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ABSTRACT With the developments of the intelligent vehicles, the most significant contradiction is coming
to the limited computing resource and the unlimited requirements. Task offloading has been proposed to
overcome this. Most of the existing task offloading methods aim to optimize the global delay. However, from
the user’s point of view, different in-vehicle applications (such as entertainment and autonomous driving)
have different importance and delay requirements. Therefore, simply minimizing the latency of all tasks does
not meet the QoS (Quality of Service) of each user. Unfortunately, very few people discuss this practical
issue. In this paper, the problem of vehicular task offloading in resource-constrained scenarios is studied,
and a two-stage task offloading schemeMAT-IGA based on multi-node collaboration is proposed. In the first
stage, the complex tasks are pre-segmented adaptively, and the optimal matching set is solved by combining
the improved multi-round deferred-acceptance algorithm, which prioritizes the resource requirements of
emergency tasks and improves the reliability of the strategy. In the second stage, a chaotic genetic algorithm
based on opposition-based learning is used to optimize resource allocation, and the global delay and cost are
optimized on the basis of ensuring the success rate. The simulation results show that the proposed method
is superior to the common baseline algorithm in different vehicle numbers and task characteristics.

INDEX TERMS Task offloading, vehicular networks, matching algorithm, genetic algorithm, mobile edge
computing.

I. INTRODUCTION
With the continuous development of vehicle networking and
artificial intelligence technology, people’s requirements for
vehicles are not limited to vehicle performance and driving
safety, but also put forward higher requirements for vehicle
applications. Nowadays, vehicles are given more and more
computing power, and there are more and more types of in-
vehicle applications, such as in-vehicle ultra-definition video,
augmented reality (AR), and unmanned driving. At present,
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relying solely on the computing power of the vehicle itself
can no longer meet the calculation requirements of a large
amount of data [1].

In the past, cloud computing was the mainstream method
to solve the above problems. However, with the increase of
the number of on-board sensors and the explosive growth of
data volume, this method has gradually become unsuitable
due to its large communication delay and waste of bandwidth
resources. Nowadays, the task offloading method based on
Mobile Edge Computing (MEC) is considered to be an
effective example to solve the above problems. By deploying
Edge Server (ES) with computing and storage capabilities
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on one side of the road, vehicle users can communicate
with edge servers and core cloud networks through wireless
transmission, and offload complex tasks that are difficult
for vehicles to handle to MEC servers for processing, thus
solving the problem of limited local computing power and
ensuring the efficient execution of many resource-intensive
tasks.

The MEC-based task offloading has the characteristics
of low latency, high reliability and large data storage
capacity, but the movement of vehicles, channel interference
and resource constraints have brought difficulties to task
offloading. Therefore, in the face of complex and diverse
vehicular scenarios, how to reasonably and effectively use the
limited spectrum resources and computing resources in the
vehicular networks and build a reasonable offloading decision
is still a research challenge.

In order to achieve efficient vehicular task offloading in
resource-constrained scenarios, the main contributions of this
paper are as follows:

1) a typical road vehicular task offloading model is
constructed, and a variety of heterogeneous resources of
cloud, roadside unit and crowd-sourcing node are introduced.
Considering the computing power and communication ability
of heterogeneous nodes, various types of constraints are
designed, and the optimization goal is to minimize the task
offloading delay and cost.

2) A two-stage task offloading method MAT-IGA is
proposed. In the first stage, a new lightweight task set is
obtained by slicing and reorganizing the task, and then the
improved deferred-acceptance algorithm is used to solve the
optimal matching set. In the second stage, the chaotic genetic
algorithm based on opposition-based learning is used to solve
the resource allocation problem, which further optimizes the
delay and cost while ensuring the success rate of the task.

3) Simulation results show that the proposed scheme can
effectively reduce the average delay and cost in the system,
and improve the success rate of task offloading.

The remaining parts of this paper are organized as follows.
The related works are presented in Section II. The system
model is introduced in Section III. Section IV describes
the problem formulation of the task offloading problem.
Section V propose the task offloading method based on
matching and genetic algorithm. Numerical Results are
provided in Section VI. Section VII concludes this paper.

II. RELATED WORKS
Vehicular task offloading mainly solves the problem of
where the task should be offloaded and how much resources
should be allocated. It is a typical mixed integer nonlinear
programming problem. However, edge resources are usually
not rich. In order to improve the utilization of edge resources,
there have been a lot of research and solutions. According to
the specific resource utilization strategy, it can be divided into
the following three types: task segmentation strategy, cloud-
edge collaboration strategy and vehicle assistance strategy.

Task segmentation is mainly to divide complex tasks into
multiple small tasks and hand them over to different nodes
to improve the utilization of edge resources. Reference [2]
proposed an offloading strategy based on multi-base station
collaborative computing. The author used the DDPG (Deep
Deterministic Policy Gradient) algorithm [3] to segment the
task, and used the parallel computing of adjacent base stations
to optimize the task delay. Reference [4] mainly studies the
problem of task offloading and resource allocation in the
Internet of Things system. The author solves the optimal task
splitting ratio, transmission power and resource allocation
number through an iterative algorithm to minimize the task
offloading delay. Reference [5] studied a multi-user system
with randomwireless channels. The author proposed a partial
offloading method based on DDPG to minimize user power
consumption and buffer delay. Reference [6] considered
the offloading problem of vehicle tasks under the edge-
end two-tier architecture, in order to solve the problem of
data dependence between tasks, the author proposed a task
offloading method based on A3C (Asynchronous Advantage
Actor-Critic) [7], which can achieve effective long-term
optimization strategies. Reference [8] proposed an intelligent
computing offloading scheme for IoT-dependent applica-
tions, which achieves low-latency and low-energy offloading
requirements through offline training and online deployment.
Reference [9] considered the privacy problem of partial
offloading and proposed an offloading algorithm based on
differential privacy and deep reinforcement learning, which
hides the amount of real task offloading data by introducing
noise.

