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ABSTRACT Millimeter-wave (mmWave) frequencies ranging from 30 to 300 GHz offer vast bandwidth
and high data transmission rates, making them ideal for high-throughput applications and the expanding
Internet of Things (IoT). However, mmWave implementation faces challenges such as narrow beams,
susceptibility to blockage, and rapid channel fluctuations due to user mobility. To address these issues,
non-orthogonal multiple access (NOMA) is employed, enhancing spectral efficiency by allowing multiple
users to share the same frequency resources at different power levels. This paper focuses on Power-Domain
NOMA (PD-NOMA), a variant of NOMA that allocates different power levels to users sharing the
same frequency resources. Although other forms of NOMA, such as Code-Domain NOMA (CD-NOMA)
and Cooperative NOMA, exist, our discussion will primarily focus on PD-NOMA due to its practical
application in mmWave-NOMAnetworks. The integration of mmWave and NOMApresents both significant
opportunities and complex challenges, particularly in resource management. This combination aims to
leverage mmWave’s high bandwidth and NOMA’s efficient resources utilization to overcome physical
layer limitations and enhance network performance. Traditional methods struggle with optimizing those
resources like power levels, bandwidth, beam directions, and user pairing. Deep learning (DL) presents
a promising solution by learning optimal resource allocation from data. This paper reviews current and
future DL applications in five key areas: power allocation, energy efficiency, user association, bandwidth
allocation, and subcarrier allocation in mmWave-NOMA networks. It also highlights available open-source
datasets, code, and DL frameworks supporting these developments and discusses key research directions.
The structure of the paper is organized as follows: first, background knowledge on mmWave and NOMA
systems is presented, followed by an in-depth review of DL applications for resource management. Finally,
we conclude with challenges and future research directions in this evolving field.

INDEX TERMS Non-orthogonal multiple access, mmWave, deep learning, resource management.

I. INTRODUCTION
Future wireless networks including 6G and beyond, will
encounter increasing challenges such as the need for higher
data throughput, improved spectral and energy efficiency,
greater reliability, extensive connectivity, and comprehensive
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coverage that spans both terrestrial and non-terrestrial
networks. To meet the demands of advanced applications
like augmented reality (AR) and virtual reality (VR) in
further-enhanced mobile broadband (eMBB), as well as the
stringent requirem ents of ultra-reliable and low-latency com-
munication (URLLC) for full automation, industrial control,
and connected robotics, and the vast scale of ultra-massive
machine-type communication (mMTC) for the Internet of
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Things (IoT), networksmust address the growing heterogene-
ity in quality of service (QoS). The evolution towards 6G is
driven by a confluence of existing trends, such as increasing
network density and higher data rates, and emerging trends,
including new applications and advances in technologies
like artificial intelligence, computing, and sensing. To meet
the performance targets for 6G, several key trends must be
addressed. First, there is a need to achieve significantly higher
data rates while ensuring high reliability, particularly at
elevated frequencies. This shift necessitates a transition from
traditional spatial bandwidth definitions to volumetric ones,
which better accommodate the three-dimensional nature of
6G networks. Additionally, the use of electromagnetically
active surfaces for communication will be essential. The
network infrastructure must also be capable of leveraging
both large and small datasets effectively. Furthermore,
the evolution from Self-Organizing Networks (SON) to
Self-Sustaining Networks (SSN) will play a crucial role.
Integration of multiple functions into a cohesive system is
necessary to support advanced applications. Lastly, there is
a growing shift towards wearable devices and smart body
implants, driven by the development of applications such as
extended reality (XR) and brain-computer interfaces (BCI).
These advancements collectively define the future landscape
of 6G, setting the stage for a highly connected and intelligent
network ecosystem [1].

To meet these stringent demands, emerging technologies
such as millimeter wave (mmWave) communications and
non-orthogonal multiple access (NOMA) have been rec-
ognized as essential enablers. mmWave communications
leverage the abundant bandwidth available in the mmWave
spectrum (30-300 GHz) to achieve multi-gigabit-per-second
data rates. The broad spectrum available in themmWave band
holds significant potential for achieving high data throughput
andminimizing transmission latency [2], [3], [4]. Conversely,
NOMA enhances spectral efficiency by enabling multiple
users to share the same time-frequency resources through
power-domain multiplexing, with successive interference
cancellation (SIC) implemented at the receivers [5].

The synergy of mmWave technology and NOMA has
garnered significant attention recently as a key enabling strat-
egy due to their ability to provide extensive bandwidth and
high spectral efficiency (SE) [6]. However, the integration
of mmWave and NOMA technologies introduces significant
challenges in resource management. The high propagation
losses and sensitivity to blockages in mmWave frequencies
necessitate highly directional beamforming and frequent
beam tracking/realignment. Additionally, the non-orthogonal
nature of NOMA introduces inter-beam and inter-cluster
interference, which must be carefully managed through
efficient user clustering, power allocation, and interference
cancellation techniques. Furthermore, the joint optimization
of multiple resources, such as power, subchannels, beam-
forming vectors, and user clustering, is a high-dimensional
and non-convex problem, making it challenging for tradi-
tional model-based optimization approaches.

Deep learning (DL) has become a promising method for
resolving the resource management challenges in mmWave-
NOMA networks. By capitalizing on their capacity to learn
intricate patterns directly from data, DL can effectively
optimize resource allocation policies without relying on
explicit channel models or making simplifying assumptions.
Deep neural networks (DNN), convolutional neural networks
(CNN), recurrent neural network(RNN), deep reinforcement
learning (DRL), and other DL architectures have been
explored for various resource management tasks, such as
user clustering, power allocation, subchannel assignment,
and hybrid beamforming in mmWave-NOMA systems.

This study hypothesizes that DL techniques can opti-
mize resource allocation in mmWave-NOMA systems,
significantly improving both spectral and energy efficiency
while maintaining system scalability in fast-varying wireless
environments.

Although several studies have explored the applications
of deep learning in wireless networks, few have provided
a comprehensive review of its role in managing resources
specifically for mmWave-NOMA systems. This paper aims
to fill this gap by reviewing state-of-the-art DL approaches
for power allocation, user association, energy efficiency,
and bandwidth allocation in mmWave-NOMA networks.
The novelty of this work lies in its detailed analysis of
DL frameworks and the challenges involved in optimizing
resource management, as well as its exploration of open-
source datasets, frameworks, and future research directions.

A. RELATED SURVEY
The importance of DL and recent advancement in DL-based
resource management in mmWave-NOMA has garnered
significant attention from researchers, prompting several
surveys being conducted as depicted in Table 1. Here,
we highlight the importance and recent advancements in this
field based on the insights from various surveys.

Hasan et al. in [7] covered the utilization of DL to enhance
the performance of NOMA. Elsaraf et al. in [8] surveyed
power allocation using deep learning in NOMA system.
Kaur et al. in [9] provided a current overview of emerging
wireless system concepts like 6G and the role of Machine
Learning (ML) in these future wireless networks. Sharma
and Kumar in [10] outlined the key aspects of physical layer
security (PLS) where deep learning DL can be leveraged to
bolster the security of wireless networks. Bartsiokas et al.
in [11] provided an overview of the latest ML approaches
for efficient radio resource management in 5G and next-
generation networks.

Gupta et al. in [12] provided a solution taxonomy for
several resource allocation systems that take into accountML,
DRL, graph theory, game theory, NOMA, and joint resource
allocation. Khan et al. in [13] introduced the impact of ML
techniques on next-geneation wireless networks. Lu et al.
in [14] provided a comprehensive survey on the RL based
6G physical cross-layer security and privacy protection.
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FIGURE 1. Organization of this paper.

