
Received 20 October 2024, accepted 4 November 2024, date of publication 13 November 2024, date of current version 25 November 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3497302

A Practical Recovery Mechanism for Blockchain
Hardware Wallets
VARUN DESHPANDE , HARISH J , AND ATHARVA VIJAY KHADE
Samsung Research, Bengaluru 560048, India

Corresponding author: Varun Deshpande (varun.d@samsung.com)

ABSTRACT Blockchain hardware wallets, through their security-by-design architecture, offer higher
security assurances. They fundamentally differ from software wallets due to an important security property
called Unicity. Unicity ensures that ownership is tied to a unique hardware entity, both physically and
logically. This property is highly desirable if cryptocurrency assets under ownership are high in value.
However, when such a hardware wallet is backed up, this unicity property is lost as the root seed or private
key is cloned. The resulting security ramifications are numerous, ultimately leading to theft of funds in
many cases. In this work, we introduce a practical recovery mechanism for hardware wallets that does not
involve extraction or cloning of the private key or root seed for backup, thus preserving this unicity property.
The proposed recovery mechanism ensures that the owner can access their cryptocurrency funds in case
of malfunction/theft of the hardware wallet, even when it is not backed up. The novel mechanism is based
on Symmetric Secret Sharing, a Key Revocation Certificate, a Smart Contract-based Registry, and Smart
Accounts and can be practically implemented. We compare our mechanism with other solutions and show
how it performs better on all security parameters. The paper solves the important problem of secure backup
of hardware wallets without compromising the design paradigms associated with it.

INDEX TERMS Blockchain, hardware wallet, smart account, smart contract, cryptography, hash function,
recovery, cryptocurrency.

I. INTRODUCTION
Blockchain wallets are becoming increasingly popular,
as many people are adopting them to access their digital
assets stored on the blockchain [1]. These wallets come in
various forms, primarily categorized into hardware wallets
and software wallets [2], [3]. Hardware wallets are physical
devices specifically designed for the safe generation and
storage of private keys offline. They come in various form
factors, such as a USB stick or bank card, e.g., Ledger
Nano S Plus [4], Trezor Model T [5], etc. Software wallets,
on the other hand, are digital applications designed to
manage private keys securely on computers, mobile devices,
or servers, e.g., Metamask [6], Electrum [7], etc.
Hardware wallets store private keys offline (they are not

connected to the internet), reducing the risk of hacking
attempts compared to software wallets, which are constantly

The associate editor coordinating the review of this manuscript and

approving it for publication was Alba Amato .

exposed to online threats and vulnerabilities [8]. Some
instances of software wallets getting compromised include
the downfall of FTX, one of the largest cryptocurrency
exchanges, involving the illegal use of users’ assets [9], [10].
Another attack on the popular Electrum wallet resulted in
the loss of over 1,400 bitcoins [11]. These examples raise
concerns about software wallets security, making hardware
wallets the preferred choice for cryptocurrency users seeking
reliability.

While hardwarewallets offer security benefits, they require
responsible handling from users as the loss or theft of the
wallet can lead to the loss of digital assets. To address this
concern, reliable backup and recovery systems are crucial,
along with strict access controls in case of lost or theft.
Following this, there have been various serious attempts to
develop secure backup and recovery systems for hardware
wallets; however, to the best of our knowledge, these
attempts are not sufficient/compatible with existing security-
by-design paradigm constraints. These constraints forms the

169928

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0001-8960-625X
https://orcid.org/0009-0000-2625-8112
https://orcid.org/0009-0002-1935-7483
https://orcid.org/0000-0002-5196-8148

V. Deshpande et al.: Practical Recovery Mechanism for Blockchain Hardware Wallets

basis of inherent security assurances of hardware wallets. For
example, the seed unicity property1 is violated once a backup
is created. Furthermore, the unique seed/private key is also
exported (whether logically or programmatically) during this
backup process. Such approaches are strongly discouraged
for any device based on hardware root-of-trust. In fact,
in other domains, these constraints are indeed followed. For
example, in Trusted Platform Module (TPM) [12].

The hard requirement, namely that the private key should
never leave the Hardware Trusted Environment in any
form, is the key to ensuring hardware root-of-trust. This is
applicable to both web3 and web2. Based on this principle,
we propose a novel and practical mechanism that operates
in a decentralized setting, enabling complete hardware wallet
recovery without the need for a backup, all while preserving
the unicity property, which the current solutions completely
miss.

The mechanism draws inspiration from traditional Public
Key Infrastructure (PKI) [13] and makes use of Revoca-
tion Certificates to effectively prevent potential attackers
from accessing accounts associated with the stolen or
compromised hardware wallet. This is accomplished when
the affected user submits their revocation certificate to a
blockchain-based smart contract registry. By doing so, the
legitimate user can transfer ownership of their funds to a
new account utilizing smart account2 functionalities. The
challenge of verifying the identity of the affected user without
their original key is overcome through a carefully designed
algorithm based on symmetric secret sharing. The secret is
obfuscated through various stages using a one-way trapdoor
function (hash) to ensure compatibility in a decentralized
trust-less environment. Combining the techniques of i) secret
sharing with registry, and ii) Smart Accounts, enables the
complete recovery of funds and on-chain access without the
need for any third-party involvement.

The main contributions of this paper are:
• Proposition of a novel recovery mechanism for
blockchain hardware wallets that preserves secure-by-
design paradigms like the unicity property.

• Comparison with the current available solutions, high-
lighting its uniqueness, clear advantages, and non-
dependence/non-requirement of additional components
or services.

• A reference implementation of the proposed mechanism
demonstrating its practical feasibility along with its
evaluation for security, performance, and overhead.

• A comprehensive security analysis of the proposed
recovery mechanism, highlighting its robustness against
various attacks.

The paper is outlined as follows: Section II discusses
works related to various backup and recovery mechanisms.
Section III elaborates on various technical components
used in our mechanism. Section IV explains the problem

1The guarantee that it is unique, and no other device has the same seed.
2Smart contract based account.

statement in detail, while our proposed solution and designed
algorithms are illustrated in Section V. The rationale of
timing windows crucial for the protocol is discussed in
Section VI. The practicality of our approach is demonstrated
in Section VII, while Section VIII comments on various
security aspects and attacks. Finally, we conclude our work
in Section IX.

II. RELATED WORKS
Most hardware wallets use a Mnemonic Phrase (also called
a mnemonic) to encode the root seed.3 These mnemonics
are typically 12-24 words long [14] and are used to recover
the wallet if the device is lost or damaged. However, if the
mnemonic is lost or forgotten, the user may lose access to
their funds forever.

While it is recommended to record this mnemonic either
on a recovery sheet provided by the wallet manufacturer or
store it digitally, it remains critical to keep the mnemonic
backup safe, as anyone who gains access to it can recover
all the funds.

