A summary of Biometric Authentication Techniques
based on Deep Learning is given in Tables 2, 3.

III. IMAGE PREPROCESSING TECHNIQUES AND CNN
ARCHITECTURES USED FOR FINGER VEIN RECOGNITION
A. DATASET
For this experiment, we employed a finger vein image dataset
from Kaggle [33], a widely recognized benchmark in finger
vein image classification. The dataset consists of 3816 images
collected from 106 individuals during a single session. The
images are organized into 106 distinct folders, with each
folder containing subfolders for both the left and right hands.
Each subfolder includes 18 images from the index, middle,
and ring fingers of both hands. The images are of high
quality, ensuring detailed analysis for classification tasks.
This dataset is particularly suitable for our study as it provides

a comprehensive representation of finger vein patterns,
enabling effective model training and evaluation. Prior
to analysis, we performed necessary preprocessing steps,
including normalization and data augmentation, to enhance
the robustness of our model.

B. IMAGE PROCESSING TECHNIQUES
In this study, we employed various image processing
techniques to enhance and analyze images from our dataset.
The following sections detail the methods used, accompanied
by relevant figures illustrating the results.

1) IMAGE SHARPENING
We first sharpened an image from the dataset using a
convolution kernel designed for sharpening. The kernel
applied is defined as follows:

Kernel =

−1 −1 −1
−1 9 −1
−1 −1 −1

 (1)

This kernel emphasizes edges by enhancing high-
frequency components, resulting in a clearer image. Figure 1
shows the original and sharpened images side by side.

2) THRESHOLDING TECHNIQUES
Subsequent to sharpening, we applied various thresholding
techniques to binarize the image. The first method employed
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TABLE 3. Summary of biometric authentication techniques - deep learning (Part 2).

FIGURE 1. Original finger vein image (left) and sharpened finger vein image using convolutional filtering (right).

was simple binary thresholding, setting a threshold value
of 127. Any pixel value above this threshold was set to 255
(white), while those below were set to 0 (black). The result is
depicted in Figure 2.

The next technique was adaptive thresholding, specifically
using the mean of the pixel values in a neighborhood
around each pixel. This method accounts for varying lighting
conditions in the image, as shown in Figure 3.

Additionally, we implemented Otsu’s thresholding
method, which automatically calculates the optimal threshold
value to minimize intra-class variance. The results are
presented in Figure 4.

3) MORPHOLOGICAL OPERATIONS
Morphological operations, including erosion and dilation,
were utilized to refine the shapes of objects within the image.
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FIGURE 2. Threshold binary image obtained through simple thresholding.

FIGURE 3. Adaptive mean thresholding result, demonstrating improved
handling of varying lighting conditions.

Erosion removes pixels on object boundaries, while dilation
adds pixels, helping to eliminate small noise and fill gaps. The
results of these operations are illustrated in Figure 6.

Further, opening and closing operations were applied,
which are useful for removing small objects from the fore-
ground (opening) and closing small holes within foreground
objects (closing). These results are shown in Figures 7 and 8,
respectively.

4) EDGE DETECTION
Edge detection was performed using the Sobel operator,
which computes gradients in the x and y directions,
as depicted in Figures 9 and 10. The combined result of these
gradients is presented in Figure 11. The Laplacian operator,
which provides a second-order derivative measure, was also
employed to enhance edge detection, shown in Figure 12.
Finally, the Canny edge detection method was utilized for its
effectiveness in detecting a wide range of edges, depicted in
Figure 13.

FIGURE 4. Otsu’s thresholding result, showing optimal binarization by
automatically selecting the threshold.

5) IMAGE RESIZING
We performed scaling operations on a selected image to
demonstrate the effects of linear, cubic, and area interpolation
methods. The images were resized to different scales,
as shown in Figures 15 to 16, illustrating the impact of
interpolation methods on image quality during resizing.
Figure 17 represents image scaled using skewed Size.

6) FILTERING TECHNIQUES
Finally, various filtering techniques were employed to reduce
noise and smooth the images. A Kalman filter, median filter,
and Gaussian filter were applied, demonstrating their effects
on image quality as illustrated in Figures 18 to 19.

