
Received 20 October 2024, accepted 6 November 2024, date of publication 13 November 2024, date of current version 22 November 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3496907

Speckle Noise Reduction for Medical Ultrasound
Images Using Hybrid CNN-Transformer Network
ANPARASY SIVAANPU 1, (Graduate Student Member, IEEE),
KUMARADEVAN PUNITHAKUMAR 1, (Senior Member, IEEE),
RUI ZHENG 2, (Member, IEEE), MICHELLE NOGA 1, DEAN TA 1,3,5, (Senior Member, IEEE),
EDMOND H. M. LOU 4, (Senior Member, IEEE), AND LAWRENCE H. LE 1,5
1Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, AB T6G 1H9, Canada
2School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
3Department of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200437, China
4Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
5State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai 200437, China

Corresponding author: Lawrence H. Le (lawrence.le@ualberta.ca)

This work was supported in part by the Alberta Innovates—Accelerating Innovations into CarE (AICE) Concepts; in part by the Natural
Sciences and Engineering Research Council of Canada (NSERC) Alliance—Alberta Innovates Programs; in part by the Discovery Grant
from NSERC; in part by the Natural Science Foundation of China (NSFC) under Grant 12074258; and in part by the Senior Visiting
Scholarship from the State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai, China. The work of Anparasy
Sivaanpu was supported by Alberta Innovates Graduate Fellowship.

ABSTRACT Ultrasound images are often affected by limited resolution, artifacts, and inherent speckle
noise. To address these challenges, researchers have explored denoising approaches. Recently, deep
learning methods have demonstrated distinct advantages in ultrasound image denoising. However, further
improvements are needed to preserve structural details, such as boundaries, edges, and margins. This paper
proposes a hybrid CNN-transformer network called HCTSpeckle, an encoder-decoder network with a fusion
block designed to enhance ultrasound images. The fusion block combines swin transformers to capture
global modeling relationships, and convolutional neural networks to extract local modeling details. It is
integrated into the encoder-decoder structure, allowing the model to focus on both local and global texture
structural information. An improved swin block is also introduced into the network to improve robustness
by extracting more significant features. HCTSpeckle was evaluated both quantitatively and qualitatively
with clinical objectives using two public and two private datasets. Both results showed that HCTSpeckle
significantly enhanced the ultrasound image quality and outperformed state-of-the-art methods in noise
reduction and structure preservation across all four datasets. Compared to existing denoising methods,
HCTSpeckle achieved notably faster performance in terms of complexity comparison, such as parameter
counts, gigaFLOPs, and inference time. Moreover, this study assessed the effectiveness of HCTSpeckle for
alveolar bone segmentation using dental images, demonstrating that HCTSpeckle significantly improved
segmentation performance. Furthermore, an experienced radiologist blindly rated the 250 dental US images
on a scale of 1 to 5, with 5 being the highest image quality, showing that HCTSpeckle consistently produced
higher-quality images.

INDEX TERMS Convolutional neural network, deep learning, hybrid network, image denoising, intraoral
ultrasound, speckle noise, supervised learning, ultrasound imaging.

The associate editor coordinating the review of this manuscript and

approving it for publication was Sudhakar Radhakrishnan .

I. INTRODUCTION
Medical ultrasound (US) imaging has been widely used in
diagnostic applications because of its low cost, noninvasive
nature, safety, portability, and real-time capability compared
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to othermodalities. An inherent characteristic of US images is
speckle noise, which is caused by backscattered signals, and
exhibits multiplicative noise features with a signal dependent
distribution [1]. The US speckle noise model is governed
by the distribution of Gamma [2] or Fisher-Tippett [3] and
represented by

J (x, y) = I (x, y)+ Iγ (x, y)η(x, y) (1)

where J (x, y) is the noisy image, I (x, y) denotes a noise-
free image; η(x, y) is the Gaussian noise with zero mean
and variance σ 2; x and y are the spatial coordinates of
the variables. The variable γ is constant depending on US
devices and imaging processing, and is set to 1 to define
the multiplicative speckle noise model [4], [5]. Speckle
noise is inevitable in US images and degrades visual
quality. Furthermore, the presence of speckle noise makes
it challenging for clinicians to diagnose lesions accurately
because it hinders the extraction, analysis, and recognition
of lesion characteristics [6]. Therefore, reducing noise while
preserving the structural details in sonograms is crucial
for improving image quality for more accurate diagnostic
information.

Over the past few years, several approaches have been
proposed to mitigate or reduce speckle noise in US images
using traditional techniques such as spatial domain [7],
transform domain [8], and hybrid domain filtering [9].
Applying a spatial filter directly to the image yields a
lower computational complexity [10] and reduces noise
but leads to increased image blurring. Transform-domain
techniques convert an image from one domain to another,
leveraging distinct image properties in the transform domain
for denoising [11]. Hybrid filtering, which integrates mul-
tiple techniques, offers effective noise reduction and edge
preservation [12]. However, their computational complexity
remains relatively high and limits their application owing to
the real-time processing demands of US image applications.
Although these methods aim to decrease speckle noise and
improve image quality, determining the optimal trade-off
between smoothing and preserving image details remains a
challenge. Determining the ideal balance between denoising
performance and algorithm complexity is even more prob-
lematic, particularly when handling real-time US 3D data.
Consequently, researchers are actively exploring methods
with lower algorithmic complexity to effectively remove
speckle noise in US images as post-processing methods.
The post-processing approach for denoising US images is
advantageous because of its independence from projection
data, high portability, and user-friendliness. However, con-
ventional techniques do not fully address the issues related
to excessive smoothing and the introduction of new noise
components into the image resulting from the processing.

Unlike traditional methods, artificial intelligence (AI),
particularly deep learning (DL), has been used in numerous
applications such as classification [25], segmentation [26],
detection [27], super-resolution [28], and denoising [29].