Edge computing has strong real-time and reliability, but
the disadvantage is that resources are scarce and unevenly
distributed. However, the cloud computing can provide
additional computing resources. Therefore, some studies
have introduced cloud servers and designed related task
offloading strategies based on cloud-edge collaboration.
Reference [10] considered the optimization of delay and
cost in data-driven scenarios, and proposed an asynchronous
ADQN algorithm for task offloading based on the ideas of
A3C and DQN. Reference [11] proposed a task offload-
ing method based on deep reinforcement learning, which
combines historical request records and available resources
in the system to optimize task offloading decisions. Ref-
erence [12], considering the optimization requirements of
different applications between service delay and result quality
loss, an event-triggered dynamic task allocation framework
based on linear programming optimization and binary
particle swarm optimization is proposed. Reference [13]
proposed a vehicular edge-cloud computing network. The
author designed a value-based reinforcement learningmethod
to minimize task execution time through the cooperation
of edge nodes and cloud resources. Aiming at the security
problem in vehicle networks, a trust evaluation algorithm is
proposed in the [14]. This method can improve the reliability
of task processing while minimizing the task offloading
delay. However, the author only considers the optimization
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of global delay, ignoring the success rate of different types of
tasks.

In addition to edge infrastructure and cloud servers,
vehicles can also provide additional resources. Although
the computing power of vehicles is weaker than the clouds
or edge servers, a large number of storage space and
computing resources can be obtained by aggregating large
vehicle clusters. Therefore, some studies consider introduc-
ing vehicles into task offloading scenarios and designing
related vehicle-assisted offloading methods. Reference [15]
proposed an autonomous vehicle edge framework for road
edge computing, and designed a scheduling algorithm based
on ant colony algorithm to solve the task allocation problem.
Reference [16] proposed a computing model for vehicle
fog computing, mainly considering the use of vehicles
in the parking lot to provide computing services, and
proposed a dynamic resource allocation algorithm to solve
the problem. Reference [17], considering that the MEC
server is not available or the resources are insufficient, the
author uses the surrounding vehicles as a resource library
and proposes a distributed computing offloading method
to utilize all resources. Reference [18] considered a task
offloading problem in a vehicle cloud scenario. The author
integrated a variety of factors such as the high mobility
of the vehicle, the heterogeneity of computing power and
the interdependence of tasks, and proposed an improved
genetic algorithm based on integers to solve the task
offloading problem. The scheme can significantly improve
the utilization of computing resources while ensuring low
latency and system stability. Reference [19] considered the
mobility of the vehicle and the load of nodes, and proposed
a task offloading method based on deep reinforcement
learning to reduce the offloading cost. However, this method
ignores the delay sensitivity difference of the vehicular
task, and it is difficult to meet the actual application
needs.

In summary, most of the existing methods aim at opti-
mizing the global delay or energy consumption under the
premise of satisfying the task delay constraint, but the delay
constraint of the task is not always satisfied. For example,
in the case of resource supply and demand imbalance,
some tasks will inevitably have offloading timeouts. At this
time, it is not feasible to only optimize the global delay.
In order to solve this problem, [20] proposed a task offloading
method based on Stackelberg game, which maximized the
benefits through resource sharing between nodes. However,
this method does not consider the importance difference of
tasks, so there is still room for improvement in resource
allocation. Reference [21] proposed to use the weight to
adjust the attention to the task, so as to improve the success
rate of offloading. However, the weight is usually difficult
to determine, and the heterogeneity of the task (such as the
degree of urgency and the difference of delay demand) is
ignored. Reference [22] considered improving the revenue of
critical tasks and selectively giving up secondary tasks, but
the abandonment strategy is not desirable. Some secondary

tasks cannot be completed on time, but users are usually
acceptable for a small number of timeouts.

III. SYSTEM MODEL
The task offloading scenario assumed in this paper consists
of Task Vehicles (TaVs), Rode Site Unit (RSU), Cloud and
Crowd Computing Nodes (CCNs). Among them, RSU is
a roadside infrastructure that is responsible for centralized
unified task scheduling. TaVs refer to task vehicles, and
each TaV will carry a vehicle application task. CCNs include
SeVs (Service Vehicles) and roadside APs (Access Points),
which are added to the task offloading process in the form of
crowd-sourcing and provide additional computing resources.
In order to accurately describe the characteristics of each
vehicle, this paper models in a two-dimensional way, defining
the road as the x-axis, the right as the positive direction,
the direction of the RSU as the y-axis, and the upward
as the positive direction. The system adopts a centralized
decision-making method for unified decision-making, and
the system model is shown in Figure 1.

FIGURE 1. Vehicular task offloading model.

