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ABSTRACT While Industry 4.0 improves human productivity, it also raises sustainability and social
challenges. Industry 5.0, as a supplement and logical continuation of the Industry 4.0 paradigm, focuses on
the development of a human-centric, sustainable, and resilient manufacturing system. This paper reviews the
existing literature. First, it discusses the definition and implementation framework for Industry 5.0. Then,
it expounds the application status of Industry 5.0 in the field of intelligent manufacturing from four per-
spectives: digital manufacturing and intelligence, human-centric intelligent manufacturing and production
process management, decentralized and resilient production, and sustainable production. It summarizes the
role of Industry 5.0 technology in various intelligent manufacturing scenarios, as well as the challenges it
faces, and concludes by analyzing Industry 5.0’s potential development direction and future technologies.
This paper believes that the application of Industry 5.0 technology will effectively improve the production
capacity of intelligent manufacturing systems and promote the development of intelligent manufacturing
systems in a safe, efficient, sustainable and resilient direction; the development of Industry 5.0 will focus
on giving full play to human creativity, avoiding repetitive labor through human-robot collaboration, and
thereby realizing human value.

INDEX TERMS Industry 5.0, intelligent manufacturing, digital twin, Internet of Things, human—-robot
collaboration.

I. INTRODUCTION

Since its inception, Industry 4.0 has been considered to be
technology-driven, with machine learning providing inter-
connected control between production equipment in order
to change the production process and improve production
efficiency [1]. For this reason, Industry 4.0 often focuses
on increasing economic benefits and expanding production
scale to meet customer demands in production practice, while
ignoring the role of workers. As a result, some inhumane pro-
duction strategies implemented by companies to reduce labor
costs have raised concerns among workers, society, and even
the government [1]. In addition, Industry 4.0 has introduced a
large number of industrial robots into the production process,
but has objectively squeezed out most jobs [2], resulting in a
decrease in employment, workers and trade unions opposing
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robots, and further deteriorating the relationship between
humans and robots. The issues in Industry 4.0 can be analyzed
primarily through three lenses: human factors, sustainability,
and resilience.

From the perspective of human factors, although the
implementation of Industry 4.0 integrates various advanced
technologies, its core concept of improving production effi-
ciency and economic benefits still results in a large number of
workers engaging in monotonous and repetitive labor. These
new technologies often ignore the human factor, not only
failing to help employees reduce stress but also exacerbating
their physical and mental fatigue [3]. The new work pat-
terns and technological demands brought about by Industry
4.0 often cause difficulties for workers, many employees
are dissatisfied with technological advancements and the
new skills they require, reject external control of computer
systems, or are fearful of technology and its associated
changes [4]. In addition, the excessive supervision of individ-
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TABLE 1. Impact of industry 4.0 on sustainability [6].

Micro Meso Macro
Economy 1 T -
Environment T 1 -
Society l — l

Where 1 indicates a positive impact, | indicates a
negative impact, and - indicates controversy.

ual employees in Industry 4.0 has also led to resistance from
workers [5].

From the perspective of sustainability, Industry 4.0’s
impact on the economy and environment is mostly positive
at the micro and meso levels, but controversial at the macro
level; however, its impact on social sustainability is generally
negative [6]. Scholars’ evaluation of Industry 4.0 in terms of
sustainability is summarized in Table 1.

Resilience is dependent on humans and does not appear
prominently in academic discussions of Industry 4.0. How-
ever, in recent years, supply chain disruptions caused by
increasingly complex global supply networks, natural disas-
ters, political interference, and other factors [7], as well as
the serious impact of the COVID-19 epidemic on traditional
industrial industries [8], all reminded us of the importance
of resilience in the future industrial production system to
quickly control the various drastic changes and emergencies
that may occur [9].

Industry 4.0 focuses on integrating digital technology into
the production process in order to achieve better results
and maximum profits in production. This completely profit
oriented approach is unsustainable [ 10] and also lacks consid-
eration for human factors. Therefore, Industry 5.0 expands its
focus to human and society, energy efficiency, and environ-
mental aspects in the workflow [11]. Industry 5.0 proposes
intelligent manufacturing with humans at the core, using
robots to complete repetitive mechanical labor while workers
are responsible for more creative tasks such as customiza-
tion and criticism. This further utilizes human brainpower
and creativity to improve process efficiency [12], optimize
human-machine relationships, and enhance the sustainability
and resilience of manufacturing systems. It is expected to
solve the aforementioned problems in the future. Industry
5.0 is a supplement and logical continuation of the Industry
4.0 paradigm [13]. The similarities and differences between
the concepts of Industry 4.0 and Industry 5.0 are summarized
in Table 2.