DL offers a promising and valuable avenue for real-time and
effective despeckling of US images [30] by learning andmap-
ping the intrinsic features of training samples. The authors
introduced a range of medical image-denoising techniques
rooted in DL, beginning with the development of denoising
models and refining loss functions. Generative adversarial
networks (GANs) [31], [32], [33], [34], [35], [36], [37] and
convolutional neural networks (CNNs) [29], [38], [39], [40],
[41], [42] were used to produce high-quality noise-free US
images in an end-to-end manner. Approaches such as fast and
flexible CNN [41] and flexible denoising CNN [43] require
noise estimations and extensive training data. Furthermore,
a notable framework for image denoising is the convolutional
encoding and decoding approach, which has demonstrated
impressive performance. For instance, an encoder-decoder
with a residual learning technique [44] has shown promising
results in image restoration. Similarly, a successive encoder-
decoder network [45] utilized symmetric skip connections for
image denoising and super-resolution. In [46], a deep CNN
was combined with an autoencoder and skip connections,
to introduce a shallow residual encoder-decoder network to
denoise the images. A residual encoder-decoder, known as the
Wasserstein generative adversarial network (RED-WGAN)
was introduced in [47] to denoise 3D MRI images. However,
the performance of these CNN models is highly dependent
on accurate noise level estimation, which leads to poor
performance when the noise level is unknown. Furthermore,
training CNN models from scratch is time-consuming,
computationally expensive, and requires extensive data for
training purposes.

Although well-known dimension reduction CNN tech-
niques are highly effective in extracting valuable features
from an image, attention mechanisms have recently shown
great success in many computer vision tasks, including
image restoration and enhancement. The attention module
generally includes both the channel and spatial attention
mechanisms. These attention maps were applied to the
feature map to refine the features adaptively [23]. Integrating
spatial attention into CNNs facilitates the capture of spatial
correlations and effectively modeling spatial dependencies
between features [48]. The residual encoder-decoder with a
squeeze and excitation network (REDSENet) [24] introduced
a denoising model that operates in channels and effectively
mitigates speckle noise from US images. The REDSENet
model is built upon a residual encoder-decoder architecture,
and by incorporating an attention block within the decoder
section of the given model, it can acquire and leverage global
information. In [49], the authors proposed a separation and
refusion strategy for the attention mechanism, which was fed
into the encoder phase of the standard UNet architecture [50]
to perform real-time despeckling. Another implementation
of the attention module with the residual encoder-decoder
is RED-MAM [23]. The RED-MAM network incorporated
multiattention mechanisms in its decoding phase. The output
features were combined with the corresponding encoded
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TABLE 1. Benefits & limitations of US denoising methods.

features, and fed to the next level. Multiattention enables
the model to highlight essential content features within key
channels while minimizing the influence of less relevant
features. However, the addition of attention modules to the
encoding and decoding phases led to unsharp edges, thereby
diminishing the overall effectiveness of the denoising model.
In summary, Table 1 presents a thorough comparison of the
advantages and disadvantages of the denoising techniques,
offering their strengths and weaknesses.

Following CNN and attention mechanisms, transform-
ers [51] have emerged in natural language processing and
have recently gained an attraction in computer vision. These
advances have now been extended to medical imaging, where
transformers have proven successful in various medical
applications, such as image reconstruction, segmentation,
detection, and diagnosis [52]. In [53], researchers proposed
a TED-net, an encoder-decoder dilation network combined
with a token-to-token (T2T) vision transformer for low-dose
CT denoising. The TED-net employs a U-shaped model
and dilation during the T2T phase to expand the receptive
field. In [54], transformers were harnessed in medical image
denoising with an edge enhancement called Eformer, which
utilizes transformer blocks to construct an encoder-decoder
framework designed explicitly for CT imaging. Despite
recent advancements in transformer-based denoising tech-
niques, there are still obstacles to the effective denoising of
US images, particularly simultaneous noise removal while
preserving the structural details.

To address the problems of using either CNN or trans-
former techniques for US image denoising, we introduced
the CNN-transformer hybrid network, an encoder-decoder
denoising network with a swin transformer and a residual
CNN (res) block, which is called HCTSpeckle. The strengths
of the CNN and transformer were combined into a fusion
block and used as the backbone of HCTSpeckle. To the best
of our knowledge, this is the first hybrid CNN-transformer-
based denoising network specifically developed for US
imaging. We trained the proposed HCTSpeckle with multiple
noise levels to perform better on US images with intricate

noises. The significant contributions of this study are as
follows:
• The HCTSpeckle model for US image denoising is
designed to extract richer features from US images by
preserving local and global modeling details with less
computational cost.

• The proposed fusion block combines a res block
and swin transformer block to avoid feature loss and
preserve long-range dependencies locally and globally.

• An improved swin block is introduced into the network
to improve the robustness of the proposed denoiser by
extracting more significant features, thereby enhancing
the noise-removal effectiveness.

• HCTSpeckle is validated through extensive experiments
on real and synthetic US datasets, such as two private
and two public datasets with multiple noise levels. The
results of HCTSpeckle show that it performs faster
and better than other state-of-the-art techniques, both
qualitatively and quantitatively.

• In addition, the performance of alveolar bone segmen-
tation with and without denoising by HCTSpeckle is
tested using dental US data. The segmentation metrics
prove that HCTSpeckle improves segmentation perfor-
mance. Furthermore, an experienced radiologist blindly
compared and rated the denoised images for image
quality, contrast, resolution, and noise. Moreover, sta-
tistically significant differences are determined between
the HCTSpeckle and the most recent best-performing
methods. The obtained results are favourable for the
proposed HCTSpeckle technique.

The remainder of this article is organized as follows:
A review of related work is presented in Section II; a
detailed description of HCTSpeckle’s overall structure is
presented in Section III; the experimental setup is described
in Section IV; the experimental results, computational
complexity comparison, quantitative results of segmentation
performance, blinded qualitative validation, and statistical
analysis of the results are discussed in Section V. Finally,
Section VI concludes our study.
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II. RELATED WORK
A. CNN-BASED METHODS
Recent advancements in DL have led to the develop-
ment of innovative image denoising techniques. DL-based
approaches, particularly CNNs, utilize end-to-end architec-
tures with powerful learning capabilities and have been
extensively used in US image denoising. Encoder-decoder
networks with skip connections in both the convolutional
and transposed convolutional layers are well known for their
effectiveness in image denoising tasks. This design allows for
the extraction of finer features from the bottom layer, thereby
enhancing denoising performance. References [23], [24],
and [49] employed CNN encoder-decoder design to develop
effective denoising networks. Although CNN models extract
features using stacked, uniformly sized kernels, they often
suffer from a loss of texture detail and cause over-smoothing
in US images. Additionally, CNN approaches have inherent
limitations in US denoising due to biases in convolutional
operations. Enhancing thesemodels typically requires greater
computational resources.