Qurratu et al. in [15] provided an overview of ML algorithm
for beam tracking techniques. Huynh et al. in [16] conducted
a comprehensive analysis of the applications of Generative
AI (GAI) in physical layer communications, covering a wide
range of conventional problems such as channel estimation,
signal classification, and equalization.

Mayarakaca and Lee [17] reviewed the implement of
ML on NOMA for UAV communications and Ye et al.
in [18] offered insights into AI-enhanced designs for
fundamental physical-layer components, such as coding,
modulation, multiple access, MIMO, channel estimation,
and relay transmission. While extensive surveys exist on
DL applications in various domains, a dedicated study
focusing on DL for resource management in mmWave-
NOMA networks, encompassing power allocation, energy
efficient, user association, bandwidth allocation, and sub-
carrier/sub-channel allocation, appears to be missing from
the literature. This gap motivated us to undertake this
comprehensive survey, aiming to explore the potential of DL
in optimizing resource management and unlocking the full
potential of mmWave-NOMA networks.

B. PAPER CONTRIBUTION AND ORGANIZATION
The key contributions of this survey are outlined as follows.

• Review recent research on DL implementation
to optimize power allocation, energy efficiency,

user association, bandwidth allocation, and subcarrier
allocation in mmWave-NOMA Networks.

• Summarize open dataset, source code, and DL frame-
work related with DL implementation in context
of resource management within mmWave-NOMA
networks.

• Highlights the trends and future research directions
for applying DL for mmWave-NOMA in context of
resource management.

The remainder of this paper is structured as follows,
as shown in Figure 1. Section II provides a brief overview of
the foundational concepts necessary for this survey, including
mmWave NOMA systems and DL. Section III reviews recent
research on the application of DL in areas such as power
allocation, energy efficiency, user association, bandwidth
allocation, and subcarrier allocation, respectively. Section IV
offers a critical analysis of current trends and potential
future directions in this developing field. Finally, Section V
contains the concluding remarks. For ease of reading, a list of
commonly used acronyms is provided in Table 2.

II. BACKGROUND KNOWLEDGE
A. MMWAVE NOMA
The future 6G era, envisioned to be deployed in the
2025-2035 timeframe, strives to extend the limits of wireless
communication beyond those established by its 5G prede-
cessor [19]. The system will function within the 100 GHz
to 1 THz frequency band, which includes a portion of
the mmWave spectrum. The mmWave spectrum spans
from 30 GHz to 300 GHz, featuring wavelengths ranging
from 10 mm to 1 mm. These shorter wavelengths enable
higher data transmission rates exceeding 100 Gb/s. This
extremely high data rate will facilitate ultra-fast downloads
for applications such as computers, autonomous vehicles, and
robotic controls [20].
As depicted in Figure 2, this ultra-high data rate capa-

bility makes mmWave especially suitable for a variety
of demanding applications. For instance, it can efficiently
support large-scale events where thousands of users require
simultaneous connectivity. Moreover, mmWave is integral to
the deployment of massive IoT (Internet of Things) devices,
facilitating real-time communication and data exchange in
environments such as smart cities and smart energy systems.
It also plays a crucial role in vehicle communications and
transport infrastructure, where high-speed data transfer is
essential for the development of autonomous vehicles and
advanced transportation systems. Additionally, mmWave
technology is utilized in environmental monitoring, enabling
the collection and analysis of large volumes of data quickly
and reliably, thereby contributing to the advancement of smart
city initiatives and increased residential connectivity.

The use of mmWave and THz frequency bands
above 100 GHz may necessitate innovative approaches to
front-end design, particularly when considering the need to
connect a million devices simultaneously in future networks.
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FIGURE 2. mmWave frequency band in communication and smart technologies.

These ultra-high frequencies require novel approaches to
antenna design, signal processing, and power management
to overcome their inherent limitations in propagation and
penetration. To address the massive connectivity demands
in this challenging spectral environment, advanced multiple
access techniques become crucial. This is where NOMA
emerges as a key enabling technology. NOMA’s capacity
to accommodate multiple users concurrently within the
same time-frequency resource block makes it particularly
well-suited to handle the dense device ecosystems envisioned
for future mmWave and THz networks.

In NOMA technique, channel estimation and signal
detection are two tasks that are closely interrelated, each
playing a crucial role in system performance [21], [22], [23].
These tasks are not only interrelated but also interdependent,
with improvements or optimizations in one area often leading
to enhancements in the others. Together, they form a cohesive
framework that ensures the efficient and reliable operation
of mmWave NOMA-based communication systems.The
process of acquiring channel state information (CSI) fun-
damentally follows a two-step, pilot-based approach. In the
first phase, the user equipment (UE) receive a pilot signal
from base station (BS) and performs CSI estimation. This
involves measuring the received signal’s characteristics, such
as amplitude, phase, and delay, to estimate the channel’s
properties. This step is particularly challenging in mmWave
systems due to the highly directional nature of transmissions
and the need for precise beam alignment. Additionally,
in NOMA scenarios, this phase must account for multiple
users sharing the same time-frequency resources. In the
second phase, the UE sends the estimated CSI back to the BS
through the uplink control channel. This feedback is crucial

for enabling the BS to adapt its transmission strategies,
such as beamforming and power allocation, based on the
current channel conditions. Efficient feedback mechanisms
are necessary to ensure that the CSI is conveyed accurately
and with minimal delay, which is particularly challenging in
fast-changing mmWave environments.

Accurate CSI, which describes the wireless channel
characteristics between the transmitter (TX) and receiver
(RX), is crucial for the effective operation of mmWave
NOMA systems. This precise channel knowledge enables
BS to perform precoding. Precoding involves computing
the optimal signal transmit power for each user, which is
particularly important in NOMA to ensure proper power
allocation among multiplexed users for successful successive
interference cancellation [24].
Signal detection in mmWave-NOMA communication sys-

tems plays a vital role in extracting desired signals from noisy
environments by utilizing received signals and CSI [25],
[26], [27]. In the context of DL based mmWave-NOMA,
two main approaches have emerged, data-driven and model-
driven detectors. Both approaches leverage the power of deep
learning but differ in how they utilize data and models to
enhance signal detection performance. Data-driven detectors,
which are the focus of the query, directly utilize the received
input signal for extraction and classification. These detectors
leverage the power of deep learning algorithms to learn
complex mappings between received and transmitted signals
without relying on explicit mathematical models of the
channel or signal propagation. Data-driven detectors, trained
on extensive datasets, can potentially handle intricate, non-
linear relationships and adapt to changing environments. This
approach offers advantages such as the ability to outperform
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TABLE 1. The related surveys about DL for resource management in mmwave-NOMA.

traditional methods in scenarios where accuratemathematical
models are challenging to derive.

B. RESOURCE MANAGEMENT AND OPTIMIZATION
In wireless communication systems, the central challenges
focus on resource management and optimization [28]. Wire-
less communication systems operate under the constraint
of limited resources, including spectrum, time slots, power,
and spatial dimensions, which must be carefully managed
to maximize system performance. The goal is to enhance
metrics such as throughput, coverage, and capacity while
addressing the varied QoS needs of modern applications.