The series of image-processing techniques applied in this
study highlights the importance of pre-processing steps in
enhancing image quality and preparing images for further
analysis. The results showcase the effectiveness of these
techniques in addressing common challenges encountered in
image processing tasks [34].
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FIGURE 5. Erosion operation applied to the original image.

FIGURE 6. Dilation operation applied to the original image.

FIGURE 7. Opening operation result, combining erosion followed by
dilation.

C. CNN ARCHITECTURES FOR FINGER VEIN
RECOGNITION
In biometric authentication, pre-trained models offer a
significant advantage through transfer learning by applying

FIGURE 8. Closing operation result, combining dilation followed by
erosion.

learned weights from general image datasets to the specific
domain of finger vein patterns. This approach reduces
training time and improves model generalization, especially
when dealing with smaller biometric datasets, allowing
for enhanced pattern recognition even with few labeled
examples.

For this study, we evaluate several pretrained archi-
tectures on the finger vein biometric dataset: VGG16,
VGG19, AlexNet, MobileNet, DenseNet121, EfficientNet,
and ResNet101. Each architecture offers unique advantages:

VGG16 & VGG19: Both architectures utilize 3 × 3 con-
volutional filters, with VGG16 comprising 16 layers and
VGG19 featuring 19 layers. They are favored for their
simplicity and effectiveness in various image classification
tasks [25], [35].

AlexNet: A pioneering CNN with eight layers (five
convolutional and three fully connected), it utilizes
large filter sizes (11 × 11 and 5 × 5), max pooling,
Local Response Normalization (LRN), and dropout for
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FIGURE 9. Sobel X gradient result, highlighting horizontal edge detection.

FIGURE 10. Sobel Y gradient result, highlighting vertical edge detection.

FIGURE 11. Combined Sobel gradient image, highlighting both horizontal
and vertical edges.

regularization. AlexNet marked a turning point in deep
learning for computer vision [18].

FIGURE 12. Laplacian edge detection result, highlighting areas of rapid
intensity change.

FIGURE 13. Canny edge detection result, showcasing precise edge
localization with reduced noise.

MobileNet: Designed for efficiency, this architecture
employs depthwise separable convolutions to reduce

VOLUME 12, 2024 173425



U. Sumalatha et al.: Enhancing Finger Vein Recognition With Image Preprocessing Techniques

FIGURE 14. Original finger vein image.

FIGURE 15. Image scaled using linear interpolation, ensuring smooth
transitions between pixel values.

FIGURE 16. Image scaled using cubic interpolation, providing higher
quality and smoother transitions compared to linear interpolation.

computational load while maintaining performance. It is par-
ticularly suited for mobile and embedded applications [36].

DenseNet121: Known for its dense connectivity, each
layer receives inputs from all previous layers, promot-
ing feature reuse and mitigating the vanishing gradient
problem [37].

EfficientNet: This architecture scales efficiently, balancing
depth, width, and resolution to optimize performance with
fewer parameters [38].

FIGURE 17. Image scaled using skewed size, resulting in a non-uniform
distortion of the original proportions.

TABLE 4. Model hyperparameters of the proposed system.

ResNet101: A deep architecture utilizing residual learning
through skip connections, allowing for improved gradient
flow and enabling the training of very deep networks [39].

These models have demonstrated substantial effectiveness
in biometric recognition tasks, and our evaluation will
identify the best-performing architecture for finger vein
authentication.

IV. METHODOLOGY
The classification performance of the CNN architectures is
evaluated specifically for finger vein biometric recognition.
This includes an analysis of how these models perform on
the imbalanced dataset and the effect of data augmentation
techniques. To enhance feature extraction, the layers of
the original architectures are frozen, and each model is
trained using weights pretrained on the ImageNet dataset.
Adam optimizer and batch size is set to 32 are employed
to facilitate training based on trial and error method. The
categorical cross-entropy loss function is used to quantify the
differences between predicted class probabilities and actual
labels, guiding the model in adjusting its parameters for
improved accuracy. All themodels are trained for 500 epochs.
The finger vein dataset is divided into 2 splits. Training,
validation, and test sets with proportions of 80%, 10%, and
10% and 70%, 15%, 15% respectively.