B. TRANSFORMERS
The transformer, an alternative to CNNs, employs a
self-attention mechanism to capture global interactions
within contexts and has demonstrated promising performance
in various vision tasks. Vision transformers have been used
for image restoration [55], [56], but they typically face
significant computational challenges due to the quadratic
complexity of the self-attention mechanisms. Recently, swin
transformers [57] have shown significant promise in image
restoration tasks, with some extensions being made for
real-world image denoising [58]. However, these approaches
incur high computational costs due to the extensive use of
transformer blocks.

Recent DL-based approaches for US image denoising
predominantly rely on either CNNs or transformer tech-
niques. Each method has its strengths, i.e., CNNs are
efficient at local feature extraction, while transformers excel
at capturing global interactions. However, both approaches
have limitations when used in isolation. To overcome these
challenges and achieve superior denoising performance for
US images with lower computational costs, we introduced
HCTSpeckle, a hybrid network that combines the strengths
of CNNs and swin transformers. By integrating these two
architectures, HCTSpeckle effectively balances the benefits
of both local and global feature extraction, leading to
improved denoising results for US images.

III. THE PROPOSED METHOD
In this section, detailed information on the proposed HCT-
Speckle method is provided. An encoder-decoder based
denoising network with a fusion of a swin transformer and
a res block to focus on local and global features without
dependency loss was designed for US image denoising to
improve US image quality. The design of the proposed
method was justified using a comprehensive ablation study.

A. NOISE MAPPING DL MODEL
DL offers an effective solution for denoising US images by
learning from data samples to model noise instead of making
changes in hardware resources such as transducer properties.
The noise mapping between the noisy image, J ∈ RM×N and
the noise-free image, I ∈ RM×N can be expressed by

J = �(I ) (2)

where � is the mapping function of the noise distribu-
tion. Using (2), the denoising approach determines the
best approximation of �−1. An overview of the US
image-denoising process is given by

argmin
ρ
∥Ĵ−I∥22 (3)

where Ĵ = ρ(J ) is the estimation of J , ρ denotes the optimal
approximation of �−1. Noisy and corresponding noise-free
image pairs are required to train the DL-based model in
a supervised manner. In US imaging, it is challenging to
obtain a noise-free US image as the noise in US imaging is
dependent on many properties such as tissue inhomogeneities
and the device used for acquisition. Therefore, the original
US data are considered as reference noise-free images
that underwent physical correction by adjusting acquisition
parameters, resulting in acquired images with minimal real
noise. The various amounts of speckle noise is added to
the acquired data using noise simulation technique and used
as noisy images. These sets of data served as reference
noise-free and noisy images for training purposes. Publicly
available US datasets inherently contain noise, which is
typically retained and used to generate more noisy data,
which is used as a pair of reference noise-free and noisy
data for training purposes. The training procedure of the DL
network is represented by

2∗ = argmin
2

1
N

∑
i

||f (Ii, ni;2)− Ii|| (4)

where Ii is the ith reference noise-free image in the training
stage, ni denotes the noise, f (I ;2) represents the denoising
network, 2 represents the network weights, and N denotes
the total number of training images.

B. THE PROPOSED HCTSPECKLE ARCHITECTURE
The overall structure of the proposed HCTSpeckle network
is shown in Fig. 1. The proposed methodology comprises
four levels of encoding blocks and an additional four
decoding blocks, as shown in Fig. 2. The initial feature (F)
is extracted from the input US image by using the first
convolutional layer. Subsequently, F is used as the input for
the encoding layer through the fusion block as the Swin-Res
(SR) block. This fusion block is the backbone of the proposed
HCTSpeckle to achieve better denoising performance. The
architecture of an SR block is shown in Fig. 1. Between
each encoding and decoding layer, an SR block is introduced
to enhance feature extraction on a multi-resolution scale.
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FIGURE 1. The structure of the proposed HCTSpeckle denoising network. The input 2D US image is passed through the proposed architecture
and the denoised image is obtained as the result of the network. Encoder, decoder block, fusion block (SR) and improved swin block (ISB) are
depicted by yellow, green, light purple and dark purple boxes, respectively. The skip connections are indicated by orange lines. FC layer and res
block represent fully connected layer and residual CNN block, respectively. The structure of fusion block and improved swin block are shown
below in the block diagram.

In addition, skip connections are incorporated into the
HCTSpeckle model to accelerate the training process while
preserving the finer details. Furthermore, the improved
swin block is integrated with the encoder-decoder network
to improve the robustness by extracting more significant
features, thereby enhancing the noise-removal effectiveness.
Finally, a single convolutional layer is used to produce the
final output, i.e., a denoised image with enhanced visual
quality and clear structural details.

1) ENCODER-DECODER STRUCTURE
The proposed HCTSpeckle model consists of four encoding
and decoding blocks that are interconnected through SR
blocks. Each encoder block uses a 2× 2 strided convolution
with a stride of two, whereas the decoder block uses a
transposed convolution. The rectified linear unit (ReLU)
activation function is applied to each encoding and decoding
layer. The number of channels in each block varies from
64 × 64 in the first scale to 128 × 128 in the second,
256× 256 in the third, and 512× 512 in the fourth, as shown
in Fig. 2.

2) FUSION (SR) BLOCK
The internal structure of a fusion (SR) block is illustrated in
Fig. 1. The SR block combines a swin transformer (swin)
block and res block.