This involves ensuring adequate data rates for high-speed
services, minimizing latency for time-sensitive operations,
and maintaining reliability for consistent connections. As the
network strives to improve overall performance and effi-
ciency, it must also balance the needs of different users
and applications, each with unique requirements. Effective
resource allocation strategies become essential, aiming to
distribute resources efficiently among users and services,
adapt to fluctuating network conditions, and navigate the
trade-offs between competing performance metrics. Fair
access to resources is crucial, yet it is equally important to
prioritize critical services when necessary to maintain system
integrity. The complexity of this optimization problem is
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TABLE 2. Acronym.

compounded by the dynamic nature of wireless environ-
ments, user interference, and the increasing density of net-
works. To tackle these challenges, advanced techniques from
machine learning, game theory, and convex optimization
are employed to develop sophisticated algorithms. Different
multiple access schemes introduce distinct resources for
allocation. For instance, NOMA incorporates user pairing,
grouping, decoding sequence, and power allocation [28].
Decoding sequences play a pivotal role in enhancing

spectral efficiency in wireless communication systems,
particularly in 5G and beyond. These sequences enable
multiple users to simultaneously share the same frequency
resources, but also introduce greater complexity in signal
processing. The decoding sequence in NOMA directly
impacts the success of Successive Interference Cancellation
(SIC). In NOMA, multiple users share the same frequency
resource but are assigned different power levels. The
decoding sequence dictates the order in which the receiver
decodes each user’s signal. Typically, the signal from the
user with the strongest channel gain (often closer to the
base station) is decoded first, and its interference is then
subtracted from the composite received signal. This process
is repeated for the next user, and so on, until the user with
the weakest channel gain is decoded [29]. If the decoding
order is not optimized, residual interference from stronger
users can accumulate, leading to performance degradation,
particularly for users with weaker signals. Therefore, the
correct decoding sequence is critical issue to minimize
interference and enhance spectral efficiency [30].
One critical issue in user association within NOMA

systems is the multiplexing of multiple users with varying
channel gains within a single resource block (frequency, time,

or code) in the power domain. Effective user association
is essential for ensuring user fairness and maximizing the
overall system capacity.When high-gain users are pairedwith
low-gain users within a cell, mid-gain users are often left to
be associated with each other. This can lead to a reduction in
system capacity due to the degradation of SIC performance
or result in mid-gain users being left unassociated, thereby
missing out on the capacity benefits that NOMA can provide.
Moreover, the number of users multiplexed within a single
resource block presents another challenge in user association.
Ideally, a resource block should associate a large number
of users to fully exploit the spectrum efficiency benefits
of power-domain NOMA (PD-NOMA). However, as the
number of users associated with a single resource block
exceeds two, the complexity of the system also increases
significantly. This complexity arises from the need to manage
the interference and power allocation among a larger set of
users, which can diminish the efficiency gains if not handled
properly.

In scenario of a larger set of users, inter-group or cluster
interference occurs between different groups or clusters of
users, while Successive SIC typically handles interference
within the same group (intra-group). Managing inter-group
interference is more challenging, especially in systems with
multiple antennas (MIMO), where the order of decoding
users is harder to determine compared to single-antenna
setups. According to [31] it is explained that multi-antenna
systems make it difficult to control inter-group interference
because the user channels are more complex. To deal with
this, techniques like zero-forcing beamforming are used, but
these can be less effective if the signals between groups
are too similar. The authors propose a group-based SIC
approach that combines power control and signal processing
to reduce interference between groups while still using SIC to
handle interference within each group. This method improves
system performance by efficiently managing both intra-
and inter-group interference, resulting in better use of the
available bandwidth and lower power consumption compared
to older methods. Controlling inter-group interference is key
to improving the efficiency of NOMA systems, particularly in
setups with multiple antennas and massive users in mmWave
frequency.

Power allocation has consistently remained a significant
concern across various generations of wireless communi-
cation. In NOMA systems, multiple users are multiplexed
within a single resource block with different power levels
assigned by the transmitter. However, inefficient power
allocation schemes can cause considerable interference,
system outages due to SIC failures, unfair rate distribu-
tion among paired users, and energy inefficiency, all of
which contribute to overall performance degradation.Thus,
effective power allocation is crucial for improving system
performance. In NOMA, power allocation is shaped by
factors such as channel conditions, QoS requirements,
the availability of CSI, and the total available system
power [32], [33], [34].
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To address the aforementioned issues in mmWave-NOMA
communication networks, the optimal allocation of the
following resources is vital: (A) Power allocation (B) Energy
efficiency (C) User association (D) Bandwidth allocation
(E) Subcarrier allocation

FIGURE 3. Resource assignment using deep learning in mmWave-NOMA.

C. DEEP LEARNING
Game theory and optimization theory are commonly
employed in conventional resource allocation techniques.
These methods can produce solutions that are Nash equi-
librium, mathematically ideal, or suboptimal, but they
are frequently quite computationally expensive. With the
emergence of 6G wireless networks, there will be a
tremendous rise in communication devices and antennas,
and data traffic will grow exponentially, will create sig-
nificant large-scale optimization challenges. Consequently,
these traditional algorithms are likely to face even greater
computational burdens, making them less feasible for real-
time applications. To address this issue, the development
of more efficient, scalable algorithms will be crucial for
managing the complexity of 6G networks. The integration of
advanced techniques, such asmachine learning andAI-driven
methods, may offer promising alternatives to overcome these
challenges and enhance the efficiency of resource allocation
in the next-generation networks [28].
The swift progress of AI in recent decades has brought

forth a new approach to tackling the complex, non-convex
challenges often faced in resource allocation. This innovative
approach facilitates the development of resource allocation
schemes by learning directly from data samples or environ-
mental inputs, thereby circumventing the need for complex
mathematical models traditionally required in this domain.
Figure 3 illustrates a non-exhaustive search of potential
AI methodologies applicable to resource allocation. These
AI-driven methods can be broadly categorized into three
main types: traditionalmachine learning (ML), reinforcement
learning (RL), and deep learning (DL). This study offers a
concise overview of DL methodologies and examines how
theseDL-based approaches can be applied to various resource
allocation scenarios, as shown in the accompanying Table 7

1) DATA PREPOCESSING
As the multiple access technique is still evolving, compre-
hensive dataset for research are not abundant. The limited

availability of real-world NOMA datasets is a common
challenge in emerging technologies. Researchers often need
to rely on simulations or create their own datasets through
experiments to conduct their studies. There exist datasets
such as Didi GAIA [35], DeepMIMO [36], [37] or datasets
offered for AI challenges, like the ITU AI/ML in 5G.

As illustrated by Figure 4 regarding the workflow, after
data collection, the next step is data preprocessing. This step
is a component of a data mining technique that converts
raw data into a format optimized for deep learning models.
This process aims to make the data more easily parsable
and learnable by the model. There are various methods for
data transformation, with key techniques including aggre-
gation, dimensionality reduction, sampling, and attribute
transformation.

Data quality is paramount in deep learning. Unclean
data, which includes duplicates, outliers, missing attributes,
or inaccurate information, can significantly degrade the
performance and reliability of deep learning models. The
preprocessing stage is therefore crucial, as it directly
influences the success rate of the model. By cleaning and
properly preparing the data, researchers can ensure that
their deep learning algorithms are working with high-quality,
relevant information. This not only improves the model’s
accuracy and generalization capabilities but also enhances
the interpretability and reliability of the results. Ultimately,
the effort invested in thorough data preprocessing pays
off in the form of more robust, accurate, and trustworthy
deep learning models for activity resource management in
mmWave-NOMA.

2) DL MODELS
DL-based NOMA have significantly advanced and found
applications in various scenarios. In wireless communication
networks, particularly 5G and beyond, NOMA improves
spectral efficiency and user connectivity, with DL enhancing
resource allocation andmanaging interference. DL as a subset
of ML can be classified into three broad categories: DRL,
supervised learning, and unsupervised learning [38]. Each of
these categories has unique characteristics and applications
that make them suitable for different types of tasks. RL entails
an agent learning to make decisions through interactions
with its environment and receiving rewards or penalties
based on its actions, making it useful for tasks like robotics,
autonomous driving, and game playing. Supervised Learning
entails training a model on labeled datasets to map inputs to
outputs, commonly utilized in image classification, speech
recognition, and natural language processing. Unsupervised
Learning deals with unlabeled data, identifying patterns and
structures without explicit guidance, and is applicable in
clustering, dimensionality reduction, and anomaly detection,
useful for exploratory data analysis and scenarios where
labeling is impractical. These categories provide a com-
prehensive framework for addressing complex problems in
various domains, optimizing deep learning-based NOMA
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FIGURE 4. Overview of data preprocessing and DL models for research challenges.

systems to manage the growing complexity and data demands
of modern communication networks.