A. NETWORK DEFINITION
Define the set M = {1, . . . ,m, . . . ,M} to represent TaVs,
and the set N = {1, . . . , n, . . . ,N } to represent CCNs. Each
TaV carries a vehicular task, the characteristics of which
can be represented as a tuple (Dm,Cm,T dm, θm), where Dm
is the size of the task data, including algorithm data Dam
and computation data Dbm. The algorithm data refers to the
technical support required for the task, such as related code
or models, while the computation data refers to the data to be
processed by the vehicle, such as data collected by onboard
sensors.Cm is the number of CPU cycles required for the task,
T dm represents the delay requirement of the task. θm indicates
the urgency of the task, the larger the value, the stronger the
urgency of the task. By partitioning the computation data, the
task can be divided into multiple subtasks. The set of subtasks
for TaV m can be represented as Rm. The data volume and
computational complexity of subtask r (r ∈ Rm) can be
respectively represented as Dr and Cr . All subtasks need to
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be processed within the time T dm . The computing frequency of
the RSU can be defined as FR, and the computing frequency
of CCN n is defined as Fn.

Assuming the antenna height of the RSU is h, thus the RSU
can be represented by the coordinates (0, h). Assume that TaV
m travels at a constant speed on a horizontal road, with the
initial position represented as (lTm, 0), and its speed relative to
the RSU is vTm, where the right direction is considered as the
positive direction of speed. Similarly, the initial position of
CCN n can be represented as (lSn , 0), and its speed relative to
the RSU is vSn . Among them, the speed of APs is a constant 0.
Due to the movement of vehicles causing the relative

distance to constantly change, the variable dmn(t) is defined
to represent the distance between TaVm and CCN n at time t .
Similarly, the variable dmR(t) is used to represent the distance
between TaV m and the RSU.
According to the kinematic equations, the calculation

method for the variable dmn(t) is as follows:

dmn(t) =

∣∣∣lTm − lSn + (vTm − vSn )t
∣∣∣ (1)

Combining the Pythagorean theorem, the calculation
method for dmR(t) is as follows:

dmR(t) =

√
h2 +

(
lTm + vTmt)2 (2)

Orthogonal Frequency Division Multiplexing (OFDM)
technology is used in communication. It allows for the
transmission of multiple subcarriers simultaneously, which
helps in achieving high data rates suitable for Vehicle-to-
Infrastructure (V2I) and Vehicle-to-Vehicle (V2V) communi-
cations [23]. Additionally, its ability to manage inter-symbol
interference ensures reliable communication links even as
vehicles travel at high speeds. These features are critical
for maintaining robust V2I and V2V communications,
supporting seamless connectivity in dynamic transportation
environments. In this paper, Rrn(t) is defined as the instanta-
neous data transmission rate of subtask r transmitted to CCN
n by TaVm. RrR(t) is the instantaneous data transmission rate
of subtask r transmitted to RSU. The rate decreases with the
increase of distance. The calculation method can be obtained
by Shannon formula:

Rrn(t) = Bnr log2

[
1 +

ρP
σ 2 [dmn(t)]α

]
(3)

RrR(t) = BRr log2

[
1 +

ρP
σ 2 [dmR(t)]α

]
(4)

where ρ is the channel power gain at this distance, α is the
path loss index, P is the transmission power, σ 2 is the noise
power, Bnr andBRr are the channel bandwidth allocated by
CCN n and RSU to subtask r , respectively.

B. ACTION CONSTRAINT
If the subtask r of TaV m is offloaded to CCN n, the variable
arn = 1 is defined, otherwise arn = 0. Similarly, if the
task r of TaV m is offloaded to the RSU, the variable br = 1,

otherwise it is 0. If the task r of TaV m is offloaded to Cloud,
the variablecr = 1, otherwise cr = 0.
For any TaV m, each subtask can only be offloaded to one

position, so the action constraint can be obtained:

br +

∑
n∈N

arn + cr = 1, m ∈M, r ∈ Rm (5)

Since the vehicle is constantly moving, the communication
time of the vehicle is limited. Define τmn as the maximum
duration of TaV m and CCN n that can maintain the con-
nection. According to the kinematic formula, the calculation
method of τmn is defined as:

τmn = Q
(∣∣∣(lTm − lSn

)∣∣∣ ≤ R
) R−

(
lTm − lSn

)
sign

(
vTm − vSn

)∣∣(vTm − vSn
)∣∣

(6)

Among them, R is the V2V transmission range at a fixed
transmission power P. Q is an indicator function. When the
discriminant is true, the value is 1, otherwise it is 0. Sign is
a symbol function, and a positive value indicates that the
two nodes are gradually separating, otherwise it means that
they are close. In τmn time, if the task can be offloaded, then∫ τmn
0 Rrn(t)dt ≥ Dr , then the offloading action constraint can
be formulated as:

arn ≤

∫ τmn
0 Rrn(t)dt

Dr
(7)

Because the result data of the task is relatively small, the
backhaul delay of the task is not considered. When a task is
offloaded to RSU, T comrR is defined as the delay of subtask r
transmitted to RSU by TaV m, T cmprR is the calculation delay
of subtask r in RSU, fRr is the CPU resource allocated by
RSU to subtask r , BRr is the bandwidth allocated by RSU
to subtask r , and the sum of allocated resources cannot be
greater than the total resources BR and FR, so there are:∫ T comrR