The swin transformer is constructed by substituting the
standard multi-head self-attention (MHSA) mechanism in
a transformer block with shifted windows while keeping
the others unchanged [57]. The swin block enhances
computational efficiency and improves the model’s ability
to capture long-range dependencies compared to traditional
self-attention mechanisms. Within each window, the block
utilizes MHSA modules along with multi-layer perceptron
(MLP) for further non-linear transformations. Each MHSA
mechanism and MLP is preceded by a layer normalization
(LN) layer, and a residual connection is added after each
module. LN stabilizes the training process and the residual
connection supports a better gradient flow. These combined
features allow the swin block to effectively balance local
detail extraction and global context understanding, making
it suitable for image denoising.

The res block combines both linear and non-linear
elements within the CNN architecture to extract more com-
prehensive features. The convolutional layer is responsible
for extracting linear features, whereas the ReLU functions as
piecewise activation to convert these linear features into non-
linear ones. Considering the long-term dependency issue and
robustness of the obtained structural information, the linear
and non-linear features from the first and third layers are
fused through a residual learning operation, serving as the
input for the concatenation operation with a swin block.

VOLUME 12, 2024 168611



A. Sivaanpu et al.: Speckle Noise Reduction for Medical US Images Using HCTSpeckle

FIGURE 2. The structure of the proposed encoder-decoder network.
Encoder and decoder are depicted by yellow and green blocks,
respectively.

Initially, the input feature (F) is passed through 1× 1
convolution and evenly split into two groups of features (F1
and F2), which are then fed into the swin and res blocks in
parallel. This can be stated by

F1,F2 = Split(HFE1×1 (F)) (5)

where HFE1×1(.) represents the 1 × 1 convolution. S1 and
R2 represent the results for the swin and the res blocks,
respectively and are expressed by

S1 = swinblock(F1), (6)

R2 = resblock(F2). (7)

Subsequently, both output features (S1 and R2) are fused
using concatenation, followed by convolution. The residual
connection uses 1 × 1 convolution to produce the residual
component of the input. The outcome of the SR block is given
by

Ff = HFE1×1(S1 ⊙ R2)+ F (8)

where HFE1×1(.) represents the 1 × 1 convolution and ⊙
denotes the concatenation. The proposed SR block offers
several advantages for US denoising. The SR block effec-
tively combines localized modeling of the res block with
non-localized modeling of the swin block. HCTSpeckle
enhances local and non-local modeling capabilities by
integrating a multiscale encoder-decoder architecture. The
features are split into two groups, and concatenating the two

groups further reduces the computational complexity and the
parameter count of the proposed SR block.

3) IMPROVED SWIN BLOCK
An Improved Swin Block (ISB) is used after the 9th fusion
block to remove the interference from previous interactions.
The ISB comprises a sequence of fully connected (FC) layer,
swin block, FC layer with ReLU activation, and a single FC
layer. To enhance information acquisition, a residual learning
operation is applied between the ISB input and output of
the first FC layer, as well as between the swin block and
FC outputs. By incorporating residual learning and multiple
fully connected layers, the ISB improves the model’s ability
to remove noise without sacrificing important image details.
The illustrations can be represented by

Fisb = FC(R(FC(S(FC(F)+ F))))+ S(FC(F)+ F) (9)

where F is the input feature of the proposed improved swin
block, FC is the FC layer, R is the rectified linear unit
activation function, S is the swin transformer function and
Fisb is the output of the proposed ISB.

C. LOSS FUNCTION
L1 pixel loss is used as the loss function in the proposed HCT-
Speckle model. L1 loss determines the absolute pixel-wise
differences between the output denoised US image (Jout ) and
reference noise-free US image (Iref ).

Loss =
1
N

N∑
i=1

∥Iref (i) − Jout(i)∥1 (10)

where N denotes the number of samples.

D. TRAINING PROCEDURE
In hyperparameter tuning, the best values for batch size,
filter size, block quantity, layer count within each block,
and learning rate adjustments are obtained by training for a
set number of iterations. These hyperparameters are chosen
based on experimental results to optimize the performance
of the proposed technique. A validation loss metric is used to
determine the most effective model. In each training iteration,
the loss is calculated using (10). The training procedure for
the HCTSpeckle model is shown in Algorithm 1.

IV. EXPERIMATAL SETUP
A. IMPLEMENTATION DETAILS
The proposed HCTSpeckle network was implemented using
Python 3.9, and the PyTorch platform along with CUDA
11.8 was executed on a machine running Windows 11 × 64
OS with an Intel(R) Core™ i7-13700F processor and 16GB
RAM. A 256 × 256 pixel size was used for the input block
during network training. The Adam optimizer was used with
an initial learning rate of 1×10−4, which gradually decreased
approximately to 1× 10−5 by the end of the training, and the
training process was run for 200 iterations with a batch size of
16. The summary of the proposed model’s parameter setting
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Algorithm 1 Training Procedure for HCTSpeckle
Input: TrD = {(J1, I1), (J2, I2), . . . , (JN , IN )}, where each pair (Jx , Ix) consists of a noisy US image Jx and a noise-
free US image Ix , TrD denotes the training dataset.
Output: HCTSpeckle denoising model φdenoise.
initialize: the number of epochs n; batch size b; and learning rate lr .
Detailed Process:

1: while i < n do
2: Randomly visits the US training dataset.
3: (Jx , Ix)← fdata(TrD) // Pairs of US images were randomly selected from TrD.
4: for l ∈ {1, 2, . . . , Nb } do
5: Jl = {J lx}

lb
x=(l−1)b+1, Il = {I

l
x}
lb
x=(l−1)b+1 // l

th batch of noisy US images Jl , the l th batch of noise-free US images Il ,
the x th of the l th batch noisy US image J lx , the x

th of the l th batch noise-free US image I lx .
6: Dl ← φdenoise(Jl) // Input Jl into the denoising model φdenoise to obtain the denoised image.
7: Loss← 1

b

∑b
x=1 ∥I

l
x − D

l
x∥ // Compute the training loss of the l-th batch after denoising model θd .

8: ∂Loss
∂θd
← ∇θdLoss // Calculate the gradient of θd .