As 5G and beyond communications continue to evolve,
deep learning emerges as a highly effective tool for address-
ing various challenges, including LDPC coding for encoding
and decoding, power control in massive MIMO systems,
power-based and code-based NOMA, resource allocation,
and security. The most commonly employed models in
5G/6G research include DRL, DNN, CNN, and RNN [38].
These models offer advanced capabilities in handling the
complex and dynamic requirements of 5G networks. DRL
can optimize resource allocation and power control by
learning efficient policies through interactions with the
network environment. DNNs are utilized for their ability to
model intricate relationships and predict network behaviors
accurately. CNNs excel in processing and analyzing large
volumes of data, making them ideal for tasks such as
signal detection and channel estimation. LSTMs, with their
proficiency in handling sequential data, are effective in
managing time-series predictions and understanding tem-
poral dependencies in network traffic. By leveraging these
deep learning models, 5G networks can achieve enhanced
performance, reliability, and security, addressing the diverse
and demanding needs of modern communication systems.

• DRL
DRL is built upon the principle of learning through
interaction. Unlike traditional learning methods where
specific actions are prescribed, RF enables an agent to
discover which actions yield the highest rewards through
trial and error. This paradigm consists of two primary
components: the agent and the environment. The agent
engages with the surroundings, making choices and get-
ting input in the form of incentives or sanctions, guiding
its learning process. DRL extends RL’s capabilities by

integrating DNNs into the framework, enhancing the
agent’s ability to learn and make decisions. The incor-
poration of DNNs allows the agent to replace traditional
tabular strategies for function approximation methods
estimation of state values, enabling generalization to
previously unencountered states. This self-sufficiency
enables DRL agents to independently learn and adapt
to new situations through their interactions with the
environment, eliminating the need for predefined action
rules [38].
In the context of wireless communication, DRL frame-
works offer a promising solution to efficiently manage
resources, adapt to varying network conditions, and
optimize overall system performance, especially as
networks continue to grow in scale and complexity.
Abiko et al. [39] and Yu et al. [40] implemented a
network slicing architecture based on DRL to satisfy
various QoS needs in 5G networks. Their approach
prioritizes efficient resource allocation to reduce energy
usage of remote radio heads (RRHs).
In this paper, we explore how DL techniques, par-
ticularly DRL, can optimize resource allocation in
mmWave-NOMA systems. DRL has emerged as a
powerful tool in addressing the dynamic and com-
plex nature of wireless networks, enabling efficient
decision-making based on environmental observations
without requiring labeled data. This makes DRL partic-
ularly well-suited for mmWave communications, where
channel conditions can vary rapidly due to user mobility
and obstacles.
Recent advancements, such as the work byXu et al. [41],
have further demonstrated the effectiveness of DRL in
mmWave communications. In their study, a location-
aware imitation environment is used to train a DRL
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model for joint beamforming in reconfigurable intel-
ligent surface (RIS)-aided mmWave MIMO systems.
By leveraging user location information, the proposed
DRL algorithm efficiently manages beamforming with-
out relying on precise channel state information (CSI),
which is often difficult to obtain in real-world scenarios.
This approach aligns with our focus on optimizing
resource allocation in mmWave-NOMA systems. The
location-aware strategy and use of imitation environ-
ments can be extended to enhance resource allocation
mechanisms, such as power, bandwidth, and user
association, in fast-varying mmWave environments.
By incorporating DRL-based methods, we aim to
improve spectral and energy efficiency while maintain-
ing system scalability under dynamic conditions.

• DNN
Artificial neural network (ANN) serve as the foun-
dational framework for various deep learning models.
These networks can range from shallow architectures,
which contain only a single hidden layer, to deep
architectures, known as DNN, which incorporate mul-
tiple hidden layers. DNN, in particular, have garnered
widespread acclaim and adoption in research due to
their remarkable performance on benchmark problems
and their applicability across a wide array of tasks.
The most basic form of an ANN is the feed-forward
neural network (FNN), where data flows in a single
direction from input to output. When an FNN comprises
more than one hidden layer, it evolves into a deep
feed-forward neural network (DFF), enhancing its
capacity to model complex relationships within the
data [38]. Among the various types of DNNs, CNNs and
RNNs stand out due to their specialized structures and
functionalities. CNNs are particularly adept at handling
image and spatial data, making them indispensable for
tasks such as image recognition, object detection, and
computer vision applications. The unique capabilities of
these advanced DNNs enable them to tackle complex
problems that were previously beyond the reach of
traditional machine learning methods, thereby pushing
the boundaries of what can be achieved in fields such as
wireless communication, healthcare, finance, and more.

• CNN
CNNs are a widely utilized deep learning algorithm,
particularly effective for image recognition tasks. Their
ability to automatically detect and learn spatial hier-
archies of features from raw pixel data makes them
indispensable in fields requiring high accuracy in
visual data processing, such as computer vision and
autonomous systems [42], [43]. However, CNNs are not
restricted to image data; they can also be applied to other
types of data, such as analyzing the characteristics of
NOMA users. This adaptability makes CNNs valuable
in various domains, enabling them to uncover patterns
and relationships in different types of complex data,

which is particularly useful in optimizing network per-
formance and resource management in communication
systems. CNNs have the ability to extract features from
NOMA user data, such as channel conditions, user
locations, and power levels, which can be used to train
models for power allocation. This feature allows CNNs
to enhance power allocation in NOMA systems by
efficiently analyzing and processing user-specific data.
By leveraging this capability, CNNs contribute to more
precise and adaptive resource management, ultimately
improving the overall performance and fairness in
NOMA networks [44].

• RNN
RNNs differ significantly from CNNs in their structure
and application. While CNNs are designed to han-
dle spatial data and are extensively used for image
recognition tasks, RNNs are specifically tailored to
process sequential data. This makes RNNs particularly
effective for tasks involving text and speech analysis,
where the order and context of the data are crucial
for accurate understanding and prediction [38]. One
disadvantage of RNNs is that they suffer from gradient
vanishing and exploding problems, which can hinder
their ability to learn long-term dependencies. To address
this issue, Long Short-Term Memory (LSTM) networks
were introduced. LSTMs are specialized in processing
and predicting time series with time lags of unknown
duration, using three types of gates: the input gate,
the forget gate, and the output gate. These gates help
regulate the flow of information, allowing LSTMs to
maintain and update the cell state over long sequences,
thus effectively capturing long-term dependencies and
improving performance in tasks involving sequential
data.
In 5G and beyond, LSTM networks have a diverse
range of applications. They are employed in the study
of MIMO systems, where they help model and pre-
dict complex spatial-temporal channel characteristics.
LSTMs are also used in multiple access schemes to
efficiently manage and predict user traffic patterns.
Furthermore, they play a crucial role in resource
allocation by forecasting demand and optimizing the
distribution of resources. In terms of security, LSTMs
are utilized to detect and predict anomalies or potential
threats, thereby enhancing the robustness and reliability
of 5G networks [38].
Yu et al. and Gui et al. integrated LSTM networks into
frameworks for resource allocation and multiple access,
with a specific focus on NOMA. In these applications,
LSTMs were employed to generate highly accurate
predictions, which were then compared against the
performance of other recent methods. The researchers
used traffic data from a self-organizing network (SON)
entity to enhance the accuracy of the LSTM model.
These precise predictions were subsequently utilized
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to develop a DRL framework aimed at efficiently
allocating wireless resources for energy-efficient TV
broadcast services. This approach demonstrated the
effectiveness of LSTMs in enhancing both the precision
and efficiency of resource allocation in modern wireless
networks. The successful application of LSTM in this
context underscores its potential to drive advancements
in next-generation communication systems, particularly
in scenarios requiring high accuracy and adaptive
resource management [40].