Il. THEORIES RELATED TO INDUSTRY 5.0

A. DEFINITION OF INDUSTRY 5.0

The theoretical system of Industry 5.0 is still in its early
stages, and its definition remains unclear. The European
Commission (EC), the proponent of Industry 5.0, pointed
out that Industry 5.0 is a forward-looking concept about
the future of the industry, aiming for a human-centric, sus-
tainable, and resilient manufacturing system [9]. According
to reference [20], Industry 5.0 is a human-oriented design
solution in which ideal human companion and collabora-
tive robots collaborate with human resources departments
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to achieve personalized autonomous manufacturing through
enterprise social networks, allowing humans and robots to
work together. Collaborative robots are not programmable,
but they can detect and recognize human presence. In this
case, collaborative robots are used for repetitive tasks and
labor-intensive work, while humans are in charge of cus-
tomization and critical thinking. Workers no longer adapt to
machine requirements as they once did, but rather design
machines to recognize users, extract behavioral charac-
teristics such as users’ skills and preferences, and make
appropriate adjustments [21]. The focus of the definitions of
Industry 5.0 proposed by different scholars is summarized in
Table 3.

Based on the definitions provided by the aforementioned
scholars, we can conclude that Industry 5.0 incorporates
humans into the production system, fully utilizes the creative
value of human intelligence, and employs robots to assist peo-
ple in developing a more advanced and efficient production
model. In this process, the welfare of workers is guaranteed,
and their skills are improved.

B. INDUSTRY 5.0 IMPLEMENTATION FRAMEWORK

The implementation framework identifies the support on
which Industry 5.0 is based, as well as the constraints that
must be met during the application process. The European
Commission believes that Industry 5.0’s paradigm shift is
founded on three core principles: sustainability, resilience,
and, most importantly, human-centricity [30]. Sustainabil-
ity requires reducing the damage caused by industry to the
self-heating environment and ensuring the long-term devel-
opment of mankind; resilience emphasizes the environmental
adaptability and impact resistance of industry to cope with
possible drastic changes in the external environment; human-
centricity is the core of Industry 5.0, which puts human
welfare at the center of the production process [31], aiming to
realize human value under the premise of ensuring health and
safety. The basic framework of Industry 5.0 [32] is shown in
Fig. 1.

On this basis, Leng et al. [13] proposed a basic system
framework for realizing Industry 5.0 based on the three
dimensions of technology, reality, and application, as well
as an overview of the research status of these three aspects,
discussed the key enablers, realization paths, and potential
future applications of Industry 5.0. Lu et al. [33] introduced
the Industry 5.0 manufacturing framework, which consists
of two levels: manufacturing system and machine, and
defined and classified human needs and motivations in man-
ufacturing, helps the formation of efficient human-machine
teams and flexible manufacturing processes, and promotes
human-machine collaboration while safeguarding human
well-being. Ivanov [34] developed the framework for Indus-
try 5.0 using a feasible supply chain model, a reconfigurable
supply chain, and a human-oriented ecosystem, revealing
the key characteristics of Industry 5.0 as a technical orga-
nizational framework, such as technical principles, coverage
areas, levels, and bottom lines. This contributed to the con-

167437



IEEE Access

Z. Lei et al.: Intelligent Manufacturing from the Perspective of Industry 5.0

TABLE 2. Differences between the concepts of industry 4.0 and industry5.0.

Industry 4.0

Industry 5.0

Pay attention to workers' safety, interest, fatigue

Lack of attention to the human factors [14]

level, etc.

Human-centricity Produces boring, repetitive work

Focus on realizing the value of workers at work

Smart machines control factories and take over

workers' jobs [15]

Workers and smart machines work together [16]

The energy intensity of underlying technologies

Sustainability

accelerates environmental degradation [17]

Use sustainable energy and improve energy

efficiency

Maintain a balance between economic growth and

social and environmental development [18]

Technology-driven [19]

Value-driven

Core concept

Focus on productivity-driven economic growth

Focus on economic circularity, environmental
sustainability, human-centricity, social values s

and long-term resilience

TABLE 3. Summary of industry 5.0 definitions.