9: θd ← Adam(θd , lr) // Update the parameters θd .
10: end for
11: end while
12: Save the model after training.

is tabulated in Table 2. The testing was conducted using the
parameters saved in the 200th epoch. The rating results were
statistically analyzed using IBM SPSS-27 Statistics software.

B. DATASET DETAILS
We used two public and two private data sets to evaluate
the efficacy of HCTSpeckle by using real and synthetic US
images. The data details are listed in Table 3, and example
images are shown in Fig. 3. The dataset details are described
as follows:

(1) Fetal head dataset [59] (HC18): This publicly avail-
able dataset contains US images of the fetal head.
During pregnancy, US imaging is used to measure fetal
biometrics, including head circumference (HC), which
helps estimate gestational age and monitor fetal growth.
The HC measurement is obtained from a cross-sectional
view of the fetal head.

(2) Breast US images [60] (BUSI): This publicly available
dataset comprises breast US images aimed at detecting
breast cancer using US scans. It includes data from
600 female patients, encompassing various aspects of
breast pathology, to offer a comprehensive analysis of
breast health.

(3) Dental US images [26]: The images were acquired
in an animal study at our institution. This dataset,
derived from two porcine samples, includes dental
structures such as alveolar bone, enamel, and gingiva
for dentoperiodontal analysis. The dental US data
acquisition was performed using a 20-MHz 1D-linear
US probe transducer. The imaging frame rate and depth
were 18 fps and 12 mm, respectively.

(4) Heart phantom: US images of the heart phantom were
acquired at our institution using an X5-1 matrix array

transducer system. The imaging parameters were 38 fps
and 17-cm imaging depth.

The original US dataset was collected by gathering image
data with minimal noise through a physical correction
process. To assess the robustness and stability of the proposed
HCTSpeckle, speckle noise was simulated on these original
US images according to the speckle noise distribution [4],
[49] using (1). A constant variable γ = 0.5 was used
as specified in [5] and [49]. This allows for controlled
noise levels in the US dataset, enabling multiple experiments
with pairs of reference noise-free and noisy data. To train
the proposed neural network, the dataset was corrupted
with various levels of speckle noise [0.1, 0.25, 0.5, 0.75].
Additionally, the training and test sets for the four datasets
listed in Table 3 were randomly split at a 7:3 ratio from
images with simulated speckle noise. By adding the noise
to US datasets, the proposed HCTSpeckle was tested for
its robustness under various conditions and anatomical
structures.

TABLE 2. Summary of the proposed model parameter settings.

C. EVALUATION CRITERIA
Two sets of evaluation metrics were used for both the
quantitative and qualitative purposes. Quantitative metrics
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TABLE 3. Details of datasets.

FIGURE 3. Example image from each dataset: (a) Fetal head, (b) Breast
US, (c) Dental US, and (d) Heart phantom.

were further classified into reference metrics, namely the
structural similarity index (SSIM) [61], peak signal-to-noise
ratio (PSNR) [62], mean squared error (MSE), and non-
reference metrics, namely speckle index (SI) [63], natural
image quality evaluator (NIQE), inherent signal-to-noise
ratio (ISNR) [64], entropy, contrast-to-noise ratio (CNR)
[65], and signal-to-noise ratio (SNR) [66]. We assumed the
reference noise-free image, denoised image, and image size
be Iref , Jout , and (M × N ), respectively.

1) REFERENCE METRICS
MSE can be defined as

MSE =
1

M × N

M∑
x=1

N∑
y=1

[Jout (x, y)− Iref (x, y)]2. (11)

PSNR can be measured by

PSNR = 10 log10

(
MAX2Iref
MSE

)
. (12)

SSIM can be expressed as

SSIM =
(2µJoutµIref + X1)(2σJout Iref + X2)

(µ2
Jout + µ2

Iref + X1)(σ
2
Jout + σ 2

Iref + X2)
(13)

where µJout and µIref are the means of the denoised and
reference noise-free images respectively. σ 2

Jout and σ 2
Iref are

the variances of the recovered and the reference noise-free
US images, respectively. σJout Iref is the covariance between
Jout and Iref . X1 and X2 are the variables used to stabilize the
division. X1 and X2 are derived from

X1 = (C1P)2,X2 = (C2P)2 (14)

where variablesC1 andC2 are constants, andP is the dynamic
range of the pixel values.

2) NON-REFERENCE METRICS
E(J ) and E(Jout ) denote the means of the noisy input and
denoised images, respectively. Similarly, V (J ) and V (Jout )
are the variances of noisy and denoised images, respectively.
The entropy of a denoised image is expressed by

Entropy(Jout ) = −sum(x. ∗ log(x)) (15)

where x denotes the histogram count of the pixel. The speckle
index (SI) can be computed by

SI =

√
V (Jout )
E(Jout )

(16)

and the inherent signal-to-noise ratio (ISNR) by

ISNR =
[E(Jout )]2

V (Jout )
. (17)

The Contrast-to-noise ratio (CNR) can be expressed by

CNR = 10 log10

(
E(ROIO)− E(ROIbg)

σbg

)
(18)

and the signal-to-noise ratio (SNR) by

SNR = 10 log10

(∑
i(Jout i − E(ROIbg))

σbg

)
(19)

where ROIO and ROIbg are the specific regions of interest
within the object and background, respectively; the σbg is
the noise in the background region; E(ROIbg) is the average
signal in the background region of interest (ROI); (Jout i −
E(ROIbg)) is the signal at each pixel i in the denoised image.

Furthermore, qualitative evaluation was performed using
the overall image quality, contrast, resolution, and noise level.
A radiologist with more than 20 years of experience in US
imaging blindly rated the outcomes of HCTSpeckle, the
most recent method, and the original data. The images were
rated on an integer scale from 1 to 5, where higher values
indicate better quality. A rating of 5 reflects a significant
preference for the resultant image over the original, while
a rating of 4 shows a slight preference for the result.
A rating of 3 signifies that the two images are equivalent.
Conversely, lower ratings (1 and 2) indicate a preference for
the original image, with 1 indicating a significant preference
and 2 indicating a slight preference. Additionally, alveolar
bone segmentation was conducted on dental US data with
and without denoising by HCTSpeckle, and the segmentation
performance was evaluated using segmentation metrics such
as Dice score, precision, specificity, and sensitivity.