To address this inconvenience, several solutions have been
proposed. A simple solution is to use another word, also
known as a Mnemonic Passphrase (or simply passphrase),
to encrypt the existing mnemonic [14], [15]. The passphrase
acts like two-factor authentication (2FA) in wallets, where
it is the final security check required for granting access.
However, it suffers from obvious flaws, such as:

• A passphrase, in general, is just a single word, making
brute-force attacks still possible if the mnemonic is very
weak.

• There is a risk of forgetting the passphrase or leaking
both the mnemonic and passphrase.

A good option involves creating a backup of the private key
on another mirrored hardware wallet [16]. However, it has a
few problems:

• Buying a new hardware wallet solely for the purpose of
backup can be costly.

• Regular firmware updates are needed on both devices
to keep up with security patches, thus doubling mainte-
nance efforts.

• If the user loses the backup hardware wallet, it results in
permanent loss of access to funds.

• The user is now responsible for the safekeeping of two
devices. The loss/theft of the backup device is just as
serious as in the case of the main device.

Another approach is to use a heavy metal locker which is
relatively inexpensive, easy to set up and durable [17], [18],
[19]. It can withstand extreme conditions, such as fire, water,
and physical damage, ensuring the long-term preservation of
your private keys. However, even this approach has similar
issues:

• The user can still lose or misplace the locker.

3Seed used to generate private key(s) in Hierarchical Deterministic (HD)
wallet.

VOLUME 12, 2024 169929

V. Deshpande et al.: Practical Recovery Mechanism for Blockchain Hardware Wallets

• A chosen secret (passphrase/pin) is needed to secure the
locker. The user has to remember this secret to unlock
the metal device.

• The user still has to ensure the security of the metal
device from theft or extreme cases of damage.

An alternative approach involves utilizing a recovery
service offered by the wallet provider, where the private
key is encrypted and split into multiple fragments, which
are then stored and protected separately [20]. This method
requires associating the user’s identity, such as biometrics,
with the fragments, allowing reconstruction of the private key
using a threshold of shares (e.g., 2-out-of-3) upon successful
authentication by the service [21]. It has the following
disadvantages:
• The private key leaves the hardware wallet, which
compromises the wallet’s core principle of keeping
sensitive information within the device.

• The user’s personal identity is linked to the private key
shares, violating the anonymity principle of blockchain.

• Trust in third-party providers to store the key shares
is necessary, introducing potential risks associated with
relying on external entities

A further solution is social recovery, where users select a
group of trusted individuals known as ‘‘guardians’’ who can
authorize a recovery request in case the user’s device is lost
or stolen [22], [23]. It has its drawbacks too:
• Collusion among guardians is possible which either dis-
cards valid recovery requests or authorize invalid/illegal
ones.

• Thewait time to recover a wallet is longer since guardian
approvals are required.

• It is susceptible to denial-of-service (DoS) attacks,
where an attacker floods the system with numerous
recovery requests.

Many other solutions exist [24] that follow an approach
similar to one of the aforementioned schemes and therefore
suffer from similar shortcomings. Further, apart from the
social recovery mechanism, none of them follow seed unicity
property. In our proposed scheme, we aim to solve most of
these shortcomings effectivelywhilemaintaining the required
level of security and strict adherence to the unicity property.
In our proposed scheme, the user does not need to remember
the mnemonics or passphrases as there is no concept of
backup. Additionally, our scheme does not require users to
depend on third-party providers for storing secrets, similar to
Shamir Secret Sharing (SSS) which downgrades the usability
of wallets. Furthermore, there is no dependence on any social
entity for recovering the wallet.

III. TECHNICAL BACKGROUND
In this section, we provide a short technical summary of
related general concepts and discuss the technical building
blocks of our proposed solution, which will be elaborated in
Section V. For ease of readability, Table 1 illustrates all the
abbreviations used in this paper.

TABLE 1. Abbreviations.

A. HARDWARE WALLETS
Hardware wallets are physical devices designed to securely
store private keys offline, making them immune to cyber
attacks, phishing sites, and malware. They utilize a Secure
Element (SE) chip to safeguard the private keys [25]. SE-
based hardware wallets employ specialized firmware [26]
for handling transaction signing and other blockchain-related
operations. These wallets offer user interfaces for managing
cryptocurrency assets and sending signed transactions to the
blockchain network, which can be accessed through mobile
or laptop devices.

B. SMART ACCOUNTS
Smart accounts are smart contracts that employ the logic
of a wallet to provide users with customizable and pro-
grammable functionalities. They extend beyond traditional
wallets secured by private keys, offering features such as
passkey-based signing, web-2-like session management, gas
sponsorship, and more [27]. This enhancement of the user
experience streamlines common tasks and reduces friction in
day-to-day interactions. Smart accounts can also incorporate
robust security measures, including the option for social
recovery, ensuring the safety and integrity of cryptocurrency
assets.

C. KEY REVOCATION CERTIFICATE (KRC)
In traditional PKI systems, certificate revocation involves
invalidating a digital certificate before its intended expiration
date. This process is crucial because, when a user’s private
key is lost or compromised, the legitimacy of the certificate
owner’s identification is questioned, or doubts arise about
the certificate’s credibility. To accomplish this, a revocation
certificate is generated, informing other entities within the
PKI system that the specific public key should no longer be

169930 VOLUME 12, 2024

V. Deshpande et al.: Practical Recovery Mechanism for Blockchain Hardware Wallets

trusted. Depending on the scenarios, the revocation certificate
can be either generated by the Certificate Authority (CA) or
the end-user themselves.

The process of revocation is typically accomplished
by either adding the revoked certificate to a Certificate
Revocation List (CRL) or querying it using the Online
Certificate Status Protocol (OCSP). In our proposed archi-
tecture, we draw inspiration from PKI revocation certificates
and introduce the concept of a Key Revocation Certificate
(KRC). Conceptually, it is similar to a revocation certificate
but is used for blocking transactions originating from the
blockchain address mentioned in the KRC. This is achieved
by including the blockchain address mentioned in the KRC in
a block-list. The KRC is digitally signed using the private key
associated with the user’s account in their hardware wallet.
The contents of the KRC include the blockchain account
address to be revoked, the smart account contract address
issued to the user, a hashed secret, and a digital signature over
these contents.

D. KEY REVOCATION REGISTRY
In our proposed solution, the Key Revocation Registry
(or simply Registry) is a smart contract deployed on the
blockchain. Similar to the Certificate Revocation List (CRL)
in PKI, it stores the block-list containing the list of revoked
blockchain account addresses. With the help of this Registry,
any transactions made through the user’s lost hardware wallet
account can be blocked. This is done by the user by publishing
their KRC corresponding to the lost account to the Registry
smart contract. After authentication, the Registry transfers the
ownership of funds from the lost hardware wallet account to
the user’s new account. This transfer of ownership of funds is
seamless, as we use smart accounts for funds management.

E. SECRET
A 256-bit long secret is generated by leveraging the Random
Number Generator (RNG) embedded in the SE of hardware
wallets. This secret serves as the key component for
recovering account ownership. It is shared with the Registry
in an obfuscated form initially while blocking the original
account and later revealed in plain text for the final account
ownership transfer. The logic-level implementation of this
process is explained in Section V.