D. DATASET, SOURCE CODE, AND DL FRAMEWORK
With the advancement of deep learning, a growing body
of research has emerged addressing problems in commu-
nication fields utilizing deep learning techniques. How-
ever, reproducible research remains challenging, as most
communication-related papers do not provide open source
code. In recent years, the number of communication papers
leveraging deep learning has risen sharpely, and their authors
have shown a greater inclination to share their code openly.
To further advance DL-based resource management in
mmWave NOMA, we present a collection of open-source
DL frameworks, presented in Table 3, are tools designed
to help researchers develop, prototype, and deploy DL
models in production, supporting existing DL algorithms and
allowing for quick experimentation. To further facilitate the
development of DL-based mmWave-NOMA, we provide a
list of relevant data sets in Table 4. Additionally, Table 5
provides a summary of recent research on power allocation,
energy efficiency, and subcarrier allocation accompanied by
their open source code. However, due to limitations, only
open-source codes for these three areas were found, while
others like user association and bandwidth allocation might
not have been covered.

In science, sharing is the way to enable research repro-
ducibility and swift improvements of the state-of-the-art. The
availability of these resources including DL frameworks,
datasets, and open source code, is anticipated to significantly
accelerate research progress in the field of DL for mmWave
NOMA.

E. EVOLUTION OF NOMA IN 3GPP RELEASES
The development of NOMA has played a significant role
in enhancing spectral efficiency and connectivity within
wireless networks. NOMA was first introduced in 3GPP
Release 13 under the framework of multiuser superposition
transmission (MUST), specifically for LTE downlink and
uplink scenarios [58]. In 3GPPRelease 14,MUSTwas further
enhanced [58]. Release 14 introduced refinements to MUST
as part of the ongoing efforts to improve the performance of
NOMA techniques. The enhancements in Release 14 primar-
ily focused on optimizing system performance in scenarios
involving multiple users with different channel conditions,
improving spectral efficiency, and addressing practical imple-
mentation issues like interference management and decoding

complexity. The technique allowedmultiple users to share the
same time-frequency resources by assigning different power
levels, thereby improving spectral efficiency. In Release 15,
NOMA was explored as a potential candidate for 5G New
Radio (NR), but it was not standardized at this stage, with the
release focusing on establishing core 5G NR standards while
leaving room for future evaluations of NOMA’s role.

In Release 16, a comprehensive study was conducted on
PD-NOMA for 5G NR [59]. This investigation primarily
examined NOMA’s potential to enhance system perfor-
mance, particularly in the context of massive machine-type
communications (mMTC) and ultra-reliable low-latency
communication (URLLC). However, the study revealed that
the practical gains from NOMA, especially when compared
to other advanced techniques such as multi-user MIMO and
beamforming, were relatively modest. As a result, Release
17 marked the exclusion of NOMA from further standard-
ization [60]. The complexity of managing SIC in NOMA,
combined with its limited performance improvements in real-
world 5G deployments, led to this decision. The industry
concluded that other technologies offered more scalable and
efficient solutions for 5G networks.

In subsequent releases, Release 18 and Release 19, NOMA
remained excluded from 3GPP’s working groups as the
focus shifted toward more promising technologies such as
AI/ML-based resource management, massive MIMO, and
full-duplex communication. These emerging techniques have
been prioritized to meet the increasing demands of Beyond
5G (B5G) and 6G networks, where efficiency, scalability, and
real-time adaptability are crucial.

However, despite its exclusion from the 3GPP standards
beyond Release 17, NOMA continues to attract significant
attention from the research community. Researchers are
actively exploring its potential applications in 6G networks,
where extreme connectivity, low-latency communications,
and energy efficiency are critical. Academic studies are
investigating how NOMA can be integrated with AI/ML for
dynamic resource allocation and interference management,
particularly in massive machine-type communications and
IoT scenarios. These ongoing research efforts indicate
that while NOMA’s role in 5G standardization may have
diminished, its potential for future network generations
remains a vibrant area of exploration.

A summary table detailing the development of NOMA
in 3GPP standards, including the specific releases where
NOMA was excluded from further work, as illustrated in
Table 6

III. DL FOR RESOURCE MANAGEMENT
A. SYSTEM MODEL
Figure 5 presents the proposed system model for efficient
resource management in mmWave-NOMA systems, utilizing
DL to optimize key allocation tasks. The model addresses
the massive connectivity and the increasing demand for
high-capacity, high-speed applications such as augmented
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TABLE 3. Open source framework.

TABLE 4. Open source dataset.

FIGURE 5. System model.

reality (AR), virtual reality (VR), and high-definition video
streaming, which are driving the need for advanced wireless
communication techniques.

The leftmost part of the figure shows the extreme capacity
demand generated by high-speed applications, necessitat-
ing robust and scalable resource management strategies.
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TABLE 5. Research with open-source code related.

This demand is met by the integration of enhanced multiple
access techniques through NOMA, which is particularly
effective in mmWave communications. NOMA enables the
simultaneous transmission to multiple users over the same
frequency band by exploiting differences in user channel
conditions, thereby improving spectral efficiency.

At the core of the model, DL is employed to handle the
complexity of allocating five key resources: power, energy,
user, bandwidth, and subcarrier. The DL structure leverages
real-time data to dynamically optimize these resources,
adapting to the rapidly changing network environment typical
of mmWave bands. By managing these critical aspects
efficiently, DL enhances the system’s ability to allocate
resources based on user demand, network conditions, and
application requirements.

The rightmost part of the figure illustrates the outcome of
the proposed system model, an increase in network capacity.
Through the combined use of DL and NOMA, the system not
onlymeets high-capacity demands but alsomaximizes the use
of available spectrum, ensuring scalability and efficiency for
next-generation wireless networks, including 5G and beyond.

B. DL FOR POWER ALLOCATION IN mmWave-NOMA
The transmit power in wireless communication is the amount
of electrical energy a transmitter uses to send a signal.
In mmWave-NOMA networks, effective and reliable data
transmission among users is critically dependent on power
allocation. This process involves dividing, distributing, and
assigning the total available power to specific users within
the network [61]. Furthermore, to establish connections
and facilitate data sharing, it is crucial to allocate power
resources among various UE entities. Managing transmission
power is vital for preserving signal quality, mitigating
interference, and optimizing energy usage, particularly in
battery-dependent devices such as IoT gadgets, smartphones,
and vehicles in V2X scenarios. However, achieving efficient
power allocation presents significant challenges, including
the dynamic nature of UE environments, the complexity of
multipath propagation in V2X communications, varying IoT
requirements, and the risk of interference from excessive
power transmission among neighboring users. Addressing

these challenges is key to improving network performance
and energy efficiency.

Unlike traditional OMA schemes, where each resource
block (such as time, frequency, or subcarriers) is allocated
to a single user, in this approach, a group of M users is
overlaid on the same resource block simultaneously. At the
transmitter side, the data for these M users is combined by
superposing them on top of each other with varying power
levels over the same resource block, as illustrated in Figure 6.
TThe amount of distance between a user and the base station
(BS) determines the fading and path loss of the signal that is
broadcast to each user. The complex channel coefficient hm
between UE-m and the BS is expressed as

hm =
gm√
1 + dα

m

where gm represents the Rayleigh fading channel gain,
α is the path loss exponent, and dm denotes the distance
between user m and the BS. Given two users, UE-M is
the farthest user (FU) and UE-1 is the closest (NU). Power
distribution in PD-NOMA is inversely correlated with the
channel coefficient hm. This suggests that UE-M receives

FIGURE 6. Power allocation in mmWave-NOMA cluster.
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TABLE 6. The development of NOMA in 3GPP standards.

the greatest share of the transmitted power, whereas UE-1
receives the least amount.