Ref Year Focus points
[22] 2021 Creativity of humans, safety of production
[23] 2022 Seamless sharing of work between humans and robots
[24] 2022 Human-centricity, production process restructuring
The ability of industry to achieve social goals while achieving growth,
[18] 2022
placing humans at the center of the production process
Humans and robots working together,
[25] 2022
improve the efficiency of industrial production and productivity in manufacturing
Placing humans at the center of the production process,
[26] 2023
leveraging human advantages, humans control technology
Innovation, sustainable production,
[27] 2023
combining automation advantages with human creativity
[28] 2024 Improved efficiency, worker welfare, human creativity, personalized customization
Humans and robots work together, relying on smart machines to increase resilience and sustainability,
[29] 2024

enhance human capabilities

ceptualization of Industry 5.0 and clarified the necessary rules
to be followed in the specific implementation of Industry 5.0.
Sindhwani et al. [35] proposed a framework for analyzing the
driving factors of Industry 5.0 in order to achieve sustainable
development, and they believe that personal customization
is the highest priority standard for realizing Industry 5.0.
The Manufacturing Execution System (MES) framework
proposed by Masoud et al. [36] helps small and medium-sized
enterprises improve their production processes, and the effec-
tiveness of the framework has been demonstrated through
case studies, demonstrating the technological advantages of
Industry 5.0. Although these frameworks are applicable to
different scenarios, they all analyze and expand around the
core concepts proposed by Industry 5.0, providing a refer-
167438

ence for the implementation of Industry 5.0 in various fields.
In addition, in the specific implementation process, schol-
ars have also proposed corresponding frameworks for the
various enabling technologies of Industry 5.0 from different
perspectives, such as the digital twin framework for incorpo-
rating humans into digital systems [37], the task allocation
framework for promoting human-robot collaboration [38],
and the data protection framework for ensuring the elasticity
of Industry 5.0 [39], in order to meet their specific needs. This
part will be introduced in detail in Section III.

Ill. APPLICATION PERSPECTIVE

This section will discuss the impact of the three core

concepts of Industry 5.0 and its related technologies on
VOLUME 12, 2024
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FIGURE 1. Basic framework of industry 5.0 [32].

intelligent manufacturing from the perspective of digital-
ization manufacturing and intelligence, production process
management, and decentralized production. The relationship
between them is shown in Fig. 2. Among them, technolo-
gies for Industry 5.0 such as Human Digital Twin (HDT)
and Human-Robot Collaboration (HRC) change the exist-
ing production process management methods by introducing
humans into production; technologies such as Decentralized
Autonomous Manufacturing (DAM) and Industrial Inter-
net of Things (IloT) provide a more flexible decentralized
production method for intelligent manufacturing; technolo-
gies such as Green Internet of Things (G-IoT) and Sustainable
Supply Chain (SSC) improve the energy utilization efficiency
of the aforementioned other technologies, making intelligent
manufacturing more sustainable. In addition, the applica-
tion of these technologies will promote the development of
intelligent manufacturing in the direction of intelligence and
digitalization.

A. DIGITAL MANUFACTURING AND INTELLIGENCE

Digital twin technology is regarded as the foundation of
future manufacturing [40], and using digital twins to pro-
mote seamless collaboration between humans and robots is
a key feature of Industry 5.0 [20]. Visualizing various types
of data for decision-makers in a digital twin environment
can also help them make better decisions [41], resulting
in increased corporate efficiency [42]. Modeling is one of
the challenges that digital twins face during the Industry
5.0 revolution [43]. Lightweight digital twin models can
often quickly implement a two-way feedback process [44].
Marchi and Baalbergen [45] introduced an operator-centric
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digital twin model and investigated the key components of
operator-customized digital twin architecture, which aids in
the transition from Industry 4.0 to Industry 5.0 implementa-
tion. The scalable IIoT platform introduced by Montini et al.
[46] provides ideas for standardizing the creation of digital
twins. This platform has advantages in creating customized
data representations of production systems and digital twin
instantiation.

The combination of the digital twin, Internet of Things
(IoT), extended reality, and other technologies has greater
application potential for process optimization and decision-
making enhancement [47], [48]. Awouda et al. [49] proposed
the IoT Architecture Reference Model (IoT-A or IoT-ARM)
as a benchmark for designing and implementing an IoT
architecture with a focus on the digital twin. The applica-
tion of blockchain makes it possible to use smart contracts
for information management and access control, thus pro-
viding a solution to the information security issues of
digital twins [50], [51]. Machine learning-driven digital
twin technology has significant advantages in the life cycle
management of complex equipment [52]; the cooperation
between explainable artificial intelligence and digital twins
improves the robustness, predictability, and maintainability
of the manufacturing process [53]; embedded digital twins
can enhance the intelligence of cyber-physical systems and
promote the integration of data access, monitoring, and other
functions [54]. Fig. 3 depicts how digital twins with other
technologies in smart manufacturing.