IV. PROBLEM STATEMENT
Trusted Execution Environment (TEE) and Trusted Storage
Environment (TSE)-based devices follow certain design
paradigms, such as the security-by-design approach, strict
access control, seed unicity, etc. Naturally, when TEE and
TSE-based devices were introduced as a solution to web3
problems, more specifically, as a solution for secure wallets,
these design paradigms should have been offered by default.

Given the central theme of decentralization in web3 and
some incompatibilities, certain design paradigms could not
be fulfilled. For instance, an SE-based wallet that offers
TEE and TSE, cannot offer the seed unicity property, given

that there is a hard requirement of backing up the seed.
Once hardware wallet is backed up, the unicity guarantee is
lost. Subsequently, SE-based (hardware) wallets become no
different from software wallets, apart from their security-by-
design assurance.

Just as transmitting private keys is unacceptable in any
traditional security architecture design, similarly, the loss of
the unicity property offered by hardwarewallets should not be
acceptable just for enabling the backup of the seed. However,
the problem of effectively backing up a hardware wallet
without losing its unicity property and without transmitting
its seed/private key outside the TEE/TSE, to the best of our
knowledge, has not been solved effectively. On one hand,
to preserve the unicity property, the hardware wallet should
not replicate the seed/keys in any form; on the other hand,
backup is necessary for recovery in case of malfunction, theft
or loss of the hardware wallet.

This problem is not new and various domains face it. For
e.g., chip-based bank credit/debit cards, biometric passports,
SIM cards, ID cards, etc. They need to be unique and
it is not generally possible to create a clone for backup
purposes. Only a replacement can be requested in case
of loss/theft/malfunction from the issuing authorities. This
solution works for traditional applications where there is a
centralized authority controlling everything. For web3 and
blockchain, the equation changes entirely as no centralized
authority has control.

To resolve this, in this paper, we propose a novel and
practical solution that works in a decentralized setting for
hardware wallet recovery without the need for a backup, all
while preserving the unicity property which current solutions
completely miss. We take cues from traditional PKI systems,
smart contracts and smart accounts to effectively execute
it without a need for change at the blockchain protocol
level. In addition, this solution completely maintains the
decentralization aspect without compromising on security as
well as the mandated design paradigms of hardware wallets.
The detailed solution is presented in the next section.

V. PROPOSED SOLUTION
Premise: A user owns a hardware wallet that is initialized.
The hardware wallet is not backed up. For simplicity, this
hardware wallet has one public-private key pair. The address
derived from this public key inside hardware wallet is
called ‘‘owner address’’. On the blockchain side, there is
a smart contract based account i.e., smart account. This
smart account can perform all operations such as transfer
of funds, interaction with other smart contracts, etc. It has
strict access control, i.e., only user’s ‘‘owner address’’ can
access it. This is achieved by instantiating the specific ‘‘owner
address’’ in the ‘‘owner’’ variable in the smart account’s
code. The smart account, before performing any operation,
checks if the sender of the instruction is the same as the
value in the ‘‘owner’’ variable. Note that the ‘‘owner address’’
is controlled by the user via its original hardware wallet.
Suppose, the user loses their hardware wallet and therefore,

VOLUME 12, 2024 169931

V. Deshpande et al.: Practical Recovery Mechanism for Blockchain Hardware Wallets

can no longer send any transactions using ‘‘owner address’’
to the smart account. Since the hardware wallet was not
backed up (to preserve unicity), a new recovery mechanism is
proposed, which will allow the user to transfer ownership of
the associated smart account to their new ‘‘owner address’’.
This new ‘‘owner address’’ is from a new hardware wallet,
although this is not a necessary requirement.

FIGURE 1. Entities interaction diagram.

The proposed mechanism can be implemented in two
ways: i) via protocol-level changes or ii) via smart contracts.
For simplicity, we will focus on the second approach, which
does not require any changes to the underlying blockchain
protocol. In this approach, the framework depends on three
main components: 1. KRC, 2. Smart Contract-based Registry
and 3. Smart Account.

To maintain the unicity and other security-by-design
mandates of hardware wallets, the seed (or private key)
should not come out of the hardware wallet in any form
(whether logically or physically). Thus, any mechanism of
backup of the seed/private key cannot be used. To allow the
recovery of funds in case of an anomaly, a novel ownership
transfer mechanism is proposed. This mechanism is based on
symmetric secret sharing.

The proposed mechanism involves three steps: 1) Block
Current Owner, 2) Register New Owner, and 3) Transfer
Ownership. As these steps work in a decentralized and
asynchronous setting, it is necessary to link actions from
various steps to one user. This is done by sharing the
obfuscation of the secret value s at the first two steps and
linking them in the final step. These steps are elaborated in
the subsequent subsections, respectively, with reference to the
entities interaction diagram illustrated in Figure 1.

A. BLOCK CURRENT OWNER
Blocking of current owner is the first step of the proposed
mechanism. The goal of this step is to register a new KRC.
In the event that the physical hardware wallet has been
lost/stolen or broken, the user can quickly start the recovery
of their compromised ‘‘owner address’’ by publishing all
the contents of the KRC (elaborated in Section III-C) on
the blockchain. The registry smart contract is the target
destination for the publication. On reception of the KRC, the
registry is responsible for verifying the KRC authenticity by
checking if it is signed by the same ‘‘owner address’’ which
is to be added to the block-list. For this, the registry uses the
public key of the user’s original ‘‘owner address’’. Figure 2
highlights the main sequence of events for block current
owner (Refer listing I in appendix for the implementation).

FIGURE 2. Sequence diagram highlighting blocking of current owner
address.

On success, the registry will block the user’s ‘‘owner
address’’ by setting a flag in the registry database. This flag
will prevent any further transactions from being executed
by this address for its smart account.4 Since the KRC was
generated and signed by the owner address’ private key when
the hardware wallet was first initialized, ascertaining the
identity is straightforward through signature verification.

Further, in the registry, the obfuscation of secret s is
registered as hash(s+1). This is used as the key in the registry
mapping. In the value field, other values, i.e., the blocked
owner account address, the smart account address, and the
time of registration of the KRC (blocktime) are stored.

4Where this address is registered as owner.

169932 VOLUME 12, 2024

V. Deshpande et al.: Practical Recovery Mechanism for Blockchain Hardware Wallets

Given that an attacker can generate a dummy KRC and
block a particular hash(s+1), evenwithout having knowledge
of the secret value s, a stake amount has to be sent along
with the request, which subsequently gets refunded to the user
after successful recovery. This prevents Denial of Service
(DoS) attacks, as the attacker has to pay for each attempt.
In the other scenario, when the KRC is leaked, the attacker
can temporarily block access of the owner by publishing the
KRC but again has to pay the stake amount for it, indirectly
compensating the user for the loss of service.