The channel gains of all users are sorted in descending
order as follows: |h1|2 > |h2|2 > |h3|2 > · · · > |hm|

2 >

· · · > |hM |
2. Consequently, the power allocation ratios αm

follow the order α1 < α2 < α3 < · · · < αm < · · · < αM ,
with the condition

∑M
m=1 αm = 1 [62].

A growing number of researchers have turned their
attention to this complex nature of power allocation
in mmWave-NOMA systems as shown in Table 7.
Tharani et al. in [63] employed a Recurrent Neural Network
(RNN) to enhance power allocation in hybrid TDMA-NOMA
systems, addressing the limitations posed by imperfect
channel state information (CSI). Their model demonstrated
significant improvements in resource efficiency bymitigating
the outage probability caused by inaccurate CSI. In contrast,
Sobhi-Givi et al. in [64] proposed a Deep Deterministic

Policy Gradient (DDPG) algorithm to jointly optimize
power allocation and user fairness in mmWave-NOMA
heterogeneous networks, with a particular focus on managing
imperfect successive interference cancellation (SIC). Their
reinforcement learning-based approach not only minimized
transmission power but also enhanced user fairness, making
it highly effective for practical deployments with real-world
hardware limitations.
Pramitarini et al. in [65] introduced an Opportunistic

Scheduling Scheme to improve physical-layer security in
cooperative NOMA systems, addressing the critical issue
of passive eavesdropping. By leveraging a deep neural
network (DNN) for real-time optimization, they were able
to predict channel capacities and optimize power allocation,
significantly reducing secrecy outage probability. Their
approach outperformed conventional scheduling schemes
in both secrecy performance and computational efficiency,
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demonstrating the potential of DL to enhance security in
high-stakes communication environments.

Zhenyu et al. in [66] advanced this field with a Two-way
DRL framework that combined Double Deep Q Networks
(DDQN) and DDPG to solve the complex resource allocation
problem in cognitive network slicing for Power Domain
Sparse Code Multiple Access (PD-SCMA) systems. Their
dual-layered approach allowed for the simultaneous opti-
mization of discrete codebook assignments and continuous
power allocation, resulting in superior spectral efficiency
and improved QoS compared to traditional algorithms.
Similarly, Yoga Perdana et al. in [67] proposed a DL-based
framework for spectral efficiency maximization in massive
MIMO-NOMA systems with STAR-RIS. Their solution,
which jointly optimized user power allocation and the phase
shift matrix of transmission and reflection elements, demon-
strated notable gains in spectral efficiency over conventional
methods, particularly in scenarios involving cell-edge users
and obstacles.

Finally, Albelaihi et al. [68] developed a DRL approach
for client selection in NOMA-based federated learning
(FL) systems. Their DREAM-FL algorithm dynamically
optimized client selection and power allocation, significantly
enhancing bandwidth utilization and increasing the number
of selected clients compared to conventional FDMA and
TDMA-based methods. By integrating DRL, they demon-
strated the potential for more efficient and scalable client
selection in IoT environments where real-time adaptation is
crucial.

These diverse approaches underscore the versatility of
deep learning in addressing key challenges in NOMA
systems, ranging from spectral efficiency and power manage-
ment to physical-layer security and user fairness. Together,
they reveal the transformative potential of DL techniques in
modern wireless communication networks.

C. DL FOR ENERGY EFFICIENCY IN mmWave-NOMA
The escalating number of users in the mmWave frequency
band, along with the emergence of advanced applications
in 5G and future 6G networks, necessitates energy-efficient
allocation methods to meet the growing demand while
ensuring the sustainability of network operations. Efficient
energy usage at the site level requires flexible resource
management and operational oversight. Cost considerations
will play a key role in processes, assembly, distribution
efficiency, and energy consumption metrics [69].

In a downlink NOMA system, energy consumption is
closely related to the transmission power and the SINR for
both near and far users [70], where energy efficiency is
critical due to the complexity of allocating resources for near
and far users under SINR constraints, deep learning can offer
substantial advantages in improving energy efficiency.

Refering to Table 7 researchers have investigated the
application of DL to energy efficiency in mmWave NOMA.
Studies like Guo et al. in [71] proposed a DRL approach

combined with Monte Carlo Tree Search (MCTS) for
resource assignment in cooperative NOMA-enhanced cel-
lular networks. The problem was formulated as a two-step
optimization: deriving closed-form power control expres-
sions and then solving the joint user pairing and subchannel
assignment problem via MCTS. Their results demonstrated
that this approach outperforms conventional schemes in
terms of energy efficiency with negligible computational
time, particularly in cooperative decode-and-forward (DF)
scenarios, where users with better channel conditions relay
signals for weaker users.

In contrast, Perdana et al. in [72] focused on maximizing
energy efficiency in massive MIMO-NOMA networks with
multiple RISs. They tackled a non-convex optimization
problem by decoupling it into phase shift and beamforming
sub-problems. A bisection search algorithm and an iterative
inner approximation (IA) method were employed to solve
these sub-problems. Their DL-based framework predicted
optimal solutions for the phase shifts of RISs and precod-
ing matrices in real-time, achieving a high accuracy and
significant reductions in execution time. The simulation
results showed marked improvements in energy efficiency,
especially with increasing RIS elements and antenna arrays
at the BS.

Both studies addressed energy efficiency but through
different mechanisms: Guo et al. employed DRL and
MCTS to optimize user pairing and resource assignment,
enhancing system flexibility in dynamic environments, while
Perdana et al. used a DL-based optimization framework
tailored for large-scale MIMO-NOMA networks, focusing
on phase shift and beamforming adjustments. These com-
plementary methodologies highlight the versatility of DL
in solving energy efficiency challenges in NOMA systems,
with Guo et al. excelling in cooperative NOMA setups and
Perdana et al. providing an efficient solution for networks
with RIS-aided MIMO configurations.

D. DL FOR USER ASSOCIATION IN mmWave-NOMA
User association refers to the process of figuring out which
users should be grouped, paired, or clustered together for
simultaneous transmission while considering the unique
challenges of mmWave frequencies.

A number of issues, including as channel fluctuations,
different QoS requirements, user mobility, network hetero-
geneity, and the necessity for energy efficiency, emerge when
user density in wireless networks rises. These challenges
are further compounded by the dynamic nature of channel
conditions and the fluctuating number of users within
a cell, each with distinct QoS demands. To effectively
address these issues and enhance network energy efficiency,
the implementation of adaptive user clustering is needed
properly. The network creates clusters before implementing
NOMA within these clusters [73].

This clustering can be approached from various perspec-
tives, each aiming to optimize different facets of the system.
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For example, users may be grouped based on their CSI,
such as channel gain or correlation, to improve power
allocation and reduce interference. Another perspective
considers the QoS requirements, where users with similar
data rate or latency demands are clustered together, ensuring
consistent service delivery across the network. For instance,
Hurianti Vidyaningtyas in [74] emphasized the importance of
clustering based on channel conditions by utilized supervised
machine learning classification algorithm,which can enhance
overall sum-rate and fairness among users.