V. RESULTS AND DISCUSSION
We evaluated the assessment of the HCTSpeckle technique
along with several denoising methods developed within the
last five years, including the four traditional techniques [7],
[15], [67], [68] and six DL-based techniques [20], [21], [22],
[23], [24], [69].
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FIGURE 4. Qualitative comparison of the denoised results in six real US images. For each set, ROI is 64 × 64: original noisy image (Left), denoised
result by the HCTSpeckle (Right). Red ROIs are depicted as foreground regions, and green ROI is depicted as background region. The real US
images with four ROIs and background ROIs are marked for computing CNR & SNR.

A. QUANTITATIVE COMPARISON
The effectiveness of HCTSpeckle was validated using a
testing set of fetal head US real images and non-reference
metrics such as ISNR, SI, Entropy, and NIQE. The results
were presented in Table 4. As illustrated, HCTSpeckle
proved superior in effectively reducing noise in US images,
achieving remarkable ISNR, SI, Entropy, and NIQE scores
of 32.61 ± 11.19, 0.04 ± 0.01, 7.26 ± 2.62, and
4.61 ± 1.23, respectively, and outperformed the existing
approaches.

Furthermore, the effectiveness of the denoised results was
compared using CNR and SNR metrics on the heart phantom
data. Four sets of ROIs were chosen with the foreground
regions marked in red and the background marked in green,
as shown in Fig. 4. The tabulated values for the average CNR
and average SNR are listed in Table 5. Regarding SNR values,
the highest average values in the denoised outcome were
achieved by HCTSpeckle compared with the original image,
demonstrating that noise removal was effectively performed
by HCTSpeckle. Slightly higher CNR values were obtained
by HCTSpeckle compared with the original values. Overall,

TABLE 4. Performance comparison of real images of the HC18 testing
dataset using average scores of SI, ISNR, Entropy and NIQE. The lower the
SI and NIQE values and the higher the ISNR and entropy values, the better
the performance. Tr and DL denote the traditional and the DL-based
denoising techniques, respectively. The corresponding indices display
their best values in bold.

the CNR and SNR comparisons indicated that speckle noise
was effectively removed by HCTSpeckle while maintaining
the integrity of the image details.
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TABLE 5. The CNR and SNR comparisons for the original and denoised
results by the HCTSpeckle were performed in the six US heart phantom
images as shown in Fig. 4. The higher CNR and SNR values denote the
best performance. The best scores are bolded.

FIGURE 5. Comparison of different metrics on the BUSI dataset with
different noise levels.

In addition, a quantitative evaluation was conducted with
different noise levels using MSE, PSNR, and SSIM on
the BUSI and HC18 testing sets. The results are plotted
in Fig. 5 and summarized in Table 6, respectively. The
results demonstrated the strong performance of HCTSpeckle
in terms of MSE, PSNR, and SSIM at each noise level
on the HC18 dataset. HCTSpeckle achieved a minimum
MSE of 13.04 ± 8.27, and a maximum of 15.01 ± 8.74.
Additionally, HCTSpeckle excelled in preserving structural
similarity, as evident from the SSIM values presented in
Table 6. Notably, HCTSpeckle attained high SSIM values
of 0.98 ± 0.26 at a noise level of 0.1. Even at a high noise
variance of 0.75, the approach still achieved an SSIM value
of 0.95 ± 0.31, while some other methods displayed notably
poorer performance at this noise level. The obtained results

showed that HCTSpeckle excels in preserving intricate
details and upholding image quality, which is a critical factor
for accurate disease diagnosis by radiologists. Additionally,
Fig. 6 presents the variations of loss and PSNR values during
the training and testing phases.

FIGURE 6. Training and testing losses, and PSNR measures with respect
to epochs for the HC18 dataset.

B. QUALITATIVE COMPARISON
Fig. 7 presents a visual comparison of the results from the
ten most recent existing methods along with HCTSpeckle.
Additionally, an enlarged view of the denoised outcomes
using recent despeckling approaches such as RED-MAM
[23] and REDSENet [24] on dental US data is illustrated in
Fig. 8. The noise is clearly visible in Fig. 8(a). In Fig. 8(c),
the image exhibits noticeable noise and displays an overly
smooth texture, whereas in Fig. 8(b), the texture is sharper
than that in Fig. 8(c). Notably, Fig. 8(d) displays sharper
details than those in Figs. 8(b) and (c). Furthermore, the
enlarged area in Fig. 8(d) exhibits more distinct boundaries
than the other denoised results.

Fig. 9 shows a visual comparison of the outcomes and pixel
intensity profiles along the highlighted line for the original
and denoised results of several CNN-based techniques
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TABLE 6. Comparisons with the existing approaches on the HC18 dataset at different noise levels (σ ) using average scores of MSE and SSIM. The lower
the MSE value and the higher the SSIM values are, the better is the performance. The Tr and DL denote traditional and DL-based denoising techniques,
respectively. The corresponding indices display their best values in bold.

implemented on a heart phantom US image. From Fig. 9, it is
evident that HCTSpeckle generated smoother background
regions and better preserved structural information compared
to the other DL-based methods such as Sahu et al. [21] and
Tian et al. [22], particularly within the selected green and
blue ROIs. In addition to the enlarged view and the profile
intensity plots, we generated a color plot for the real images
and the corresponding denoised outcomes to demonstrate
the preservation of structural details such as the boundary,
margins and tips of anatomies while removing noise from US
images, as shown in Fig. 10.

C. COMPUTATIONAL EFFICIENCY COMPARISON
In addition to quantitative and qualitative comparisons,
the computational complexity of the proposed HCTSpeckle
approach was evaluated against the other state-of-the-art
DL-based methods from the past five years. Metrics such
as trainable parameter count, number of floating-point
operations (FLOPs), average inference time for a single
image, and average SSIM index were used to assess the
computational efficiency.