Next, a timing window called ‘‘no-krc window’’ is
enforced to prevent attackers from registering a new KRC
during the ongoing recovery process. More information
on various timing windows is elaborated in Section VI.
Algorithm 1 illustrates the process of registering a KRC. The
user should ensure their KRC is correctly registered with the
right values before proceeding to the next step.

Algorithm 1 Register KRC
Data: Key Revocation Certificate (KRC)
Result: Address revoked

1 begin
2 initialization;
3 Get: Key Revocation Certificate (KRC);
4 if txn.stake < stakeAmount then
5 revert transaction;
6 else
7 if no-KRC window is not expired then
8 revert transaction;
9 else if KRC signature is not valid then
10 revert transaction;
11 else if owner(KRC.smartAccAddress) is not

valid then
12 revert transaction;
13 else
14 key← KRC.hash(s+1);
15 block-list[KRC.address]← True;
16 registry[key].address← KRC.address;
17 registry[key].stake + = txn.stake;
18 Update no-KRC window;
19 sAdd← KRC.smartAccAddress;
20 registry[key].smartAccAddress← sAdd;

B. REGISTER NEW OWNER
Once the current ‘‘owner address’’ has been blocked, the next
step is to register a new ‘‘owner address’’. This is done by
sending a registration request to the registry containing the
user’s new ‘‘owner address’’ and the secret s. As this is carried
out in a public smart contract setting, to prevent various attack
vectors like MEV, this registration request is obfuscated.
Owing to this deliberate obfuscation, no verification is
done/possible. Figure 3 highlights the main sequence of
events related to it.

FIGURE 3. Sequence diagram highlighting registration of new owner
address.

At the other end, where the pre-commit function of the
registry receives this obfuscated registration request, it just
receives two hashes as arguments, one key: hash(s+2) and
one value: hash(s||newAddress). The choice of hash(s+2)
for obfuscation is deliberate since it removes any relation
between step 1 and 2 (owing to different obfuscations
of the secret) and prevents DoS attacks. Further, a stake
amount is required, similar to step 1, that is returned to
the user on successful recovery. This penalizes the attacker
and compensates the user (see Section VIII). To further
harden the system against attacks, two timing windows
i.e., ‘‘no-commit’’ and ‘‘cooling’’ are proposed. During an
ongoing ‘‘no-commit’’ timing window, no new pre-commits
are allowed for same obfuscated secret. Similarly, while in
‘‘cooling period’’, executing the next steps of recovery is
prohibited (see Section VI).
The two timing windows viz.,‘‘no-commit’’, and ‘‘cool-

ing’’ are initiated simultaneously once the pre-commit is
registered. These ensure that an attacker cannot send a new
pre-commit and a final account transfer request, respectively.
This prevents any potential disruptions in the recovery
routine. The rationale is discussed in Section VI. Algorithm 2
illustrates the process of pre-commit in detail. The user
should ensure their pre-commit is correctly registered with
the right values before proceeding to the final step.

C. TRANSFER OWNERSHIP
Once the first two steps are completed and the data is verified,
the user can initiate the final account recovery process. This
step transfers the ownership of the smart account to a new
‘‘owner address’’. This is a verification step that acts on the

VOLUME 12, 2024 169933

V. Deshpande et al.: Practical Recovery Mechanism for Blockchain Hardware Wallets

Algorithm 2 Pre-Commit
Data: hash(s+2), hash(s||newAddress)
Result: Do pre-commit & update no-commit window

1 begin
2 initialization;
3 Get: hash(s+2) & hash(s||newAddress);
4 key← hash(s+2);
5 value← hash(s||newAddress);
6 if txn.stake < stakeAmount then
7 revert transaction;
8 else if no-commit window is not expired then
9 revert transaction;

10 else
11 pre-commit[key].hash← value;
12 Update no-commit window;
13 Update cooling period;
14 pre-commit[key].stake + = txn.stake;

data sent previously and stored on the registry. The process
starts when the user sends its secret value s and the new
designated ‘‘owner address’’ to the registry in plaintext. Note
that, even if the details are sent in plaintext, due to various
timingwindows (see SectionVI), this step is not vulnerable to
MEV attacks. Figure 4 depicts the sequence of the ownership
transfer process.

Next, on receiving the secret value and the new ‘‘owner
address’’, the registry computes the various keys (hash(s),
hash(s+1), and hash(s+2)) and gets corresponding values to
cross-verify the following:

• If the secret s is valid and not consumed previously.
• If the old ‘‘owner address’’ is still the owner of the smart
account in question.

• If the new ‘‘owner address’’ is the same as the one
provided during pre-commit.

• If the cooling period is passed.

On success, the registry invokes the smart account’s
‘‘transfer owner’’ function and assigns the new address as
the owner. Further, it transfers all the staked amount to the
smart account and marks the secret s as consumed by adding
the obfuscated hash(s) to a key-value mapping. The reason
for storing secret s in obfuscated form is to prevent leaking
additional information about its generation and prevent
dictionary attacks in the future. Algorithm 3 elaborates this
process in detail (Refer Listing I–III in Appendix).

D. FURTHER DISCUSSION
It can be correctly estimated that the above mentioned first
two steps of the mechanism, namely Block Current Owner
andRegister New Owner, can be combined into a single
step. However, considering various practical scenarios, the
end-user may not always have another hardware wallet or
a new ‘‘owner address’’ ready to immediately replace the
compromised one. Although, if such a choice is forced, the

FIGURE 4. Sequence diagram highlighting ownership transfer process.

end-user may use less secure means to execute recovery.
Therefore, we proposed it as a two-step approach wherein,
as soon as the compromise occurs, access to funds is blocked.

Next, it is evident that the registry’s logic can also be
part of the smart account. However, a dedicated registry
helps to track the block-list and ensures coherency of
the implementation logic. Further, since attackers can see
who are interacting with any smart contract, an integrated
registry is more prone to being surveilled and DoS attacks
despite staking requirements. The reason being a link can
easily be established between hash(s+1) and hash(s+2).
In a standalone public registry, where multiple users are
interacting at a given time, only a probabilistic relationship
can be established between them. It can be further reduced
to near-zero by the user utilizing different addresses for
interacting with the registry at each step.

In the last verification step, it can be remarked that
the registry does not check if ‘‘no-krc’’ or ‘‘no-commit’’
windows are ongoing. This is a deliberate design choice since
the idea of these windows is to prevent attacks, not recovery.
However, for security, the user is strongly advised to ensure
these windows are in-force before executing the third step.