The Industry 5.0 paradigm aims to create efficient and
adaptable production systems by combining human intelli-
gence with cutting-edge technologies such as the Internet

167439



IEEE Access

Z. Lei et al.: Intelligent Manufacturing from the Perspective of Industry 5.0

Introducing
human into
the production
process

Human Digital Twin

Digitization and Intelligence

Human Robot
Collaboration

Humanized
production
method

Task and resource
allocation

Improvement of energy
utilization efficiency

Production
process
management

Supply Chain
Management

Intelligent Manufacturing
Scenarios in Industry 5.0

Resilience

Ensure data
security

|

Decentralized Autonomous
Manufacturing
Industry Internet of Things
Block-chain

Improvement of energy
utilization efficiency

Decentralized
production

solution

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
. . 1
Decentralization :
1
1

Sustainability

Green Internet of Things

Industrial Artificial o n
Intelligence Sustainable Supply Chain

AR/VR
Demonstration and employee training
Visualization of design and decision-
making
O Remote collaboration

[y m]

Al & Machine Learning
O Device lifecycle management
Q Production process management
QO Data Analysis and Pattern Recognition

4

Large Model
O Accurate simulation and prediction
O Personalized customization model
QO Cross domain knowledge integration

FIGURE 3. Integration of digital twins with other technologies.

of Things, artificial intelligence, and robotics [55], [56],
and its effectiveness has been experimentally validated [57],
[58], [59]. Abuhasel [60] used a zero-trust network-based
access control scheme to extend support for operating
devices while decreasing failures. Zongetal. [61] pro-
posed a high-performing IIoT cross-regional end-to-end
transmission control scheme for ensuring the continuity and
stability of intelligent machine production in emergency
communications. The AIaCM architecture [62] deeply inte-
grates technologies such as artificial intelligence, IoT, and
edge computing into the manufacturing industry, potentially
supporting large-scale customized manufacturing. Its archi-
tecture is roughly depicted in Fig. 4. Pattnaik et al. [63]
proposed a real-time location monitoring system based on
the 6G Internet of Things, with low-power Bluetooth for
underground communications. The sparse attention scheme
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improves noise reduction performance for the voice user
interface (VUI) and demonstrates the application potential of
VUI in Industry 5.0 [64].

Industrial edge computing, as a key accelerator of Indus-
try 5.0, can provide timely system insights and enable
real-time decision-making [65], thereby improving manu-
facturing system agility [66]. By being deployed near IoT
devices [67], fog-based IoT architectures can effectively han-
dle the large amount of data generated by Industry 5.0,
ensure quality of service [68], and optimize scheduling
and load [69]. Fraga-Lamas et al. [70] proposed a Cyber-
Physical Human-centered System (CPHS) that processes
thermal images and improves operator safety by combin-
ing a hybrid edge computing architecture with intelligent
fog computing nodes. Lv et al. [71] proposed a three-layer
network edge computing architecture that excels at track-
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FIGURE 4. Architecture of AlaCM [62].

ing industrial gas diffusion boundaries. The web-based GUI
provided by the Large-scale Edge node Management (LEM)
tool allows workflow management across a large number
of edge devices [72]. When used in conjunction with the
corresponding federated learning algorithm, it can avoid
globally sharing edge server private data [73], [74] and defend
against data poisoning attacks [75].

Scholars are also interested in ways to improve the effi-
ciency of human-robot collaborative systems. The learning
from demonstration (LfD) method can help collaborative
robots learn how to perform collaborative tasks alongside
experienced workers while also actively teaching and/or
assisting novice workers [76]. By combining machine vision
with deep learning algorithms, workers’ behavioral inten-
tions can be predicted [77], and adaptive robot path planning
and knowledge support can be assigned to them [78].
Spiking neural networks can be used to predict turns in
assembly tasks and reduce the time it takes to recognize
turns between humans and machines [79], increasing the
efficiency of human-machine system assembly. In addi-
tion, Kardush et al. [80] combined the emerging time- and
wave-length-division multiplexed passive optical local area
network with wireless local area network technology to
achieve human-machine communication deployment, which
produced significant cost savings while taking into account
scalability and mobility.