The optimization of user association in mmWave-NOMA
systems has been approached with various DL methods
across different research studies, each focusing on unique
aspects of performance improvement. Wang et al. in [75]
proposed a Dueling Deep Q-Network (DQN) and Deep
Deterministic Policy Gradient (DDPG) framework for user
grouping and resource allocation in mmWave massive
MIMO-NOMA systems. Their approach, enhanced by
K-means clustering, improves spectral efficiency and accel-
erates convergence. The results showed superior system
capacity and reduced power quantization errors compared to
traditional methods like random scheduling andDoubleDQN.
Similarly, Li et al. in [76] used a DL-based power allo-
cation algorithm for NOMA downlink systems, achieving
a 19% improvement in system sum rate by employing a
step-by-step user grouping method that prevents users with
similar channel gains from being paired together, thereby
reducing interference.

Liu et al. in [77] extended this concept by introducing
a Prioritized Dueling DQN-DDPG network to address
slow convergence and unstable training in traditional
DQN models. Their method incorporates priority sampling
based on TD-error (Temporal-difference error), improv-
ing both convergence speed and training efficiency. This
approach demonstrated significant performance gains in
system throughput over conventional reinforcement learning
algorithms. In contrast, Vishnoi et al. in [78] tackled the
problem of co-channel and cross-channel interference in
Device-to-Device (D2D) communication using a distributed
DDPG-based framework. Their solution maximized sum rate
and fairness among NOMA-enabled cellular users (CUs) and
D2D pairs, achieving a 49.8% higher sum rate compared to
other DRL-based methods.

Cong et al. in [79] addressed user clustering and power
allocation in vehicular networks, proposing a Proximal
Policy Optimization (PPO) algorithm. Their method reduced
system latency by 8.4% compared to benchmark algorithms
while optimizing power allocation and task scheduling
for multi-user multi-server networks. Kim et al. in [80]
utilized a DNN-based user selection and power alloca-
tion technique for downlink MISO-NOMA systems, using
SINR instead of channel state information (CSI). Their
model significantly reduced computational complexity while
maintaining comparable performance to optimal solutions.
Lastly, Zou et al. in [81] designed a Machine Learning
(ML)-based user scheduling and beam selection framework

for millimeter-wave systems, employing the Whale Opti-
mization Algorithm (WOA) to achieve a near-global-optimal
solution. Their method provided a balance between fast
convergence and system performance improvement, offering
practical advantages in real-time applications.

Each of these studies demonstrated the flexibility and
effectiveness of DL techniques in addressing user association
and power allocation challenges in NOMA systems. While
some focused on improving spectral efficiency and sum
rate, others targeted reducing latency, maximizing fairness,
or handling complex interference scenarios, showcasing the
versatility of deep learning in solving diverse problems in
wireless communication networks.

E. DL FOR BANDWIDTH ALLOCATION IN mmWave-NOMA
Optimizing bandwidth allocation is essential for achieving
high spectral efficiency and minimizing latency. DL tech-
niques can learn optimal allocation strategies from historical
data and adapt to changing network conditions.

Hu et al. in [82] and Li et al. [83] both present
deep learning-based solutions to optimize bandwidth allo-
cation in NOMA systems, but with distinct focuses and
methodologies. Hu et al. tackled the challenge of resource
allocation in terahertz (THz) NOMA systems, proposing a
multi-task deep reinforcement learning (DRL) framework
called DISCO to handle the hybrid discrete and continuous
nature of power, sub-band, and sub-array allocations. The
problem of beamforming-bandwidth-power (BBP) allocation
is formulated as a non-deterministic polynomial-time hard
(NP-hard) problem. The authors designed their model to
maximize long-term throughput while addressing fairness
and minimizing computational complexity. Their results
demonstrated that DISCO outperforms conventional greedy
algorithms and other DRLmethods, improving throughput by
49% with minimal computational overhead, highlighting its
practical applicability to real-time systems.

Li et al., on the other hand, focused on bandwidth and
power optimization in multi-carrier NOMA (MC-NOMA)-
empowered wireless federated learning (WFL) systems.
Their approach involved maximizing the Weighted Global
Proportion of Trained Mini-batches (WGPTM), a new metric
designed to measure system convergence speed, by jointly
optimizing the power and bandwidth allocations in a non-
convex problem. The problem was solved using variable
substitution and Cauchy’s inequality, allowing Li et al.
to transform the non-convex problem into a convex one.
Simulation results demonstrated that their approach reduced
communication delays and increased the number of training
iterations, speeding up system convergence by over 40%
compared to MC-OMA WFL systems.

While both papers used deep learning to optimize
resource allocation, Hu et al. focused on balancing through-
put and fairness in a high-frequency THz-NOMA envi-
ronment, whereas Li et al. concentrated on improving
convergence speed and system efficiency in MC-NOMA
WFL systems. Together, these studies illustrate the versatility
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of deep learning in addressing complex bandwidth allocation
problems in NOMA systems, showing that both long-term
system throughput and real-time learning convergence can
be significantly enhanced through tailored deep learning
algorithms.

F. DL FOR SUBCARRIER ALLOCATION IN mmWave-NOMA
In recent studies, various DL methodologies have been pro-
posed to optimize subcarrier allocation in mmWave NOMA
systems, each addressing specific challenges. Alajmi and
Ghandoura in [84] presented a multi-agent Deep Q-Network
(DQN) framework to handle the resource allocation problem
in grant-free (GF) NOMA systems, taking into account
imperfections in SIC. Their approach allows unrestricted
user subcarrier selection, leading to a 62.1% improvement
in user fairness and higher spectral efficiency compared
to benchmark schemes. Zhang et al. in [85] employed a
DQN-based hybrid spectrum access strategy in cognitive
radio NOMA networks, focusing on maximizing spectral
efficiency while satisfying Quality of Service (QoS) require-
ments. Their results showed faster convergence and higher
spectral efficiency compared to Q-Learning and other hybrid
access models, making it suitable for complex cognitive
network environments.

Liu et al. in [86] used a DRL framework that combines
DQN for subcarrier allocation and DDPG for power allo-
cation. The focus was on satisfying the diverse demands of
real-time (RT) and best-effort (BE) users in mixed-traffic
NOMA systems. Their solution significantly outperformed
conventional methods by optimizing both throughput and
fairness while managing the subcarrier assignments under
varying traffic conditions. Finally, Park et al. in [87] proposed
a two-step optimization using a genetic algorithm (GA) for
sub-band assignment and unsupervised learning (USL) via
deep neural networks (DNN) for power allocation in uplink
IoT NOMA networks. Their approach minimized transmit
power while maintaining required data rates for IoT devices,
achieving near-optimal results with reduced computational
complexity.

Each of these studies contributes to the optimization
of subcarrier allocation in NOMA systems, with Alajmi
and Ghandoura focusing on grant-free NOMA efficiency
under SIC imperfections, Zhang et al. addressing cognitive
network complexities, Liu et al. balancing mixed traffic
demands, and Park et al. achieving power minimization in
IoT environments. Together, they demonstrate the versatility
and effectiveness of DL techniques in solving dynamic
and non-convex resource allocation problems in mmWave
NOMA systems.

Nevertheless, deep learning is increasingly employed to
address multiple challenges simultaneously, particularly in
joint optimization tasks within mmWave-NOMA systems,
such as user grouping, pairing, and power allocation. Tradi-
tionally, these joint optimization problems are handled using
iterative, decoupled sequential optimization methods, where

each component (e.g., user grouping or power allocation)
is solved independently [88], [89]. This approach often
leads to suboptimal results, as the interdependencies between
components are not fully captured. However, deep learning
offers a more integrated approach by enabling simultaneous
optimization of all variables. This not only reduces the overall
complexity and computational time but also improves system
performance in NOMA networks through the following key
aspects:

• Deep Learning and Joint Optimization
Deep learning techniques, particularly Deep Reinforce-
ment Learning (DRL), can optimize multiple resource
allocation tasks concurrently. By learning directly
from network conditions, these models can provide
near-optimal solutions in real-time, eliminating the need
for separate optimization stages [90].