0
RrR(t)dt = Dr , m ∈M, r ∈ Rm (8)

T cmprR =
Cr
fRr

, m ∈M, r ∈ Rm (9)∑
m∈M

∑
r∈Rm

br f Rr ≤ FR (10)

∑
m∈M

∑
r∈Rm

brBRr ≤ BR (11)

When the task is offloaded to CCNs, T comrn is defined as
the delay of TaV m sending subtask r to CCN n, T cmprn is the
calculation delay of TaV m subtask r at CCN n, fnr is the
CPU frequency allocated to r by CCN n, Bnr is the bandwidth
allocated to r by CCN n, and the sum of allocated resources
cannot be greater than the total resources Bn and Fn of CCN
n, so there are:∫ T comrn

0
Rrn(t)dt = Dr , m ∈M, n ∈ N , r ∈ Rm (12)

T cmprn =
Cr
fnr

, m ∈M, n ∈ N , r ∈ Rm (13)
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∑
m∈M

∑
r∈Rm

arnfnr ≤ Fn, n ∈ N (14)

∑
m∈M

∑
r∈Rm

arnBnr ≤ Bn, n ∈ N (15)

When task r is offloaded to Cloud, T comrc is defined as the
transmission delay of TaV m sending subtask r to Cloud,
T cmprc is the computing delay of subtask r of TaV m in Cloud,
fcr is the computing resource allocated to the task by the
cloud server, and Rc is the uplink channel data rate of the
task transmitted from the cellular interface to Cloud, so we
can get:

T comrc =
Dr
Rc

, m ∈M, r ∈ Rm (16)

T cmprc =
Cr
fcr

, m ∈M, r ∈ Rm (17)

The task is offloaded to RSU, CCN or Cloud, so the
offloading delay and computing delay of subtask r can be
expressed as:

T offr = brT comrR +

∑
n∈N

arnT comrn + crT comrc (18)

T calr = brT
cmp
rR +

∑
n∈N

arnT cmprn + crT cmprc (19)

In order to constrain the proportion of communication
resource allocation, this paper defines different transmission
costs for nodes. It is assumed that the cost of unit data
transmission to RSU, CCNs and Cloud is ϕcomR , ϕcomn and
ϕcomc , respectively, where each CCN can have different costs,
so the transmission cost of subtask r is:

Costoffr = brϕcomR Dr +

∑
n∈N

arnϕcomn Dr + crϕcomc Dr (20)

Similarly, in order to constrain the allocation of computing
resources, the unit computing resource costs of RSU, CCN
and Cloud are defined as ϕ

cmp
R , ϕ

cmp
n and ϕ

cmp
c , so the

computing cost of subtask r can be obtained as:

Costcalr = brϕ
cmp
R fRrCr +

∑
n∈N

arnϕcmpn fnrCr + crϕcmpc fcrCr

(21)

The transmission and computing costs of the cloud are
much higher than the other two. In summary, the total
offloading delay and cost of subtask r can be expressed as:

T totalr = T offr + T calr (22)

Cost totalr = Costoffr + Costcalr (23)

IV. PROBLEM FORMULATION
Through the definition and analysis of the problem, this paper
aims to minimize the delay and cost of the task, and the final
optimization problem can be expressed in the form of P1.

P1 : min
E,S

∑
m∈M

∑
r∈Rm

µCost totalr + θm(1 − µ)T totalr

s.t. C1 : br +

∑
n∈N

arn + cr = 1, m ∈M, r ∈ Rm

C2 :

∫ τmn

0
Rrn(t)dt ≥ Dr ,T totalr ≤ T dm

C3 :

∑
m∈M

∑
r∈Rm

br f Rr ≤ FR,
∑
m∈M

∑
r∈Rm

brBRr ≤ BR

C4 :

∑
m∈M

∑
r∈Rm

arnfnr ≤ Fn,
∑
m∈M

∑
r∈Rm

arnBnr ≤ Bn

C5 : fcr ∈ R+, m ∈M, n ∈ N , r ∈ Rm

(24)

where E = {arn, br , cr |m ∈ M, n ∈ N , r ∈ Rm},
S = {Bnr ,BRr , fnr , fRr , fcr |m ∈ M, n ∈ N , r ∈ Rm}, µ is
the weight of the cost, C1 is the offloading action constraint,
C2 is the offloading delay constraint, C3 is the RSU resource
allocation constraint, C4 is the CCNs resource allocation
constraint, and C5 is the cloud server resource allocation
constraint. In the actual scenario, due to resource constraints,
the constraint C2 may be difficult to meet. Therefore, in the
algorithm design process, priority should be given to ensuring
the successful execution of emergency tasks, and on this
basis, the global delay and cost should be optimized. Based on
this idea, this paper decomposes the original problem into two
sub-problems: offloading decision and resource allocation,
and solves them respectively.

V. ALGORITHM DESIGN
A. TASK OFFLOADING DECISION
Due to the heterogeneity of vehicle tasks and edge nodes,
the complexity of tasks may exceed the computing power of
edge nodes, resulting in insufficient utilization of resources.
In order to solve this problem, this paper first pre-segments
the task to improve the utilization of edge resources. Suppose
that TaV m has only one task r at first, the specific
segmentation process is expressed as the following steps:

1) Calculate the segmentation flag ω. An edge node i
(i.e., ari = 1 or br = 1) is randomly selected for the
current task r , and the expected offloading delay Tpre of the
task is calculated. Then, according to Tpre and the maximum
tolerable delay T dm of the task, the segmentation flag ω is
calculated. The calculation method can be formulated as:

Tpre = T offr + T calr (25)

ω =
Tpre
T dm

(26)

2) Average task segmentation. If ω ≥ δ, the task is divided
equally, and the calculation process is shown in formulas (27)
and (28). If ω < δ, the task is not segmented.