B. HUMAN-CENTRIC INTELLIGENT MANUFACTURING
AND PRODUCTION PROCESS MANAGEMENT

To avoid repeating the mistakes of Industry 4.0, which
focused on process automation and improving process effi-
ciency [81], [82] while ignoring the role of people, HDT have
been proposed as a key method to achieve human-centricity
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in intelligent manufacturing systems [83], [84], [85]. As a
virtual replica centered on humans, HDT not only replicates
their external characteristics but also weaves their internal
qualities [37]. It can better monitor, evaluate, and optimize
human performance [86], upgrade traditional ergonomic
methods into intelligent services [87], and meet human work-
ers’ technical needs while respecting human rights [88].
Fig. 5 illustrates the conceptual framework of HDT [37].

Modoni and Sacco [89] proposed a digital twin-based
framework and implementation plan that incorporates work-
ers and their digital replicas into the digital twin loop,
promotes coordinated arrangement of humans and machines
through control and simulation, improves interaction between
digital twins and operators, and better coordinates human-
centered processes. In order to analyze the emotional state
of the HDT, we may need to detect and analyze the worker’s
physical and mental state in real time [90]. When combined
with the factory’s unsafe state reasoning method based on
digital twins [91], a high-fidelity digital twin workshop with
workers can be built to create a safer work environment.

In addition to safety design, human-oriented digital twin
technology has been applied in a variety of fields, including
work management [92], robot training [93], user train-
ing [94], product and industrial design [95], etc. It will help
to put humans back at the center of the production process
and better reflect the value of people in the industry. The
challenges digital twin faces in the implementation process,
such as opacity [96], privacy information leakage [97], and
network security risks [98], can be solved through technolo-
gies such as explainable Al [99], differential privacy [100],
and gamification [101].

Traditional automation methods have reached bottlenecks
in many production areas [102]. HRC with an understanding
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FIGURE 5. Conceptual framework of the human digital twin [37].

of difficulty and complexity is required for human-centered
manufacturing and aligns with the goals of Industry 5.0
[103], [104]. Workers face a cognitive burden when dealing
with complex assembly information. Scholars have pro-
posed cognitive assistance systems based on Model-Based
Definition (MBD) digital twin models [105], quality func-
tion deployment [106], and Augmented Reality (AR)
[107], [108].

By optimizing task allocation and available resources, pro-
cess delays can be accommodated while ensuring worker
welfare [109]. This improves production efficiency and eco-
nomic benefits [110], [111]. Mixed integer linear program-
ming and constraint programming are two popular methods
for balancing production lines [112]. Multi-objective task
allocation models can use algorithms such as non-dominated
sorting genetics [113], domain search simulated anneal-
ing [114], and hybrid gray wolf optimization [115] to solve
mixed integer programming problems, balance operator psy-
chological load [116], investment costs [117], and worker
physical fitness and limitations [118], and achieve opti-
mal task assignment. The allocation framework proposed
by Kim et al. [38] analyzes process difficulty and worker
ability using a heuristic algorithm to assign skilled work-
ers to manual assembly processes, and demonstrates the
improvement of productivity and operational sustainabil-
ity through case studies. For mass customization scenarios,
the production scheduling mechanism of Industry 5.0 [119]
enables production efficiency to change exponentially with
production scale. Examples show that when the number
of products is greater than 600, production efficiency can

167442

TABLE 4. HRC process evaluation method for industry 5.0.

Ref Focus points

[120] Human well-being in terms of HRC quality and stress response
(1211 Using multi-layer digital twins to evaluate the position of parts
in scenarios with and without robot

The between worker load and

[122]

interaction
[123] Changes in the psychological and physiological states of workers during repeated assembly processes
[124], [125] The impact of industrial HRC on user experience, emotional state, and stress
[126] Human energy consumption and economic indicators under different HRC modes

[127) The Human Psychological Model of HRC

surpass that of traditional customized product business,
which is similar to the efficiency of mass production strat-
egy of Industry 4.0, pointing out the direction of efficient
solutions.

Correspondingly, human-robot collaboration process eval-
uation methods for Industry 5.0 are gradually emerging.
The evaluation methods developed by various scholars are
summarized in Table 4.