169934 VOLUME 12, 2024

V. Deshpande et al.: Practical Recovery Mechanism for Blockchain Hardware Wallets

Algorithm 3 Restore Account
Data: Secret s and newAddress
Result: Restore funds & stakes to newAddress

1 begin
2 initialization;
3 Get: secret s and newAddress;
4 key1← hash(s+1);
5 key2← hash(s+2);
6 sAdd← registry[key1].smartAccAddress;
7 if secret s is consumed then
8 revert transaction;
9 else if cooling period is not expired then
10 revert transaction;
11 else if pre-commit tampered or invalid then
12 revert transaction;
13 else if owner(sAdd) ! = registry[key1].address

then
14 revert transaction;
15 else
16 stk1← registry[key1].stake;
17 stk2← pre-commit[key2].stake;
18 totStake← stk1 + stk2;
19 Delete registry[key1] & pre-commit[key2];
20 Mark secret s as consumed;
21 sAdd.transferOwner(newAddress);
22 Transfer totStake amount to newAddress;

Further, predictably, the mechanism can be well utilized
for software wallets. However, the original/main proposition
of guaranteeing seed unicity won’t be maintainable as the
keys are easily extractable for software wallets, depending
on implementations. Barring this, the proposed mechanism
is indeed a better option with added security assurances
compared to other backup and recovery mechanisms for
software wallets (see Section VIII).

VI. TIMING WINDOWS
The proposition of the timing windows is essential in our
proposed mechanism to safeguard against MEV attacks.
Since all the steps are carried out in a decentralized setting,
there is no single authority to ascertain the identity of
an incoming request, as the original wallet is already
inaccessible for the user. In principle, we propose two timing
windows, namely ‘‘no-krc’’ and ‘‘no-commit’’.

With reference to Figure 5, at step 1, when the user
registers its KRC, the timestamp (current blocktime - T2) is
recorded. This is the starting reference point for the ‘‘no-krc’’
window. As the name indicates, this essentially enforces the
condition that no newKRC can be registered against the same
obfuscated s value (hash(s+1)) during this window (T2 - T7).

Similarly, at step 2, when the user pre-commits his new
‘‘owner address’’, the timestamp (current blocktime - T4) is
recorded. This becomes the starting reference point for the

‘‘no-commit’’ window. As the name suggests, this similarly
enforces the condition that no new pre-commit can be
registered against the same obfuscated s value (hash(s+2))
during this window (T4 - T9).

Both these conditions are necessary because they ensure
the relevant rows in the mappings are not updated when
the final transfer of ownership is initiated. This secures
step 3 against possible MEV attacks. Another way to prevent
changes to the mappings would be to ensure that they are
written only once. However, this approach exposes the user
to irrecoverability if the attacker blocks the mapping by
inserting random values.

Next, to harden the proposed mechanism against fork
attacks, we introduce the concept of ‘‘cooling period’’. The
cooling period is defined as the minimum time interval
between the end of the second step and the start of the third
step. This period starts after the function for step 2 is invoked,
i.e., T4. The user has to wait until the ‘‘cooling period’’
expires (T4 - T5) before executing the final step. During
this period, the system waits for the blockchain to finalize
the transaction (i.e., the block containing the transaction is
confirmed by the network). This ensures that the final step is
executed only after the previous steps have been confirmed
and part of the main chain, making it resistant to fork attacks.
Ultimately, if they end up in the forked branch, the user can
redo step 1 and 2 without waiting, as for the blockchain, the
data on the forked branch will be eventually dropped.

Furthermore, to maintain security across various steps
and the safety of funds, the user must execute step 3 only
when the ‘‘no-krc’’ and ‘‘no-commit’’ windows are still in
force while ensuring that the ‘‘cooling period’’ has passed.
Additionally, the user should also ensure that the estimated
time remaining after executing step 3 is at least equal to
the ‘‘cooling period’’ before either of the timing windows
expires. In the current example, Figure 5, this period is T6
- T7. This ensures that the mappings are not only secure
before executing the final step but also after execution until
the result becomes part of the main chain. Further, the user
should also ensure that the relevant rows of the mappings
contain the correct values. Failing this, the recovery may be
disrupted. If any of these conditions are unmet, the user has
to recommence the recovery process (after the expiry of any
ongoing timingwindows). To help the user, a support function
isRestorePossible() is implemented in the registry (refer to
listing 1 in Appendix), which informs if it is safe to reveal
secret s for completing account recovery.

VII. TESTBED IMPLEMENTATION AND EVALUATION
The algorithms of the proposed recovery mechanism (see
Section V) are implemented within a smart contract called
Registry on the Ethereum testnet. In addition, a library
with helper functions for the Registry is also implemented.
This library assists the Registry with various functions like
encoding, hashing, signature verification, etc. Furthermore,
a simple implementation of a smart account is also carried
out to simulate the final ownership transfer.

VOLUME 12, 2024 169935

V. Deshpande et al.: Practical Recovery Mechanism for Blockchain Hardware Wallets

FIGURE 5. Timing diagram for pre-commit and restore account.

The smart contracts were written in the Solidity program-
ming language [28] and compiled using Solidity compiler
version 0.8.24. The smart contracts’ code is available under
Appendix. All the smart contracts were deployed using the
Remix framework [29] and MetaMask [6] on the Sepolia
Ethereum testnet [30], [31] for evaluating performance,
feasibility, and gas consumption.

The amount of gas consumed in each operation - KRC
registration, pre-commit, and account restoration - is mea-
sured and plotted in the form of a bar graph, as illustrated
in Figure 6.
The deployment of the Registry contract requires

1,678,390 gas. The gas fee on the mainnet5 at the time
of our deployment (on 26 August 2024, 16:00 UTC)
is 3 Gwei per unit of gas and 1 Ethereum costs 2710 USD.
Considering 1 Ethereum equals 109 Gwei, the total dollar
cost to deploy the Registry contract is 13.64 USD. The
deployment of the Registry smart contract is a one-time cost;
once deployed, its code is immutable, and no recurring cost
is incurred to maintain the Registry contract on-chain.

Similarly, the cost of registering a KRC is 154,957 gas.
Using the aforementioned conversion rates, this amounts to
1.25 USD in dollar terms. The main contribution to this gas
component is the ECDSA signature verification performed to
check the legitimacy of the KRC.

The transaction fee for registering a pre-commit is 93,271
gas or 0.75 USD. This includes the cost of storing the
pre-commit data in the contract storage and updating the
registry state for timing windows. The cost for the final
transfer of ownership is 83,881 gas or 0.69 USD. This
includes the cost of transferring the ownership of the smart
account to the new ‘‘owner address’’ and also the cost of
transferring the stake amount to the smart account.

The other smart contracts residing on-chain may also need
to check the block-list in the Registry to prevent approving

5Mainnet fee taken into account for estimating the real-world costs.

FIGURE 6. Gas consumption of various operations of the proposed
recovery mechanism.

transactions from a blocked ‘‘owner address’’. This operation
consumes 8,023 gas (0.07 USD) when the block-list read
operation is followed by state mutation operations. In other
cases, it’s free as read-only operations do not incur costs for
the user since they are executed locally.

From the above figures, it can be summarized that
the cost of using our recovery mechanism is very low6

with negligible overhead costs, even when implemented
on heavily congested blockchains [32], [33] like ethereum.
On less congested blockchains like layer-2s [34], the cost will
be near zero, all while maintaining the unicity property and
various other security advantages discussed in Section VIII.