1) MODEL HYPERPARAMETERS OF THE PROPOSED SYSTEM
The hyperparameters utilized during training are summarized
in Table 4.

2) MODEL ARCHITECTURE SUMMARY
The architecture of each model employed in the experiments
is summarized in Table 5.
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FIGURE 18. Image after Kalman filtering, demonstrating enhanced noise reduction and improved clarity.

TABLE 5. Model architecture summary.

FIGURE 19. Image after median and Gaussian filtering, showing effective
noise reduction and improved image quality.

A. FINGER VEIN RECOGNITION ALGORITHM
1) Data Acquisition

a) Dataset Loading: Access and load the fin-
ger vein images from the designated Kaggle
database, which consists of 3816 images. These
images represent multiple categories relevant
to our classification task. The dataset was
divided into training, validation, and test sets as
follows:

• Training Set: 70% or 80% of the images
• Validation Set: 15% or 10%of the images
• Test Set: 15% or 10% of the images

b) Image Resizing: Standardize the dimensions of all
images (e.g., resize to 224×224 pixels) to ensure
uniformity during processing.

2) Preprocessing of Images

a) Input Image Retrieval: Extract each finger vein
image from the dataset for processing.

b) Grayscale Transformation: Convert each image
to grayscale to simplify subsequent analysis by
reducing color complexity.

c) Binarization: Implement binary thresholding to
emphasize the finger vein patterns. Choose a
threshold value (e.g., 127) to distinguish between
vein and background.

d) Noise Reduction: Apply a Gaussian filter to
mitigate noise in the images, enhancing the clarity
of features.

e) Morphological Processing: Utilize morpholog-
ical operations, such as dilation and erosion,
to refine the visibility of vein structures.

f) Region of Interest (ROI) Masking: Employ
masks to isolate and focus on the central area
of the finger, where vein patterns are most
prominent.

VOLUME 12, 2024 173427



U. Sumalatha et al.: Enhancing Finger Vein Recognition With Image Preprocessing Techniques

3) Convolutional Neural Network (CNN)Development
a) Library Importation: Import necessary libraries,

such as TensorFlow or Keras, for CNN construc-
tion.

b) Model Architecture Design: Construct the CNN
model by sequentially adding layers, including
Conv2D, MaxPooling, and Dense layers.

c) Model Compilation: Define the model’s loss
function and optimization algorithm to prepare
for training.

d) Model Training: Utilize the preprocessed dataset
to train the CNN for effective extraction of vein
features.

e) Evaluation and Optimization: Assess model
performance using accuracy metrics and make
necessary adjustments to improve results.

4) Implementation of Pre-Trained Model
a) Loading Pre-Trained CNN: Access pre-trained

models (e.g., VGG16, VGG19) for the purpose of
transfer learning.

b) Layer Freezing: Freeze specific layers within
the pre-trained model to retain existing learned
features during training.

c) Addition of Custom Layers: Integrate additional
layers tailored for finger vein feature extraction.

d) Training the Enhanced Model: Train the compos-
ite model with the finger vein dataset, keeping the
base layers fixed.

5) Model Assessment
a) Performance Comparison: Evaluate and compare

the performance metrics of the CNN and the pre-
trained model, focusing on accuracy, precision,
and recall.

b) Final Model Training: Conduct final training
iterations on the selected model to optimize
performance.

c) Testing and Deployment: Validate the model’s
effectiveness with unseen data, ensuring its reli-
ability for real-world authentication applications
before deployment.

V. EXPERIMENTAL SETUP AND RESULT ANALYSIS
The experiments were conducted on a cloud-based GPU
platform running an Ubuntu Linux environment, equipped
with an NVIDIA A100 GPU. The computational setup
included Cuda version 12.2 and cuDNN version 11.5, along
with TensorFlow 2.11.0, to optimize deep learning workflows
and ensure efficient model training and evaluation. System
architecture of the proposed model is represented using
Figure 20.