C. DECENTRALIZATION AND RESILIENT PRODUCTION

Blockchain technology can effectively eliminate single-point
failure risks in IIoT and solve security issues [128], con-
tributing significantly to the resilience of manufacturing
entities [129]. Leng et al. [130] proposed the Blockchain
Smart Contract System (BSCS) ManuChain II, a digital twin
of a decentralized autonomous manufacturing system, which
comprehensively improves the resilience of personalized
manufacturing through a series of decentralized autonomous
process controls driven by a smart contract pyramid [131].
Decentralized Autonomous Organizations (DAOs) have

VOLUME 12, 2024
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enormous potential for promoting the elastic manufactur-
ing transformation of Industry 5.0 [132]. The Decentralized
Autonomous Manufacturing (DAM) paradigm [133] pro-
posed as its foundation achieves elastic production through
naturally formed consensus, an open access manufacturing
organization with a decentralized structure and a high degree
of autonomy. Its reference architecture is shown in Fig. 6.
The resilience paradigm of Industry 5.0 relies heavily on
the security of IIoT networks. Benlloch-Caballero et al. [39]
proposed a novel topology-aware cognitive self-protection
framework for detecting and mitigating network attacks.
Combining digital twins and machine learning techniques can
also detect DDoS attacks in Industry 5.0 environments [137].
Vithanage et al. [138] proposed an authentication platform
that uses LDAP and MQTT technologies to improve the
security and efficiency of data transmission between IoT
devices. Alcaraz and Lopez [139] proposed an IIoT encap-
sulation protection framework that supports 6G, which can
fully protect the entire 6G ecosystem, including digital
twin networks. Blockchain-based secure connections are
one of the characteristics of the Internet of Things that
will face Industry 5.0 [140]. The trusted blockchain system
provided by Babu et al. [141] ensures secure communi-
cation between edge devices while also preventing DDoS
and side-channel attacks. Blockchain-based smart contracts,
combined with polygonal semantic rules for data protection,
can effectively prevent data leaks [142]. The FusionFed-
Block solution, which combines blockchain and federated
learning, protects privacy data in Industry 5.0 systems [143].
The blockchain-based Proof of Authority (PoA) trust mech-
anism also provides high-quality services in IIoT, including
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security and data privacy [144]. However, in practical appli-
cations, existing blockchain technology may not be able to
ensure high throughput while guaranteeing security, mak-
ing them unable to adapt to the needs of Industry 5.0,
and often require sharding to improve performance [145].
In addition, challenges such as insufficient scalability, bal-
ance between security and energy consumption, and social
engineering attacks faced by blockchain technology remain
to be addressed [146].

D. SUSTAINABLE PRODUCTION

Sustainability is also a key component of Industry 5.0, Sur-
veys [147] show that the Industry 5.0 model has a positive
impact on sustainable performance. Turner and Oyekan [41]
used Life Cycle Analysis (LCA) to evaluate emission val-
ues during the manufacturing process, providing a reference
for decision-makers when making production decisions.
Martin-Gomez et al. [148] used the ASTM E3012-22 stan-
dard as a sustainability indicator for industrial processes and
proposed a theoretical framework for designing sustainable
manufacturing systems that integrate enabling technologies,
machinery, and human expertise throughout the system life
cycle.

Al and IoT optimization can help improve energy effi-
ciency significantly [149]. The Green Internet of Things
(G-IoT) concept [150], [151] emphasizes the use of
energy-efficient IoT hardware or software to reduce the
greenhouse gas emissions of applications and services,
as well as the IoT ecosystem itself [152]. Fraga-Lamas et al.
[153] explored the problem of reconciling the competing
visions of the Green Internet of Things and Edge Al through
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system design and development. The Local Data Reduction
(LDR) model can address latency and cost constraints while
supporting the green computing paradigm [154]. Similarly,
the blockchain-based privacy protection framework can be
applied to decentralize the Green Internet of Things [155].
Industrial Artificial Intelligence (IndAl) is concerned with
the creation, validation, and deployment of intelligent algo-
rithms for a variety of industrial applications with that require
sustainable performance [156], [157]. The self-learning
IndAI model enables manufacturing systems to achieve sus-
tainability, meeting Industry 5.0 requirements [157]. A survey
by et al. [158] shows that when new computing tech-
nologies are employed, Industry 5.0 will enable a circular
economy by optimizing strategies, reducing input materials
and increasing process innovation, improving economic effi-
ciency and productivity, and reducing a company’s impact
on the environment. The report [159] states that the Industry
5.0 framework has led to a 1% reduction in energy use in
factories with high levels of automation compared to Industry
4.0, increasing the potential for energy efficiency.