VIII. SECURITY ANALYSIS
Given the sensitive nature of account ownership, the
proposed mechanism is evaluated against various attacks.
The algorithms have been hardened against the attacks

6Total recovery cost is ≈ 2.7 USD.

169936 VOLUME 12, 2024

V. Deshpande et al.: Practical Recovery Mechanism for Blockchain Hardware Wallets

mentioned below. In the next sub-section, we elaborate on
the assumptions followed by an individual analysis of various
attacks.

A. ASSUMPTIONS
For the security analysis of our approach, we make the
following assumptions:
• The KRC and the secret are stored securely and are
accessible to the users.

• The user owns a smart account with a proper ‘‘transfer-
Owner()’’ function.

• The user has sufficient funds required for staking
and executing transactions when utilizing the proposed
recovery mechanism.

• The user has access to a secure graphical interface to
interact with the registry.

• The underlying one-way trap-door hash function is
secure [35].

• The underlying signature algorithm used for KRC
signing is secure and resistant to tampering.

B. MEV ATTACKS
The Maximal (formerly ‘‘miner’’ in the context of Proof of
Work) Extractable Value (MEV) refers to the additional value
profit that can be gained by censoring and/or changing the
order of transactions in a block. When a transaction is sent to
the blockchain, there is a delay between the time when it was
broadcasted to the network and when it is finally mined into
a block. During this delay period, the transaction is a part of
a pool of pending transactions called the mempool where the
contents are visible to everyone [36].

Arbitrageurs and miners can monitor the mempool and
find opportunities to maximize their profits e.g., by front-
running transactions.7 If a front-runner is a miner, they can
also reorder or even censor transactions. In an MEV attack,
a miner, for e.g., will prioritize their own transactions or delay
other transactions to maximize their profits.

In our mechanism, the data stored at various steps is
obfuscated. The obfuscated values protecting the secret s are
calculated using a one-way trap-door function (hash). At the
mempool level, the miner can only see the hashed values.
With an MEV attack intent, the miner can only change or
tamper with those hash values. However, to have a valid full
recovery, the original secret s obfuscation has to be included
since this value is part of the original signed KRC (and there
is no other access control possible). At the time of the last
step of recovery, the miner, without the knowledge of secret
s, will fail to complete the request and thus will lose the stake
amount that was mandated in the algorithm.

Further, at the last step of the recovery, when the plaintext
secret s is revealed, due to the enforcement of the various
timing windows (see Section VI), MEV attacks are prevented
as no change of mappings is allowed when the timing

7Sending a similar transaction with higher fees so that it gets confirmed
earlier.

TABLE 2. Theft of KRC/secret.

TABLE 3. Comparison between backup/recovery schemes.

windows are active. Due to the hardening of the algorithms,
both before and after of each step, MEV attacks remain
infeasible and also financially taxing for the attacker.

C. DOS ATTACK
In our proposed mechanism, an attacker possessing the user’s
KRC can launch a Denial of Service (DoS) attack at step 1 by
publishing the same KRC to the Registry smart contract.
Upon publication, the user associated with the KRC is unable
to use their account. We mitigate the likelihood of such DoS
attacks by requiring a stake amount when registering a KRC.
This stake amount is then transferred to the associated smart
account at the last step of recovery.

As the user is the only party possessing the knowledge of
secret s linked to the published KRC, they are the only ones
who can reclaim the stake amount during the final step of
the recovery. Since the attacker lacks knowledge of the secret
s, they are disincentivized from publishing the KRC as they
will lose the associated stake amount. Similarly, an attacker
can initiate a DoS attack at step 2 by adding random
hash entries to the mappings. However, by enforcing the
similar aforementioned staking requirement, the attacker is
penalized for the attack, while the user is compensated for the
DoS.

The practical idea of associating a staked amount with
the obfuscated secret s and ensuring its transfer to the
original smart account on successful recovery by the user

VOLUME 12, 2024 169937

V. Deshpande et al.: Practical Recovery Mechanism for Blockchain Hardware Wallets

LISTING 1. Registry smart contract.

169938 VOLUME 12, 2024

V. Deshpande et al.: Practical Recovery Mechanism for Blockchain Hardware Wallets

LISTING 1. (Continued.) Registry smart contract.

VOLUME 12, 2024 169939

V. Deshpande et al.: Practical Recovery Mechanism for Blockchain Hardware Wallets

LISTING 1. (Continued.) Registry smart contract.

(on revealing the plaintext secret s) ensures that the user
is compensated by the attacker for even attempting the
attack.

For the last step, the DoS attack can happen if themappings
from the previous two steps are tampered, disrupting the
whole recovery process. Since, in this step, only revealing
takes place, the DoS attack is prevented by timing windows

(see Section VI), which ensure that the mappings are
immutable for a period of time. While the mappings are
temporarily immutable,8 the attacker can neither register new
KRC nor issue a new pre-commit for the associated secret s.

8Only for the corresponding secret s.

169940 VOLUME 12, 2024

V. Deshpande et al.: Practical Recovery Mechanism for Blockchain Hardware Wallets

LISTING 2. Smart account smart contract.

This ensures that the user can safely complete his recovery
and transfer of ownership.

D. BRUTE FORCE ATTACKS
A brute force attack involves randomly trying out different
possible values until the correct one is found. In our
proposed mechanism, the secret s can be subjected to a
brute force attack. The proposed length of secret s is
256-bits. Brute forcing such a long value is extremely
time-consuming and demands a lot of computational power.
Powerful supercomputers will take approximately 3 × 1051

years to correctly guess a 256-bit secret [37]. A quantum

computer with Grover’s algorithmwill require executing 2128

combinations, making it currently infeasible to achieve [38].

E. REPLAY ATTACK
In our proposedmechanism, the user’s secret becomes known
to the entire network upon successful completion of the
restore account operation. This allows the attacker to launch
replay attacks by utilizing the user’s secret to gain ownership
of their smart account. To execute this attack, an attacker can
repeat the Register KRC, pre-commit, and restore account
operations, using the user’s KRC and now-revealed secret
along with its account address for ownership transfer.

VOLUME 12, 2024 169941

V. Deshpande et al.: Practical Recovery Mechanism for Blockchain Hardware Wallets

LISTING 3. Utility library smart contract.

The possibility of such a replay attack is effectively
eliminated at the last step (Step 3) when the secret s
is revealed. The registry checks if the secret is already
consumed and stops recovery if true. Further, it also checks
if the account owner address that signed the KRC is still the
owner of the smart account for which the account transfer is
requested. These checks harden themechanism against replay
attacks.

F. THEFT OF KRC/SECRET
Our proposed mechanism is anchored on two components
i.e., secret s and KRC. These components together help
with account recovery. Thus, for safety, it is recommended
to keep them separate. The ramifications if they are lost
or stolen together or separately are different. In either case
of secret s or KRC being lost or stolen independently, the
underlying smart account is still safe. The recommended

169942 VOLUME 12, 2024

V. Deshpande et al.: Practical Recovery Mechanism for Blockchain Hardware Wallets

actions to execute in each loss/theft scenario are elaborated in
Table 2.