Drv = Dar +
Dbr
2

(27)

Crv =
Cr
2

(28)

3) Recursive subtask. Traverse each subtask rv, repeat
steps 1) and 2) until the termination condition is satisfied.
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FIGURE 2. Task offloading procedure.

Among them, δ is the segmentation threshold, which can
be determined according to the experiment.

Matching algorithm is an effective method to solve the
problem of task offloading. This kind of algorithm has
the advantages of low complexity, strong scalability and
strong fairness [24], [25]. It can comprehensively consider
multiple factors, including delay, energy consumption, and
task urgency, to achieve overall optimization. This mul-
tidimensional consideration gives the matching algorithm
a significant advantage in resource utilization efficiency.
Additionally, compared to common methods like linear pro-
gramming and ant colony algorithms, the matching algorithm
has lower computational complexity, making it suitable for
highly dynamic scenarios like vehicular networks. It can
also handle competitive and cooperative relationships among
users, ensuring fairness in resource allocation. Deferred
acceptance (DA) algorithm is one of two-sided matching
algorithm, this paper uses DA algorithm to solve the optimal
matching set on the basis of comprehensively considering
the user’s offloading requirements and node performance
differences.

The DA algorithm belongs to the one-to-one matching
algorithm, but in the vehicle task offloading scenario,
the number of tasks is much larger than the number of
nodes. In order to solve this problem, this paper proposes
a multi-round DA algorithm to realize the many-to-one
matching strategy. Specifically, in the initial matching, the
requester will think that the service providers are all idle
nodes, and the maximum resource is the expected resource,
and the two-way matching is performed according to the
initial preference. If the request is rejected, the user will
update the preference size of the candidate node according
to the matching result of the previous round, and perform
a new round of matching. By repeating the above process
until all tasks are matched. The specific task segmentation
and offloading process is shown in Figure 2.

In order to accurately describe the degree of demand for
computing resources by the task generator, the preference
values of the subtask r (r ∈ Rm) for CCN n, RSU and Cloud
are defined as Pr (n), Pr (RSU ) and Pr (Cloud), respectively.

For users, the more computing resources are expected to
be allocated and the shorter the distance from the vehicle
during communication, the more users prefer the node. Due
to the high transmission delay and cost of the cloud server,
Pr (Cloud) is always defined as a minimum value, so the
following definition can be obtained:

Pr (n) = fnr − β
(
dmn(0) + dmn

(
T comrn

))
(29)

Pr (RSU) = fRr − β
(
dmR(0) + dmR

(
T comrR

))
(30)

Pr (Cloud) = min {Pr (RSU) ,Pr (n)|∀n ∈ N } (31)

where β is the weight coefficient of distance, and the relative
distance between users and nodes is used to measure the
quality of communication.
The service provider will conduct a comprehensive eval-

uation of the incoming offloading request from two aspects:
task level and task complexity. For tasks at different levels,
nodes will preferentially accept tasks with high urgency to
ensure the resource requirements of critical tasks. For tasks
at the same level, nodes will preferentially accept more
complex tasks to improve resource utilization. Therefore, the
preference calculation methods of CCN n, RSU and Cloud
for subtask r are shown in (32)-(34).

Pn(r) = θm + ξ
(
ϕcomn Dr + ϕcmpn Cr

)
(32)

PRSU (r) = θm + ξ
(
ϕcomR Dr + ϕ

cmp
R Cr

)
(33)

PCloud (r) = K (34)

where ξ is the adjustment coefficient, and the influence of the
second part is adjusted by setting a smaller value. The cloud
server has unlimited resources and will accept all incoming
tasks, so a constant K is used to represent the preference value
for the task.

To ensure that T totalr ≤ T dm and the resource constraints
C3-C4 of P1, the edge node cannot accept too many tasks
and needs to meet certain computing resource requirements.
To achieve this goal, we defined constraints (35) and (36).∑

m∈M

∑
r∈Rm

arn
Cr

T dm − t̂r
< Fn, n ∈ N (35)

∑
m∈M

∑
r∈Rm

br
Cr

T dm − t̂r
< FR (36)

where t̂r is the expected transmission delay of task r , which
is calculated according to the average bandwidth allocation
method. At the same time, in order to avoid idle nodes, each
node is allowed to accept at least one task. Based on the
above definition, the improved matching algorithm for task
offloading (MAT) proposed in this paper is divided into seven
steps, which are described as follows:

1) Initialization. The TaVs setM, CCNs set N , RSU and
Cloud are defined, and the pre-allocation resources fRr = FR,
BRr = BR of RSU for r and fnr = Fn, Bnr = Bn of CCN n
for r are defined.
2) Task segmentation. Adaptive task segmentation is

performed on any TaVm to obtain the corresponding sub-task
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set Rm. Define the set of rejected subtasks Q = R1 ∪

R2 ∪ . . . ∪RM .
3) Positive preference. By traversing the Q subtask,

we construct a preference list List1 for Cloud, RSU and
CCNs satisfying

∫ τmn
0 Rrn(t)dt ≥ Dr (Corresponding to the

constraint C2 of P1), and calculate the corresponding ranking
according to the preference.