The numerical results were listed in Table 7, demonstrating
that the proposed approach outperformed the other methods
in terms of gigaFLOPs, inference time, and denoising
performance. While the capsule network-based method
had fewer million parameters, the proposed HCTSpeckle
excelled with lower gigaFLOPs, shorter inference time, and
superior denoising performance. Specifically, HCTSpeckle
showcased remarkable computational efficiency with only
17.94 million trainable parameters, 8.90 gigaFLOPs, and an
inference time of 82milliseconds, respectively. It was notably
faster than other methods, which exhibited higher parameter
counts, gigaFLOPs, and inference times. Moreover, HCT-
Speckle achieved the highest average SSIM of 0.96 ± 0.38,
indicating superior image quality preservation. These results
highlighted the efficiency and effectiveness of the proposed
HCTSpeckle approach in both computational and qualitative
aspects.

D. COMPARISON WITH SEGMENTATION PERFORMANCE
For the segmentation of alveolar bone in dental US images,
a well-established U-Net segmentation network [50] was
employed as the segmentation model. U-Net primarily
comprised an encoder for capturing image features and a
decoder for constructing and localizing segmentation labels.
Sampling paths utilized a concatenation operator instead of
a sum, and skip connections were designed to convey local
information to global information during the up-sampling
process.

In the image segmentation phase, the model underwent
training for 500 epochs with a batch size of eight, utilizing
the Adam optimizer with a learning rate of 10−4, and the
loss function by the Dice coefficient. The U-Net model was
trained using 1264 dental US images, with 316 images for
testing purposes. All input images and the corresponding
ground truth masks were resized to 256 × 256. Training
data were employed to compute the parameters of the neural
networks, which were updated iteratively to minimize the
cost function. The best model was used to segment both
real and denoised images. The performance of segmenting
dental structures in each testing image was evaluated using
the Dice coefficient, precision, specificity, and sensitivity.
The average results of the segmentation metrics for US
images, both with and without denoising performed by
HCTSpeckle, were presented in Table 8. The results with
the denoising approach achieved higher values for all metrics
compared with the segmented outcome of the original
images. In summary, the obtained results demonstrated that
HCTSpeckle improved the performance of other imaging
tasks, such as segmentation. The accurate segmentation of
alveolar bone in dental images was crucial for periodontal
diagnosis [26].

E. STATISTICAL COMPARISON
From the testing set of dental US data, 250 images were
randomly selected and blindly rated by the radiologist using
the above-mentioned scale for the original image and the
outcomes of RED-MAM, REDSENet, and HCTSpeckle.
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FIGURE 7. Visual comparison of the ten top-performing methods on breast US image from the BUSI dataset: (a) Noisy, (b) Ma et al. [20],
(c) Sahu et al. [21], (d) Tian et al. [22], (e) Wang et al. [69], (f) Deng et al. [15], (g) Zeng et al. [24], (h) Wang et al. [7], (i) Dutta et al. [68], (j) Li et al. [23], (k)
Bonny et al. [67], and (l) HCTSpeckle. The rectangular enclosures indicate the zoomed areas.

The mean outcomes of the assessments conducted by the
radiologist are presented in Table 9. The HCTSpeckle
achieved values in quality, noise, contrast, and resolution of
4.05 ± 0.32, 4.06 ± 0.37, 4.05 ± 0.36, and 4.04 ± 0.34,
respectively. It was observed that in terms of image quality,
noise, contrast, and resolution, HCTSpeckle’s outcomes
exhibited a significant advantage compared to the other recent
approaches.

HCTSpeckle was compared with RED-MAM and RED-
SENet. The experimental results revealed that HCTSpeckle
and RED-MAMexhibited significant improvements in image
quality, sharpness, and artifacts. HCTSpeckle achieved a
higher value for each quality metric than RED-MAM and
REDSENet. When comparing the ‘‘image quality,’’ the
mean differences between HCTSpeckle and RED-MAM and
between HCTSpeckle and REDSENet were −1.128 and
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FIGURE 8. Enlarged view of the denoised outcomes of the most recent despeckling approaches on the dental US data: (a) Original, (b) Li et al. [23],
(c) Zeng et al. [24], and (d) HCTSpeckle. The proposed result (d) exhibits more distinct boundaries & sharper details like alveolar bone crest, gingiva,
enamel margins compared to other denoised results (b) and (c).

FIGURE 9. Visual comparison of outcome and profiles of pixel intensities along the highlighted line for the original and denoised outcomes
performed on a heart phantom US image: (a) The heart phantom US image, (b) Sahu et al. [21], (c)Tian et al. [22], and (d) HCTSpeckle.

−2.036, respectively. In ‘‘noise level’’ comparison, the
mean differences between HCTSpeckle and RED-MAM and

between HCTSpeckle and REDSENet were −1.908 and
−2.112, respectively.
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FIGURE 10. Qualitative results of the most recent despeckling approaches on the dental US data:
(a) Original, (b) Li et al. [23], (c) Sahu et al. [21], and (d) HCTSpeckle. It is essential to preserve the
boundary structural details while removing noise. The color plot shows the boundary details of an image.
The proposed result (d) exhibits more distinct boundaries & sharper details compared to the other
denoised results (b) and (c).

Moreover, for the ‘‘contrast,’’ HCTSpeckle consistently
had higher means than RED-MAM and REDSENet in both
pair comparisons. In the first comparison, themean difference
between HCTSpeckle and RED-MAM was −1.148. In the
second comparison, HCTSpeckle also showed a higher mean
than REDSENet, with a mean difference of -2.020. Finally,
when comparing the ‘‘resolution,’’ the mean difference for
HCTSpeckle and RED-MAM was −1.168. For the second
pair, HCTSpeckle and REDSENet, with a mean difference
of −2.004. These results demonstrate that HCTSpeckle
consistently outperformed RED-MAM and REDSENet in
terms of the mean scores of the evaluated qualitative metrics.
The mean differences were statistically significant with a
p-value of less than 0.001.