The two components in our mechanism effectively break
the risk into two, where neither one of them is sufficient
to cause financial loss. Given their ephemeral nature,
a replacement can be quickly generated. This is in contrast
to the current most widely used mnemonic paper backup
solutions, where if an attacker finds the backup paper, it can
recover the root seed quickly and steal all funds. To have the
same ramification, both KRC and secret need to be stolen
together by a single attacking party.

Through such an approach, a natural comparison is
warranted, especially with approaches that work on a similar
paradigm of dividing the risk into multiple components.
Notable examples include Shamir Secret Sharing, Social
Recovery (based on multi-signature schemes [39]), etc.
Table 3 shows how our proposed mechanism is much better
with little to no overhead cost (see Section VII). Ideal
values are highlighted in bold. The point to highlight is that
none of them supports the unicity property except social
recovery/multi-signature schemes, which are very prone to
DoS and collusion.

IX. CONCLUSION
In this work, we propose a novel and practical recovery
mechanism for blockchain hardware wallets that effectively
solves the problem of wallet recovery without a backup while
preserving unicity and other security-by-design paradigms.
The mechanism is inspired by PKI, wherein the KRC and
secret are the fundamental components. The algorithms
within the proposed mechanism are hardened and evaluated
against various security attacks. We implemented a prototype
of our proposed mechanism and estimated the gas overhead
for each operation - KRC register (refer the Algorithm 1),
pre-commit (refer the Algorithm 2), and account restoration
(refer the Algorithm 3). The total cost of recovering back our
account from our experiments is just 2.7 USD, showcasing
the cost-effectiveness of our approach. We also compared
our solution with the existing ones and highlighted its unique
security advantages.

APPENDIX
SMART CONTRACTS SOURCE CODE
See Listing 1–3.

ACKNOWLEDGMENT
The authors would like to express their sincere gratitude
to Srivatsan Deenadayalan and Gandhi Kishor Addanki at
the Blockchain Center of Excellence, Samsung Research,
Bengaluru, India, for their invaluable support and guidance
in this research work. (Harish J and Atharva Vijay Khade
contributed equally to this work.)

REFERENCES
[1] Y. Yu, T. Sharma, S. Das, and Y. Wang, ‘‘‘Don’t put all your eggs in

one basket’: How cryptocurrency users choose and secure their wallets,’’
in Proc. CHI Conf. Human Factors Comput. Syst. New York, NY, USA:
Association for Computing Machinery, May 2024, pp. 1–17.

[2] M. Guri, ‘‘BeatCoin: Leaking private keys from air-gapped cryptocurrency
wallets,’’ in Proc. IEEE Int. Conf. Internet Things (iThings) IEEE
Green Comput. Commun. (GreenCom) IEEE Cyber, Phys. Social
Comput. (CPSCom) IEEE Smart Data (SmartData), Jul. 2018,
pp. 1308–1316.

[3] TrustWallet. (2023). Hardware Wallets Vs. Software Wallets: What’s
the Real Difference. Accessed: Aug. 26, 2024. [Online]. Available:
https://trustwallet.com/blog/hardware-wallets-vs-software-wallets-whats-
the-real-difference

[4] Ledger. (2024). Ledger Nano S Plus. Accessed: Oct. 18, 2024. [Online].
Available: https://shop.ledger.com/pages/ledger-nano-s-plus

[5] Trezor. (2024). Trezor Model T. Accessed: Oct. 18, 2024. [Online].
Available: https://trezor.io/trezor-model-t?srsltid=AfmBOooxfsFo_h4iR9
aDbQv7SzaGwhtOAxAO-cnHD8hBwPfIvua2pehe

[6] (2024). Metamask. Accessed: Aug. 26, 2024. [Online]. Available:
https://metamask.io/

[7] (2024). Electrum Bitcoin Wallet. Accessed: Aug. 26, 2024. [Online].
Available: https://electrum.org/

[8] J. N’Gumah, ‘‘Evaluating security in cryptocurrency wallets,’’ Master’s
thesis, St. Cloud State Univ., Herberger School Bus., St. Cloud,
MI, USA, 2021. [Online]. Available: https://repository.stcloudstate.
edu/msia_etds/115/

[9] E. Akyildirim, T. Conlon, S. Corbet, and J. W. Goodell, ‘‘Understanding
the FTX exchange collapse: A dynamic connectedness approach,’’Finance
Res. Lett., vol. 53, May 2023, Art. no. 103643. [Online]. Available: https://
www.sciencedirect.com/science/article/pii/S154461232300017X

[10] A. Hetler. (2024). Ftx Scam Explained: Everything You Need to Know.
Accessed: Aug. 26, 2024. [Online]. Available: https://www.techtarget.
com/whatis/feature/FTX-scam-explained-Everything-you-need-to-know/

[11] P. Garg. (2022). Almost $1 Million Stolen in Phishing Attack on
Electrum Wallet. Accessed: Aug. 26, 2024. [Online]. Available: https://
crypto.news/almost-1-million-stolen-phishing-attack-electrum-wallet/

[12] V. Pamnani and P. Matarazzo. (Jul. 2024). Trusted Platform Module Tech-
nology Overview | Microsoft Learn. Accessed: Aug. 28, 2024. [Online].
Available: https://learn.microsoft.com/en-us/windows/security/hardware-
security/tpm/trusted-platform-module-overview

[13] S. Boeyen, S. Santesson, T. Polk, R. Housley, S. Farrell, and D. Cooper,
Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile, document RFC 5280, May 2008. [Online].
Available: https://www.rfc-editor.org/info/rfc5280

[14] (2013). Mnemonic Code for Generating Deterministic Keys.
Accessed: Jul. 18, 2024. [Online]. Available: https://github.com/
bitcoin/bips/blob/master/bip-0039.mediawiki

[15] Y. Liu, R. Li, X. Liu, J. Wang, L. Zhang, C. Tang, and H. Kang,
‘‘An efficient method to enhance bitcoin wallet security,’’ in Proc. 11th
IEEE Int. Conf. Anti-Counterfeiting, Secur., Identificat. (ASID), Oct. 2017,
pp. 26–29.

[16] H. Rezaeighaleh and C. C. Zou, ‘‘New secure approach to backup cryp-
tocurrencywallets,’’ inProc. IEEEGlobal Commun. Conf. (GLOBECOM),
Dec. 2019, pp. 1–6.

[17] S. Suratkar, M. Shirole, and S. Bhirud, ‘‘Cryptocurrency wallet: A review,’’
in Proc. 4th Int. Conf. Comput., Commun. Signal Process. (ICCCSP),
Sep. 2020, pp. 1–7.

[18] B. Mackay, ‘‘Evaluation of security in hardware and software
cryptocurrency wallets,’’ School Comput. Edinburgh, Napier Univ.
Edinburgh, Edinburgh, Scotland, 2019, doi: 10.13140/RG.2.2.31686.
29768.