4) Reverse preference. For each CCN, RSU, and Cloud,
a reverse preference list List2 for subtask r is constructed,
and r is ranked according to the preference value.
5) Send requests. By traversing the set Q, each subtask

sends an offloading request to the most preferred node
(Corresponding to the constraint C1 of P1).

6) Accept the request. By clearing the set Q, the service
party will accept the tasks according to the task offloading
request in the order of preference value from high to low, and
reject the tasks that cannot meet the resource constraints (35)
and (36). If the load of the node is full and there are
subsequent offloading requests with higher preference values,
the accepted low preference value requests are replaced.

7) Preference update. All rejected tasks are added to the set
Q, ifQ = ∅, the algorithm ends; otherwise, according to the
formulas (37) and (38), the expected resources of CCNs for
r ∈ Q are updated (fRr and BRr are updated in the same way),
and then List1 is reconstructed for the candidate nodes of r ,
back to step 5).

fnr = Fn −

∑
m′∈M

∑
r ′∈Rm′

ar ′nCr ′

T dm′ − ˆtr ′
(37)

Bnr =
Bn

1 +
∑
m′∈M

∑
r ′∈Rm′

ar ′n
(38)

Since the task will not send repeated requests to the
node, and the cloud server will accept all incoming tasks,
the algorithm will eventually converge. The complexity of
the algorithm increases with the number of subtasks and the
number of service nodes. In the worst case, the complexity of
the algorithm is O(|Q| · |N |).

B. RESOURCE ALLOCATION
After completing the offloading decision, it is necessary to
allocate an appropriate number of computing and communi-
cation resources for each task to further optimize the delay
and cost. In this paper, the resource allocation problem is
divided into two cases: cloud-side resource allocation and
edge-side resource allocation, and solved separately.

1) If only the resource allocation on the cloud side is
considered, the optimization problem can be expressed as:

P2 : min
fcr

(1 − µ)
θmCr
fcr

+ µϕcmpc fcrCr

s.t. fcr ∈ R+, ∀r ∈ Rm (39)

The problem is a convex optimization problem. Since the
most cloud side tasks are non urgent and have high task

offloading costs, the optimal resource allocation solution can
be obtained by f ∗

cr =

√
θm(1−µ)

µϕ
cmp
c

.

2) If only the edge-side resource allocation is considered,
any edge node can be expressed as i(i ∈ H), where H =

N ∪ {RSU}, then the optimization objective of node i can be
expressed as Vi:

Vi =

∑
m∈M

∑
r∈Rm

ari
[
µCost totalr + θm (1 − µ)T totalr

]
(40)

When task r is offloaded to RSU, there is arRSU = 1 and
br = 1. The optimization problem at this time can be
reconstructed into the following form:

P3 : min
Bir , fir

∑
∀i∈H

Vi

s.t. C1 :

∑
m∈M

∑
r∈Rm

arif ir ≤ Fi

C2 :

∑
m∈M

∑
r∈Rm

ariBir ≤ Bi (41)

This problem has high computational complexity and
no explicit analytical solution. Genetic algorithm has the
advantages of strong flexibility and easy implementation. It is
a feasible method to solve this kind of problem. However, the
disadvantage is that the calculation is time-consuming and
easy to fall into local optimum.

In order to solve this problem, this paper uses chaotic
mapping to select crossover and mutation points [26].
Compared with the completely random selection method,
the chaotic mapping has the combined characteristics of
randomness and certainty in mathematics, and can generate
a numerical sequence that is evenly distributed in a specific
interval. In this way, the genetic algorithm can cover all
possible solutions more evenly when searching the solution
space, which is helpful to jump out of the local optimal
solution. In addition, in order to accelerate the convergence
speed of the algorithm, this paper uses the opposition-based
learning strategy to improve the quality of the initial
population [27]. This strategy can generate two individuals
with symmetrical values according to the interval range. One
of the two individuals must be closer to the global optimum.
Therefore, the initial population after optimization can be
obtained by eliminating the worse one and retaining the better
one. Compared with the completely randomly generated pop-
ulation, this strategy can make the algorithm converge faster.

Therefore, this paper uses opposition-based learning and
chaotic mapping to improve its search ability and conver-
gence speed. Since the resource allocation between nodes
is not related, it can be considered to solve the resource
allocation problem separately for each node, so that the search
space is smaller and the complexity of problem solving can
be reduced.

Assuming that each channel is transmitted in OFDMmode,
the bandwidth resources to be allocated can be composed of
multiple sub-bandwidths, andCPU resources can be allocated
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according to the time slice. Therefore, the optional bandwidth
allocation ratio is defined as Bij ∈ {B1,B2, . . . ,Bl}, and the
allocated computing resource ratio is Fij ∈ {F1,F2, . . . ,Fc}.
The value range of each element is in the interval (a, b) (this
paper assumes a = 0, b = 1). In the process of resource
allocation, it is necessary to optimize the global delay and
cost, and ensure the success rate of the task. Therefore, the
fitness function of node i can be expressed as follows:

Ji =
1
Vi

1 +

∑
m∈M

∑
r∈Rm

ariθm · χ
(
T totalr ≤ T

d
m

) (42)

Among them,χ is the indicator function, when the discrim-
inant is true, the value is 1, otherwise it is 0. When the target
value is smaller and the number of urgent tasks completed is
larger, the individual’s fitness is correspondingly larger. The
iterative process of the algorithm mainly includes six steps:
coding, population optimization, selection, chaotic crossover,
chaotic mutation and elimination, as shown in Figure 3. The
specific process of improved genetic algorithm (IGA) is as
follows:

FIGURE 3. IGA algorithm procedure.