A. PERFORMANCE METRICS FOR FINGER VEIN
RECOGNITION
Assessing the performance of a finger vein recognition model
is essential following the training phase. The loss function

is primarily used as a metric during training to optimize
the model. Once training is concluded, various metrics
are utilized to thoroughly evaluate the model’s capability
to accurately classify finger vein patterns. In particular,
accuracy (as defined in Equation 2) serves as a comprehensive
indicator of the model’s correct predictions [40]:

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(2)

Precision (shown in Equation 3) measures the reliability of
the model’s positive predictions:

Precision =
TP

TP+ FP
(3)

Recall (presented in Equation 4) assesses the model’s
effectiveness in identifying true positives:

Recall =
TP

TP+ FN
(4)

The F1-score (illustrated in Equation 5) provides a
balanced assessment of both precision and recall, presenting
a more holistic view of the model’s performance:

F1 Score =
2 × Precision × Recall
Precision + Recall

(5)

B. EXPERIMENT DETAILS
The performance of various deep learning models was
evaluated based on their ability to accurately classify
data using different metrics, including accuracy, precision,
recall, and F1 score. The models analyzed include VGG16,
VGG19, AlexNet, MobileNet, DenseNet, EfficientNet, and
ResNet101. Two experiments were conducted, each utilizing
a different data split configuration: Experiment 1 with an
80-10-10 split and Experiment 2 with a 70-15-15 split.
In Experiment 1 (80-10-10 Split), the dataset consisted

of a total of 3816 images, divided into 3053 training
images, 382 validation images, and 381 test images. For
Experiment 2 (70-15-15 Split), the dataset also contained
3816 images, but was split into 2672 training images,
572 validation images, and 572 test images. The results
are presented through radar charts, bar charts, grouped bar
charts, and accuracy/loss curves, providing a comprehensive
comparison of the models’ effectiveness.

As illustrated in Table 6 and Table 7, a comparison of
deep learning models, including VGG16, VGG19, AlexNet,
MobileNet, DenseNet, EfficientNet, and ResNet101, has
been carried out using key performance metrics. These
metrics include training, testing, and validation accuracy,
along with precision, recall, F1-score, training time, and loss.
The results highlight the models’ capability to achieve high
accuracy and precision while maintaining minimal training
loss, showcasing their efficiency in biometric recognition
tasks.

1) DATA AUGMENTATION IMPACT
Data augmentation techniques were employed to enhance
model robustness and prevent overfitting. Techniques such as
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FIGURE 20. System architecture of the proposed model, illustrating the components and flow of data in the fingerprint recognition system.

TABLE 6. Performance metrics of various deep learning models (70-15-15 split).

TABLE 7. Performance metrics of various deep learning models (80-10-10 split.

rotation, width shift, height shift, rescale, shear, brightness
adjustment, horizontal flip, and vertical flip were applied to
the training dataset, resulting in a total of 76,320 augmented
images generated from 3,816 original images.

The inclusion of these augmentation methods positively
influenced model performance, particularly in the 80-10-10
split configuration. The radar charts and grouped bar charts
indicate that models trained with augmented data achieved
higher accuracy and recall scores compared to those without
augmentation. This suggests that augmentation effectively
diversified the training dataset, allowing models to generalize
better to unseen data.

C. MODEL PERFORMANCE ANALYSIS
The trained models undergo comprehensive testing to
evaluate their accuracy and generalization capabilities on a
separate test dataset specifically designed for finger vein

biometric recognition. The performance of each model
is assessed using a range of metrics, including accuracy,
precision, recall, and F1 score after the application of data
augmentation.

By employing various assessment measures, we gain
insights into the models’ capabilities and their overall
suitability for the biometric authentication task, ensuring that
different performance criteria are considered in the evaluation
process. This rigorous testing phase not only highlights the
strengths and weaknesses of each model but also helps
identify the most effective approach for enhancing biometric
recognition accuracy and reliability.

1) PERFORMANCE METRICS (80-10-10 SPLIT) AND
(70-15-15 SPLIT)
The radar chart in Figure 21 illustrates the performance of
each model using metrics normalized between 0 and 1 for
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FIGURE 21. Performance of each model for (80-10-10 Split).

the 80-10-10 split. VGG16,VGG16 and ResNet101 demon-
strated exceptional performance, achieving high accuracy,
precision, recall, and F1 scores nearing 1.0.