Blockchain technology not only helps to realize the elas-
tic paradigm of Industry 5.0, but can also be combined
with technologies such as digital twins and the Internet of
Things to achieve continuous monitoring and verification
of supply chain processes, establish a sustainable supply
chain (SSC) management framework [160], and promote
resource optimization and waste reduction [161]. Empirical
evidence shows that blockchain technology increases supply
chain transparency, reduces errors by 25%, and improves
production efficiency by 15%, communication efficiency by
30%, and energy utilization [162]. However, the application
of blockchain technology may face obstacles such as stor-
age limitations, insufficient economic incentives, and high
integration costs [163]. In addition to SSC, the personalized
customized supply chain model proposed by et al. [164]
can also reduce costs and risks and improve supply chain
efficiency and sustainability.

IV. EXISTING CHALLENGES

Although Industry 5.0 technology aims to address some of the
issues not considered in Industry 4.0, the current technology
is not yet mature and has many shortcomings in the field
of intelligent manufacturing, necessitating further develop-
ment. As shown in Fig. 7, it primarily includes the following
aspects.

A. DIGITAL TWIN MODELING AND DATA COLLECTION

How to establish a suitable, objective model that meets the
granularity requirements has always been a challenge for
digital twin technology, especially as Industry 5.0 integrates
workers into the production process. The psychological load,
emotional state, and fatigue level of workers in the production
process are critical reference indicators for human-centered
production. The digital twin model should provide accurate
and objective indicators to the production system. In this
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process, designing the digital twin model, using the col-
lected data to calculate the indicators accurately, and ensuring
communication quality are all issues that require further
investigation.

In addition, in terms of data collection for digital twin mod-
els, additional wearable data collection devices may elicit
worker resistance and add psychological burdens, whereas
excessive collection of private information may cause work-
ers to lose trust in the production system. Digital twin
technology faces the challenge of completing the collection
of various data on workers without putting physical and psy-
chological pressure on them, as well as avoiding infringement
on their personal privacy.

B. HUMAN-ROBOT COLLABORATION

Human-robot collaborative systems can still be more effi-
cient. Existing technologies have limitations in human behav-
ior prediction, cognitive assistance, and intelligent teaching,
factors such as workers’ age, gender, and learning ability
still have an impact on the efficiency of human-machine
collaboration [165]. The resulting high degree of person-
alization and customization needs have not yet been met,
making efficient and accurate human-robot interaction and
collaboration challenging. In the context of human-robot
collaborative decision-making, the decision-making model
is challenged by the multi-source uncertainty caused by
the real-time intersection of large amounts of data [166].
Whether existing models can cope with the high uncer-
tainty, complexity, and variability of the environment in
actual production and make quick and correct decisions to
ensure the efficiency and safety of human-robot collabora-
tion, and at the same time ensure the effective integration and
compatibility of various technologies in the human-machine
collaboration system, and have a certain degree of flexi-
bility and scalability, remains a problem that needs to be
investigated.

In addition, human trust in robots is required for effec-
tive and high-quality human-robot collaboration. To this end,
humans frequently rely on artificial intelligence systems to
provide explanations for their decisions and decision-making
processes. Only when these explanations are consistent with
human rational thinking will humans be able to trust intel-
ligent systems. However, existing intelligent systems based
on deep learning have difficulty meeting such require-
ments [167], the lack of transparency, fairness and risk
aversion of deep learning algorithms are still issues that
cannot be ignored [168]. At the same time, the collection of
workers’ personal data is inevitable during human-machine
collaboration. The privacy and ethical issues brought about
by this data, as well as the possible risks of leakage
or abuse, are all challenges currently faced. As a result,
human-robot collaboration systems’ explainability to human
decisions requires further improvement. At the same time,
humans should be able to be informed and make independent
decisions about the information that is collected about them
and how it is used.
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FIGURE 7. The existing challenges of intelligent manufacturing from the perspective of industry 5.0.

C. DATA SECURITY

Data security remains an urgent issue to be addressed in
Industry 5.0. Industry 5.0°s large-scale cyber-physical sys-
tems are often vulnerable to cyber-attacks due to their
multi-attribute and heterogeneous characteristics, as well as
their reliance on private and sensitive data. When a large
amount of production data and user privacy information is
leaked, it will cause serious consequences. Blockchain tech-
nology research needs to be improved in order to improve
decentralization and protect data security. Therefore, it is
crucial to explore more effective data protection solutions.