1) Coding. Individual X = {x1, x2, . . . , xk} is defined to
represent a resource allocation solution of node i. Here, any
element xq ∈ X is represented in the form of a binary string,
which means the number of resource allocations of the node i
for the

⌊
(q−1)

2

⌋
+ 1st tasks. If q%2 = 0 is satisfied, then

xq represents the solution of bandwidth allocation, otherwise,
it represents the solution of computing resource allocation.

2) Population optimization. In order to optimize the
quality of the initial population, the reverse individual X ′

={
x ′

1, x
′

2, . . . , x
′
k

}
corresponding to X is obtained by using the

opposition-based method, and any element x ′
q = a+ b− xq.

According to the size of the fitness, the optimal one is retained
as a member of the initial population in a pair of positive and
negative individuals.

3) Selection. On the basis of the initial population, the
selected probability is obtained according to the fitness
of each individual, and a part is selected as an excellent
individual by the roulette method.

4) Chaotic crossover. Through the given hybridization
probability, some chromosome fragments of each individual
are exchanged. When the probability hits, the individual
is cross-operated, and logistics mapping is used to select

the crossover point. Specifically, firstly, the initial value
on ∈ (0, 1) is selected, and the chaotic sequence is obtained
according to the formula on+1 = 4on (1 − on). Then, the
sequence is mapped to the chromosome gene space according
to z = ⌊on+1⌋ ∗|X |, so that the crossover occurs at this
position to form a new offspring. Only by replacing some
point genes, the change is small, which can avoid the problem
of optimal chattering in the process of generating offspring.

5) Chaotic variation. Through the given mutation proba-
bility, some gene values are randomly changed from 1 to 0,
or from 0 to 1. Similar to the previous step, the chaotic
sequence is also used to obtain the mutation point and change
the value at the point.

6) Elimination. In order to meet the resource allocation
constraints, the individuals beyond the sum of resources are
eliminated, and the optimal individuals in this cycle are
recorded. Due to the timeliness requirements of the vehicle
network, it is assumed that the algorithm iteration process is
terminated when a certain number of cycles is satisfied, and
the optimal individual is used as an approximate solution for
resource allocation.

C. GLOBAL ALGORITHM
In this paper, task offloading decision and resource allocation
are modeled as mixed integer nonlinear programming
problems. A task offloading scheme based on MAT and
IGA is proposed and named as MAT-IGA. In this paper,
the problem is divided into two sub-problems: offloading
decision and resource allocation. Firstly, the original task
is divided by adaptive task segmentation algorithm, and the
task offloading decision is obtained by using the improved
matching algorithm. Then the task offloading decision is
input into the original problem, and the resource allocation
problem is solved by applying IGA algorithm to each node.
The specific steps are as follows:

1) Initialize the task set of TaVs and the starting resources
of CCNs, RSU and Cloud.

2) Roadside unit RSU collects environmental data and uses
MAT algorithm to obtain task offloading decision E .

3) According to the decision result E , the IGA algorithm
is applied to the edge-side CCNs and RSU, and the convex
optimization method is applied to Cloud to obtain the
resource allocation scheme S.
4) RSU publishes task offloading schemes E and S, and

all nodes offload or calculate tasks according to the specified
scheme.

5) Each node returns the calculation results to the task
vehicle TaVs.

In summary, the entire process of the MAT-IGA algorithm
is shown in Figure 4 and Algorithm 1.

VI. SIMULATION DESIGN
A. PARAMETER SETTING
This paper uses Python 3.8 for simulation verification on
Windows 10 systems. Consider a road scenario where there
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Algorithm 1MAT-IGA Algorithm
Input:

The task vehiclesM;
The crowd computing nodes N ;
The roadside unit RSU ;

Output:
Task offloading decision E ;
Resource allocation schema S;

1: RSU collects environmental information including task
vehicle information and service node information;

2: RSU uses MAT algorithm to solve E ;
3: H = N ∪ {RSU};
4: S = ∅

5: for each i ∈ H do
6: RSU uses IGA algorithm to solve the resource

allocation schema si of node i;
7: S.append(si);
8: end for
9: RSU publishes task offloading strategy {E, S};
10: for each j ∈M do
11: TaV j offloads the task to the corresponding CCN;
12: end for
13: for each z ∈ H do
14: Node z processes the received task according to

scheme S;
15: Node z returns the calculation result of the task to the

corresponding TaV;
16: end for

FIGURE 4. MAT-IGA algorithm flow chart.

is a RSU with computing and communication capabilities,
a cloud server, and different numbers of TaVs and CCNs.
Each TaV has a randomly generated in-vehicle task, and each
service node has a different number of resources and unit
costs. It is assumed that the number of TaVs is between
[20,25], the number of SeVs is between [8,13], the RSU
communication radius is 300 m, the number of roadside APs
is between [3,6], and the distribution interval is between
[10,70]m. The simulation scenario is shown in Figure 1.