Similarly, Figure 22 presents the performance metrics for
the 70-15-15 split. VGG16 and VGG19 maintained strong
performance, with high scores in accuracy and precision.
However, a slight decrease in metrics was observed compared
to the 80-10-10 split, especially for DenseNet201, suggesting
that the increased validation and test data may impact model
performance.

2) ACCURACY AND LOSS CURVES
The accuracy and loss curves for VGG16, VGG19, and
ResNet101 are depicted in Figures 23, 24, and 25. Each

figure illustrates the training and validation accuracy and
loss for 500 epochs, based on an 80-10-10 split of the
dataset.

ForVGG16, the training accuracy achieved approximately
99.9%, with the training loss stabilizing near 0.0013.VGG19
exhibited a training accuracy close to 99.8% and a training
loss nearing 0.002. ResNet101 reached a training accuracy
of about 99.8%, with the training loss stabilizing at around
0.0013. These curves indicate effective learning across all
three models, with minimal overfitting apparent from the
close alignment of training and validation metrics. The
models demonstrated strong performance, particularly under
the 70-15-15 data split configuration, reinforcing the positive
impact of data augmentation techniques utilized in the
training process.
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FIGURE 22. Performance of each model for (70-15-15 split).

FIGURE 23. The accuracy and loss curves for VGG16 (80-10-10 Split).

The accuracy and loss curves for VGG16, VGG19, and
ResNet101 are presented in Figures 26, 27, and 28. Each

figure illustrates the training and validation accuracy and loss
for 500 epochs, based on a 70-15-15 split of the dataset.
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FIGURE 24. The accuracy and loss curves for VGG19 (80-10-10 Split).

FIGURE 25. The accuracy and loss curves for Resnet (80-10-10 Split).

FIGURE 26. The accuracy and loss curves for VGG16 (70-15-15 Split).

For VGG16, the training accuracy reached approximately
99.7%, with training loss stabilizing near 0.0013. The
validation metrics closely aligned with the training perfor-
mance, indicating effective generalization.VGG19 exhibited
a training accuracy close to 99.6%, and the training loss
approached 0.0018. The validation results demonstrated

similar trends, reflecting the model’s ability to learn from
the training data. ResNet101 achieved a training accuracy of
about 99.5%, with training loss stabilizing at around 0.0012.
The validation performance further confirmed the model’s
robust learning capacity. These curves indicate effective
learning across all three models, with minimal overfitting
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FIGURE 27. The accuracy and loss curves for VGG19 (70-15-15 Split).

FIGURE 28. The accuracy and loss curves for Resnet (70-15-15 Split).

FIGURE 29. Execution time comparison graph for both data split.
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FIGURE 30. Grouped bar chart for metrics for both data split.

FIGURE 31. Training loss curves for both data split.

evident from the close alignment of training and validation
metrics, reinforcing the efficacy of the 70-15-15 data split
configuration.

3) EXECUTION TIME COMPARISON FOR BOTH DATA SPLIT
Execution time for each model was assessed and visu-
alized in Figure 29. AlexNet exhibited the shortest

execution time, while models like ResNet101 and DenseNet
required significantly more time due to their com-
plexity. This trend was consistent across both split
configurations, with MobileNet performing favorably in
terms of speed, indicating its efficiency for real-time
applications.
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FIGURE 32. Model performance comparison for both data split.

FIGURE 33. Box plot of model accuracy for both data split.

4) GROUPED BAR CHART FOR METRICS FOR BOTH DATA
SPLIT
The grouped bar chart in Figure 30 provides a detailed
comparison of accuracy, precision, and recall across both
splits for each model. The metrics for the 80-10-10 split

were generally higher than those for the 70-15-15 split,
underscoring the impact of data distribution on model
performance. Notably, the models displayed high sensitivity
in detecting true positives, as indicated by strong recall
scores.
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FIGURE 34. Heatmap of model performance metrics for both data split.

FIGURE 35. Grad-CAM Visualization for VGG16 70-15-15 split.