V. DEVELOPMENT OUTLOOK

A. DEVELOPMENT ROADMAP

In terms of sustainability, Ghobakhloo et al. proposed three
development paths: sustainable development driven by Indus-
try 5.0 [32], sustainable industrial transformation [169], and
sustainable manufacturing [170]. The sustainable develop-
ment roadmap outlines an action plan for leveraging Industry
5.0 functions to generate sustainable development value,
revealing the internal promotion effect of sustainability func-
tions. The sustainable industrial transformation roadmap
describes the direct relationship between the driving fac-
tors of industrial transformation, and it believes that active
government support is the most powerful driver. While the
sustainable manufacturing roadmap recognizes the role of
Industry 5.0 sustainable manufacturing functions as a driving
force, autonomy or dependence, and the order in which they
should be used, it believes that value network integration is
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the most fundamental driving force for sustainable manufac-
turing in Industry 5.0. The three roadmaps provide a reference
for the sustainable application of Industry 5.0.

In terms of human orientation, Chaabi [171] returned
workers to the production process by combining ADKAR and
quality circles, fostering workers’ trust in digital tools and
alleviating the technological anxiety caused by Industry 4.0.
Pizon and Gola [172] proposed three stages for human-robot
relations: safety, society, and technology. They believed that
true collaboration can only occur when people trust machines.

B. FUTURE TECHNOLOGY

According to the preceding literature review, 6G commu-
nication networks have significant application potential in
the fields of Internet of Things, digital twins, and human-
robot collaboration. Their high data rate, large bandwidth,
and ultra-low latency can not only effectively handle simul-
taneous access to a large number of applications while
maintaining quality of experience, but also allow blockchain
deployment solutions to unleash their full performance [173].
They provide significant benefits in terms of information
security, operating cost reduction, and ensuring the integrity
of remote resources. As a result, 6G networks are expected to
play a critical role in enabling Industry 5.0.

Brain-Computer Interface (BCI) technology, as an efficient
means of human-robot communication, can significantly
shorten the interaction time between the operator and the
collaborative robot while also improving the tacit understand-
ing of cooperation; it can also be used in conjunction with
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augmented reality equipment to allow technicians to interact
with the robot. Effective collaborative solutions [174] have
great promise for the complex human-robot collaborative
assembly required by Industry 5.0. However, wearing addi-
tional BCI devices usually interferes with workers at work,
causing users to be dissatisfied with the technology. Invasive
BClIs are usually accompanied by physiological and neuro-
logical side effects, and non-invasive devices whose signal
quality still leaves much to be desired [175]. In addition, BCI
devices may also affect workers’ emotions, thinking, mem-
ory, etc., which would pose huge ethical challenges and raise
doubts about the reliability of brain computer interface tech-
nology among workers. Therefore, the use of such technology
may need to consider the physical and psychological burden
it places on workers, as well as the resulting resistance.

Mixed Reality (MR) technology is more user-friendly and
reliable than Virtual Reality (VR) technology [176], and it
has a wide range of applications in operator training and skill
improvement, which aligns with the Industry 5.0 paradigm’s
emphasis on preventing the elimination of skilled labor.
In addition, MR technology can be used by operators to teach
and plan paths for collaborative robots, unleashing human
creativity while lowering the learning threshold and safety
risks. Therefore, this article believes that MR technology will
increasingly be used as an auxiliary technology for complex
human-robot collaboration.

VI. CONCLUSION

This paper discusses the background and related theories that
led to the birth of Industry 5.0, investigates the application
scenarios of intelligent manufacturing from the perspec-
tive of Industry 5.0, summarizes the application status of
existing technologies and the challenges they face, and antic-
ipates Industry 5.0’s future development. Specifically, this
paper examines existing technologies and their applications
of intelligent manufacturing in various scenarios, such as
life cycle management, production process management, and
manufacturing intelligence from the four Industry 5.0 per-
spectives of digitalization, human-centricity, resilience, and
sustainability. This paper analyzes the technologies that may
be used in the future, taking into account existing defi-
ciencies and development paths. This paper believes that
the application of Industry 5.0 technology will effectively
improve the production capacity of intelligent manufactur-
ing systems and promote the development of intelligent
manufacturing systems in a safe, efficient, sustainable and
resilient direction. In addition, unlike Industry 4.0, the devel-
opment of Industry 5.0 will focus on the core concept
of maximizing human creativity, avoiding repetitive work
through human-machine collaboration, thereby improving
the human-machine relationship and realizing human value.
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