F. ABLATION STUDY
The effectiveness of the proposed denoising technique was
primarily based on the SR block. Consequently, we compared
the denoising and model reconstruction performances using
the HC18 dataset to assess the requirements for our SR block.
A diagram illustrating the block insertion point is shown in
Fig. 11(a), and the corresponding experimental results are
presented in Fig. 12. Incorporating the SR block in positions
one and two within an encoder-decoder structure results in
greater improvement than positioning the SR block in one or
two individually.

As shown in Fig. 13, quantitative evaluations of each
component within the HCTSpeckle model were performed
individually. These experiments followed the findings out-
lined in Fig. 12, and the subsequent experiments were

conducted at positions 1 and 2. The results revealed that
both the individual swin and res blocks significantly impact
the model’s performance, with the swin block exhibiting a
more pronounced effect than the res block. Furthermore,
this study explored the collective effect of incorporating
SR blocks into the denoising model. Fig. 2 illustrates the
structure of an encoder-decoder (U-shaped network), with
‘‘U + Swin’’ denoting the inclusion of swin blocks in the U-
shaped network, as depicted in Fig. 11(b). ‘‘U+ Swin+Res’’
signifies the incorporation of res blocks, whereas ‘‘Swin +
Res’’ is a sequential combination of an SR block (U+seq)
(Fig. 11(c)). Lastly, ‘‘U+ Swin&Res’’ represents the parallel
integration of the swin block and the res block (U+par),
as illustrated in Fig. 11(d). The experimental results indicated
that combining blocks in parallel, particularly within the
HCTSpeckle model, led to a more noticeable enhancement
in the denoising model as shown in Fig. 13.

Furthermore, adding ISBs to the denoiser led to further
significant improvements in MSE, PSNR and SSIM. Specif-
ically, the best performance was achieved with the inclusion
of the ISB to the parallel combination (U+par+ISB), yielding
the lowest MSE of 13.04, the highest PSNR of 37.85, and
the highest SSIM of 0.98. These results highlighted the
effectiveness of each component and their synergistic impact
when combined, demonstrating the robustness and superior
performance of the proposed HCTSpeckle denoiser.

G. DISCUSSION
HCTspeckle was proposed as a hybrid network that
combines CNNs and Transformers. Two notable hybrid
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TABLE 7. Computational efficiency comparison of the proposed approach with the state-of-the-art DL-based methods. The abbreviations are denoted as
M for Million, FLOPs for number of floating point operations, and ms for milliseconds. The best performance values are bolded.

FIGURE 11. The block diagrams illustrating the effectiveness of the proposed HCTSpeckle method. (a) The position where the fusion SR block is inserted.
(b) A U-shaped network with swin blocks. (c) A U-shaped network with a sequence of swin and res blocks. (d) A U-shaped network with a parallel
connection of swin and res blocks.

TABLE 8. Quantity assessment of segmentation performance using a
U-Net model in dental US data.

CNN-Transformer denoising networks have been proposed
for real-world image denoising applications. The first uses
a swin transformer in the encoder section and a single
convolution in the decoder section, as detailed in [70].
This design aims to reduce the computational complexity

FIGURE 12. The fusion (SR) blocks are inserted at different positions
under the same noise level on HC18 dataset.

and achieve a balance between the model capacity and
computational cost for real-world scenes; however, it limits
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TABLE 9. The image evaluation ratings obtained by an experienced radiologist on 250 dental US images on a scale of 1 to 5; the greater the value, the
higher the image quality.

FIGURE 13. Effectiveness of each component of the proposed denoiser
under the same noise level.

the denoising performance by over smoothing effects for
other noise characteristics and other applications. The second
network, TC-net [71], reduces the image noise by incorporat-
ing transformers and convolutions. It adjusts the feature size
using an input adjustment module and effectively extracts the
low-level image features. Although TC-net achieves a better
denoising performance, it produces poor visual quality for
images with other noise variants.

In medical imaging, the only one hybrid network, which
is proposed for low-dose CT images is the HCformer [72],
which has not been applied to US images. The HCformer
uses CNNs for initial feature extraction and the final image
restoration, whereas the encoder and decoder blocks are
built solely using transformer architectures. Despite its
good feature extraction and noise removal capabilities, the
HCformer produces over smoothed images and requires
significant computational resources.

However, there are four major differences between
our proposed HCTspeckle and the recent hybrid CNN-
transformer approaches. Firstly, HCTspeckle is the first
hybrid CNN-Transformer-based denoising network built
specifically for US imaging. HCTspeckle focuses on combin-
ing a transformer variant with U-Net. Secondly, the proposed
HCTspeckle primarily employs a swin transformer block
to reduce computational cost and capture global interactive
features while using CNNs to extract the local modeling
features. Thirdly, HCTSpeckle introduces a new fusion block
that integrates the local modeling capability of res blocks
and the non-local modeling ability of swin transformer block
through 1 × 1 convolution. In contrast, existing approaches
use a transformer block with depth-wise convolutional layers.
Finally, the improved swin block is introduced at the end
of the proposed encoder-decoder network to improve the
robustness of HCTSpeckle by extracting more significant
features, thereby enhancing the noise removal effectiveness.

VI. CONCLUSION
In this paper, a novel hybrid CNN-transformer network
(HCTSpeckle) is proposed for ultrasound image denoising.
TheHCTSpeckle network integrates the strengths of the CNN
blocks for local modeling and swin transformer blocks for
non-local modeling. HCTSpeckle is trained on various noise
levels to effectively handle complex noise in the US images.
Its effectiveness has been validated using four distinct US
datasets. Quantitative results has demonstrated that HCT-
Speckle outperforms the other compared methods in terms of
evaluation metrics such as MSE, SSIM, CNR and SNR. The
visual comparisons has also demonstrated that HCTSpeckle
outperforms in noise reduction and structure preservation.
Furthermore, using HCTSpeckle as a preprocessing step
for alveolar bone segmentation significantly improved the
segmentation accuracy. Future work will focus on reducing
the computational complexity without compromising the
performance of the model, so that the proposed algorithm can
be applied in clinical work.
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