5) TRAINING LOSS CURVES FOR BOTH DATA SPLIT
Figure 31 illustrates the training loss of various models
(VGG16, VGG19, AlexNet, MobileNet, DenseNet201, Effi-
cientNet, and ResNet101 over 500 epochs. The dashed lines
represent the loss for the 80-10-10 data split, while the
solid lines represent the loss for the 70-15-15 split. Overall,
the models demonstrate a consistent decrease in training

loss, indicating effective learning and generalization across
different data splits.

6) MODEL PERFORMANCE COMPARISON FOR BOTH DATA
SPLIT
This bar chart 32 compares the training, validation, and test
accuracies for various models under the two data splits:
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FIGURE 36. Grad-CAM Visualization for VGG16 80-10-10 split.

FIGURE 37. Grad-CAM Visualization for VGG19 70-15-15 split.

80-10-10 and 70-15-15. The training loss is represented as a
line plot overlay. The results indicate that all models achieve
high training accuracy, with VGG16 performing the best at
99.9% for the 70-15-15 split. The minimal training losses
further reinforce the effectiveness of the training process.

7) BOX PLOT OF MODEL ACCURACY FOR BOTH DATA SPLIT
This box plot 33 displays the distribution of accuracy
for each model across multiple training runs. It highlights
that VGG16, VGG19, Densenet201 maintain high median

accuracy values, indicating strong and consistent perfor-
mance. The interquartile ranges are narrow, suggesting
reliability in the accuracy metrics across different iterations
of model training.

8) HEATMAP OF MODEL PERFORMANCE METRICS FOR
BOTH DATA SPLIT
This heatmap 34 presents a comparative overview of
accuracy, precision, and recall metrics for the models under
two dataset splits: 70-15-15 and 80-10-10. The higher
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FIGURE 38. Grad-CAM Visualization for VGG19 80-10-10 split.

FIGURE 39. Grad-CAM Visualization for Resnet101 70-15-15 split.

values observed for the 80-10-10 split suggest that the
additional validation data enhances model performance and
generalization capabilities, providing a clear indication of
each model’s strengths and weaknesses.

9) GRAD-CAM VISUALIZATION FOR BOTH DATA SPLIT
To further analyze model predictions, Grad-CAM (Gradient-
weighted Class Activation Mapping) was applied to
VGG16, VGG19, and ResNet101, generating visual expla-
nations for their classifications. The Grad-CAM results,

illustrated in Figures 35, 37, and 39, highlight the
regions of input images that significantly influenced model
predictions.

For VGG16, the activation maps showed clear focus
on critical features of the classified objects. VGG19 also
produced meaningful visualizations, emphasizing important
areas that contributed to its predictions. ResNet101’s Grad-
CAM results displayed robust localization of features,
demonstrating its effectiveness in identifying significant
characteristics within the input data.

173438 VOLUME 12, 2024



U. Sumalatha et al.: Enhancing Finger Vein Recognition With Image Preprocessing Techniques

FIGURE 40. Grad-CAM Visualization for Resnet101 80-10-10 split.

These visualizations provide valuable insights into the
decision-making processes of the models, enhancing inter-
pretability and confidence in their classifications.

VI. CONCLUSION
Our study demonstrates the effectiveness of several
deep learning models, particularly VGG16, VGG19, and
ResNet101, for finger vein recognition. Performance metrics
reveal high accuracy, with VGG16 achieving 99.9% accuracy,
closely followed by VGG19 and ResNet101 at 99.8% each,
underscoring both the accuracy and robustness of these
models in classification tasks. Using a Kaggle dataset of
3,816 images with an 80-10-10 training-validation-test split,
we observed significantly better performance than with
the 70-15-15 split. Additionally, data augmentation proved
essential in enhancing model generalization.

Analyses using accuracy/loss curves and Grad-CAM
visualizations further affirm the suitability of these models
for practical finger vein recognition applications. However,
there are limitations: the high computational demands of
VGG16, VGG19, and ResNet101 may limit their feasibility
in real-time or low-resource contexts, where more efficient
models could be preferable. Furthermore, our dataset’s con-
trolled conditions may not fully reflect real-world variability,
suggesting a need for additional testing on diverse datasets.
The resaerach work establishes a solid foundation for future
developments in multimodal biometric integration and real-
time identification, highlighting the potential of deep learning
to enhance the accuracy and reliability of biometric systems.
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