• Complex Dependencies
mmWave-NOMA systems involve intricate dependen-
cies between different optimization variables, such as
user pairing and power allocation. Decoupling these
tasks often overlooks how changes in one variable
affect others. DL models are capable of handling
these complex interdependencies, optimizing the entire
system holistically and improving overall resource
management [91].

• Computations
DL-basedmodels, especially those employingDRL, sig-
nificantly reduce the computational burden associated
with traditional optimization methods. While iterative
methods may require multiple iterations to converge,
deep learning models quickly approximate optimal
solutions, making them more suitable for real-time
applications in large-scale and dynamic NOMA
systems [92].

IV. CHALLENGES AND FUTURE RESEARCH DIRECTION
The literature highlights several challenges in applying AI
and DL techniques to manage resources in mmWave-NOMA
environments, specifically across the five key allocation
domains: power, energy, user association, bandwidth, and
subcarrier allocation. These challenges stem from the com-
plex and dynamic nature of mmWave-NOMA systems:

• Power allocation.
Real-time optimization in power allocation is chal-
lenging due to the non-convex nature of the problem,
especially as the number of users increases.

• Energy efficiency.
energy efficiency faces difficulties in balancing effi-
ciency with changing availability and consumption
patterns, requiring real-time adjustments to maintain
performance.

• User association.
User association must handle fairness considerations
and user mobility, which cause variations in channel
conditions and impact overall system performance.
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TABLE 7. Related research about DL for resource management in NOMA.
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TABLE 7. (Continued.) Related research about DL for resource management in NOMA.

• Bandwidth allocation.
Bandwidth allocation is constrained by spectrum
scarcity and the need for effective interference manage-
ment, which is particularly complex in NOMA systems.

• Subcarrier allocation.
The high dimensionality of subcarrier allocation prob-
lems and variability in channel conditions make efficient
resource allocation more difficult.

Additionally, there are overarching challenges:

• Data requirements.
Large amounts of diverse training data are needed to
develop reliable DL models, but acquiring this data is

often costly and time-consuming. Synthetic data may
not fully capture real-world complexities.

• Generalization.
DL models frequently struggle to generalize across
different scenarios and environments, limiting their
applicability to varied network conditions. Models
trained on specific configurations may not perform
well when conditions change, especially with the high
variability in mmWave channels.

In-depth analysis shows that applying DL techniques
to achieve equitable resource allocation across these five
domains in mmWave-NOMA systems presents several inter-
connected obstacles:
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• Data scarcity.
Each domain requires comprehensive datasets that
accurately reflect the complexity of mmWave-NOMA
environments. The scarcity of real-world data, coupled
with the limitations of synthetic data, poses a significant
challenge.

• Optimization challenges.
Real-time optimization is critical but difficult to
achieve, particularly for power allocation, where the
non-convexity of the problem complicates efficient
resource management across all domains.

• Dynamic nature of mmWave channels.
The high variability of mmWave channels and the
interdependence of resource allocation decisions create
a computationally intensive scenario that strains the
responsiveness of AI/DL models.

• Limited applicability.
DL models trained for specific network configurations
often struggle to maintain performance in new or
evolving conditions, exacerbating the generalization
problem.

To address these challenges, innovative approaches are
needed, such as:

• Multi-objective optimization:
Developing techniques that can balance multiple perfor-
mance metrics simultaneously.

• Transfer learning.
Enabling models to transfer knowledge from general
mmWave-NOMA scenarios to more specific configura-
tions.

• Domain adaptation.
Facilitating automatic adjustments to channel character-
istics, user behavior, or network topology.

• Hybrid models.
Combining AI/DL techniques with traditional opti-
mization methods for improved adaptability and
performance.

A. FAST TIME-VARYING CHANNELS
A preliminary investigation into fast time-varying channels
has been carried out as one of the key challenges highlighted
for future research in this paper. One of the primary chal-
lenges in mmWave-NOMA systems is ensuring consistent
and reliable communication in fast time-varying channels,
especially in environments with high user mobility. Key
challenges that need to be addressed include:

• Channel estimation.
Fast-varying channels require frequent and accurate
channel estimation to maintain communication quality,
where exists a massive number of channel coeffi-
cients and severe propagation loss due to the Doppler
shifts [94]. Traditional methods often struggle to keep
pace with these rapid fluctuations, leading to increased
errors and degraded performance. In mmWave-NOMA

systems, precise channel knowledge is crucial for opti-
mizing resource allocation and minimizing interference.

• Beamforming and alignment.
Maintaining high data rates necessitates continuous
beamforming adjustments due to user mobility and
varying channel conditions. These frequent realign-
ments significantly increase system complexity and
operational overhead [95].

• Interference management.
NOMA systems depend on effective interference man-
agement techniques, such as Successive Interference
Cancellation (SIC). In fast-varying channels, dynami-
cally changing interference conditions make it difficult
to apply these techniques consistently, potentially reduc-
ing the efficiency of user pairing and resource allocation.

• Resource allocation.
Optimal allocation of power, bandwidth, and subcarriers
must continuously adapt to reflect rapidly changing
channel conditions. Static or slow-adapting algorithms
may not perform well in such environments, necessi-
tating the development of adaptive, real-time resource
management strategies.

B. POTENTIAL INTEGRATION OF MIMO TECHNIQUES IN
mmWAVE NOMA SYSTEMS
The integration of MIMO techniques in mmWave NOMA
systems offers significant opportunities to enhance system
capacity, spectral efficiency, and overall performance.MIMO
systems exploit spatial diversity and multiplexing, enabling
the transmission of multiple data streams over different
antennas. When combined with NOMA, MIMO allows
simultaneous transmission to multiple users, improving
user fairness and throughput. The challenge, however,
lies in the increased complexity of resource allocation
when MIMO is involved, particularly with respect to user
pairing, subcarrier allocation, beamforming, and interference
management. In our framework, DL, particularly DRL, has
the potential to manage these complexities efficiently by
jointly optimizing resource allocation across both the spatial
and power domains. By learning from dynamic network
conditions, DL-based models can find near-optimal solutions
for beamforming, user grouping, and power allocation in
MIMO-NOMA setups. Integrating MIMO techniques with
the DL-driven resource allocation framework would further
enhance system performance by addressing the unique
challenges posed by mmWave frequencies, such as high path
loss and sensitivity to blockages, while leveraging MIMO’s
spatial multiplexing capabilities to improve overall network
reliability and efficiency. This extension will be a focus of
our future work, as it promises to unlock the full potential of
mmWave communications for high-demand applications in
5G and beyond.

These challenges highlight the need for future research to
focus on developing adaptive deep learning models capable
of addressing the dynamic and complex nature of fast-varying
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mmWave-NOMA environments. Hybrid approaches that
combine traditional optimization techniques with machine
learning could offer promising solutions to enhance system
performance.

V. CONCLUSION
The increasing demand for high-speed, high-capacity wire-
less communications across various fields necessitates inno-
vative solutions. In this context, mmWave and NOMA have
garnered significant research attention. This study introduces
the concepts of mmWave, NOMA, and DL, offering key
insights into their roles in the evolution of next-generation
wireless communication systems. NOMA is utilized to
manage the efficient allocation of mmWave users, while DL
is employed as a powerful tool to enhance this process. The
paper provides an overview of how DL can address critical
challenges in five key areas: power, energy, user association,
bandwidth, and subcarrier allocation, while also ensuring
system scalability in fast-varyingwireless environments. This
comprehensive approach is expected to play a foundational
role in the development of next-generation wireless connec-
tivity, paving the way for the realization of advanced 5G and
beyond as ilustrated by system model.
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