[19] S. Jokić, A. Cvetković, S. Adamović, N. Ristić, and P. Spalević,
‘‘Comparative analysis of cryptocurrency wallets vs traditional wallets,’’
Ekonomika, vol. 65, no. 3, pp. 65–75, 2019.

[20] S. He, Q. Wu, X. Luo, Z. Liang, D. Li, H. Feng, H. Zheng, and Y. Li, ‘‘A
social-network-based cryptocurrency wallet-management scheme,’’ IEEE
Access, vol. 6, pp. 7654–7663, 2018.

[21] Y. Badiss and I. Castillo. (2023). Ledger Recover. Accessed:
Jul. 18, 2024. [Online]. Available: https://github.com/LedgerHQ/recover-
whitepaper

[22] A. B. Pedin, N. Siasi, and M. Sameni, ‘‘Smart contract-based social
recovery wallet management scheme for digital assets,’’ in Proc. ACM
Southeast Conf., Apr. 2023, pp. 177–181.

[23] (2008). Argent White Paper. Accessed: Jul. 18, 2024. [Online].
Available: https://github.com/argentlabs/argent-contracts/blob/develop/
specifications/specifications.pdf

VOLUME 12, 2024 169943

http://dx.doi.org/10.13140/RG.2.2.31686.29768
http://dx.doi.org/10.13140/RG.2.2.31686.29768

V. Deshpande et al.: Practical Recovery Mechanism for Blockchain Hardware Wallets

[24] A. V. Khade, H. R. Patel, and C. Modi, ‘‘Mnemonic phrase management
and SIM based two-factor authentication (2FA) for mobile wallets in
blockchain,’’ in Proc. IEEE Int. Conf. Blockchain Distrib. Syst. Secur.
(ICBDS), Oct. 2023, pp. 1–6.

[25] V. Deshpande, T. Das, H. Badis, and L. George, ‘‘SEBS: A secure
element and blockchain stratagem for securing IoT,’’ in Proc. Global Inf.
Infrastructure Netw. Symp. (GIIS), Dec. 2019, pp. 1–7.

[26] V. Deshpande, L. George, and H. Badis, ‘‘SaFe: A blockchain and secure
element based framework for safeguarding smart vehicles,’’ in Proc. 12th
IFIP Wireless Mobile Netw. Conf. (WMNC), Sep. 2019, pp. 181–188.

[27] Transak. (2024). What are Smart Accounts? | Transak. Accessed:
Aug. 28, 2024. [Online]. Available: https://transak.com/blog/what-are-
smart-accounts

[28] (2024). Solidity. Accessed: Aug. 26, 2024. [Online]. Available:
https://docs.soliditylang.org/en/v0.8.26/

[29] (2024). Remix. Accessed: Aug. 26, 2024. [Online]. Available:
https://remix.ethereum.org/

[30] (2024). Sepolia Resources. Accessed: Aug. 26, 2024. [Online]. Available:
https://sepolia.dev/

[31] (2024). Sepolia Testnet Explorer. Accessed: Aug. 26, 2024. [Online].
Available: https://sepolia.etherscan.io/

[32] (2023). Tackling Network Congestion in Blockchain: Strategies
and Solutions. Accessed: Aug. 26, 2024. [Online]. Available:
https://zebpay.com/blog/tackling-network-congestion-blockchain

[33] A. Jain, C. Jain, and K. Krystyniak, ‘‘Blockchain transaction fee and
ethereum merge,’’ Finance Res. Lett., vol. 58, Dec. 2023, Art. no. 104507.
https://www.sciencedirect.com/science/article/pii/S1544612323008796

[34] A. Gangwal, H. R. Gangavalli, and A. Thirupathi, ‘‘A survey of
layer-two blockchain protocols,’’ J. Netw. Comput. Appl., vol. 209,
Jan. 2023, Art. no. 103539. https://www.sciencedirect.com/science/
article/pii/S1084804522001801

[35] P. Gauravaram, ‘‘Cryptographic hash functions: cryptanalysis, design and
applications,’’ Ph.D. dissertation, Cross-Faculty Collaboration, Queens-
land Univ. Technol., Brisbane, Australia, 2007.

[36] M. Wiki. (2022). Introduction To Maximal Extractable Value (Mev).
Accessed: Aug. 26, 2024. [Online]. Available: https://www.mev.wiki/

[37] B. Schneier, Appl. Cryptography: Protocols, Algorithms, Source Code C.
Hoboken, NJ, USA: Wiley, 2007.

[38] C. Lavor, L. R. U. Manssur, and R. Portugal, ‘‘Grover’s algorithm:
Quantum database search,’’ 2003, arXiv:quant-ph/0301079.

[39] J. Han, M. Song, H. Eom, and Y. Son, ‘‘An efficient multi-signature wallet
in blockchain using Bloom filter,’’ in Proc. 36th Annu. ACM Symp. Appl.
Comput., 2021, pp. 273–281.

VARUN DESHPANDE received the B.Tech. degree in electronics and
communication engineering from the National Institute of Technology,
Bhopal, India, in 2016, and the M.S. and Ph.D. degrees in computer
science (blockchain and secure elements) from Université Paris-Est (ESIEE
Paris), Champs-sur-Marne, France, in 2017 and 2020, respectively. Since
then, he has been active as a Security Researcher and a Consultant for
various startups and big companies/organizations. His research interests
include blockchain technology, cryptography, and secure elements. He was
an awardee of the First Prize at the Flagship Impact Challenge at the Harvard
University (HPAIR), Cambridge, MA, USA, in 2020. He was a recipient of
the Prestigious France Excellence Charpak Scholarship, in 2016.

HARISH J received the B.E. degree in computer science and engineering
from the College of Engineering Guindy (CEG), Chennai, India, in 2023.
Currently, he is with Samsung Research, Bengaluru, as a Blockchain
Engineer. His research interests include blockchain, computer networks, and
computer architecture. He secured a commendable rank of 110 out of half
a million test takers in Graduate Aptitude Test in Engineering (GATE),
a competitive exam for college graduates, in 2023.

ATHARVA VIJAY KHADE received the B.Tech. degree in computer science
and engineering from the National Institute of Technology (NIT), Goa,
India, in 2023. Currently, he is with Samsung Research, Bengaluru, India,
as a Software Developer Engineer. His research publications include
‘‘Mnemonic PhraseManagement and SIMBased Two-Factor Authentication
(2FA) for Mobile Wallets in Blockchain’’ at the 2023 IEEE International
Conference on Blockchain and Distributed Systems Security (ICBDS).
His research interests include applied blockchain, applied cryptography,
computer networks, and artificial intelligence. Hewas awardedwith the Gold
Medal in computer science and engineering and the Director’s Gold Medal
for overall academic excellence at NIT. He was a recipient of the Second
Best Paper Award at the IEEE International Conference on Blockchain and
Distributed Systems Security (ICBDS). He also has a passion for coding
and has successfully qualified for the prestigious Google Code Jam Coding
Competition.

169944 VOLUME 12, 2024