In order to ensure the reliability of the experimental
results, the initial position and speed of the vehicle will
change randomly in each iteration period. At the same time,
in order to eliminate randomness, each experiment carries out
100 iterations in different scenarios. At each iteration, the
vehicle position, vehicle speed and other characteristics are
changed, and the target cumulative value of the optimization
problem P1 is taken as the final result. The target cumulative
value can be defined as the sum of the target value for
each iteration. The relevant parameter settings are shown
in Table 1.

TABLE 1. Units for magnetic properties.

In order to verify the effect of the MAT-IGA algorithm
proposed in this paper, four benchmark schemes are selected
for simulation comparison:

1) MAT-AVG scheme: The MAT algorithm is used to
segment and offload tasks, and the communication and
computing resources are evenly allocated to each task.

2) DIS-IGA scheme: Taking distance as the main reference
factor, the sub-task is preferentially offloaded to the node
closest to the current vehicle. If the load of the offloaded node
is full, it is offloaded to the next nearest node. Finally, the IGA
algorithm is used to allocate resources.

3) SMRETO scheme [28]: A partial offloading algorithm
based on bilateral matching. This method uses task deadline,
channel rate as evaluation indicators to make decisions, but
does not consider the importance of tasks and cloud server
resources.

4) SA-PSO scheme [29]: An improved particle swarm
optimization algorithm based on the Metropolis Criterion.
This method considers the residence time of the vehicle and
uses the improved particle swarm optimization algorithm to
search the offloading strategy, but does not consider task
segmentation and node collaboration.

B. SIMULATION ANALYSIS
Due to the difference in the number of resources and the
unit cost of nodes, too much task segmentation will lead
to increased transmission delay and cost, and too little task
segmentation will lead to insufficient resource utilization.
Therefore, this paper first compares the effects of MAT-IGA
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algorithm under different δ parameters, as shown in Figure 5.
In the scenario of this paper, with the increase of δ, the target
value decreases first and then increases. When δ is 0.8, the
best global optimization effect can be achieved.

FIGURE 5. The effect of MAT-IGA under different δ.

For the IGA algorithm, too large population size will
increase the amount of calculation, too small can not provide
enough sampling points, easy to fall into local optimum,
so this paper compares the effects of the algorithm under
different population sizes, as shown in Figure 6.

FIGURE 6. Comparison of IGA under different populations.

The simulation results show that when the initial popu-
lation size is 90, the target value can reach the minimum.
Continuing to increase the population size does not sig-
nificantly improve the optimization effect, but will lead to
an increase in computational complexity. In order to verify
that the improved IGA is better than the original genetic
algorithm, this paper compares the differences between the
four algorithms without any improvement (IGA-NoALL),
only using opposition-based learning (IGA-NoChaos), only
using chaotic mapping (IGA-NoOBL) and the proposed
algorithm (IGA), as shown in Figure 7.
It can be found that the lack of any improvement

strategy will lead to a decrease in the convergence speed or
optimization effect of the algorithm. The opposition-based
learning and chaotic mapping strategies have a certain effect

FIGURE 7. The convergence effect of different genetic algorithms.

on improving the convergence speed and final optimization
effect of the algorithm.

In order to adjust the influence of delay and cost, this paper
defines the parameter µ. However, the setting of µ value
will affect the procession of resource allocation. Therefore,
in order to explore the influence of this parameter on the
performance of the algorithm, this paper compares the change
trend of the delay and cost of task offloading and the average
task success rate under different µ, as shown in Figure 8 and
Figure 9.

FIGURE 8. The effect of MAT-IGA under different µ.

FIGURE 9. The success rate of MAT-IGA under different µ.

From the simulation results, it can be seen that with
the increase of µ, the delay increases gradually, the cost
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decreases gradually, and the success rate of task offloading is
almost unchanged. The reason is that when the cost weight
µ increases, the more resources the node allocates to the
task, the higher the offloading cost of the task. Therefore,
nodes tend to allocate fewer resources to tasks, but at
the same time, due to the definition of fitness function,
nodes must meet the delay requirements of receiving tasks.
Therefore, the node ultimately only allocates the necessary
number of resources to the task. When the cost weight µ is
small, the task offloading delay gradually becomes the main
component of the optimization goal. At this time, the node
will allocate as much resources as possible to reduce the total
processing delay of the task, so as to obtain a smaller object
value. However, due to the limited resources of nodes, the
optimization degree of delay will gradually approach a limit.

Since the number of vehicles in the actual scene often
changes greatly, in order to verify the optimization effect of
the algorithm in different scenarios, this paper changes the
number of TaVs and SeVs and performs simulation tests. The
optimization effect of different task offloading schemes is
shown in Figure 10.

FIGURE 10. Comparison under different TaVs.

It can be found from Figure 10 that due to the heterogeneity
of tasks, the curves have certain fluctuations. However, as the
number of TaVs increases, the target values of all algorithms
show an upward trend. The reason is that the increase in the
number of tasks leads to an increase in latency and cost.
In Figure 11, as the number of service vehicles increases,
the target values of most algorithms show a downward trend,
because the increase of crowdsourcing nodes can provide
more computing resources.

From the perspective of optimization effect, this method
can achieve the lowest delay and cost loss under different
vehicle numbers. Since SA-PSO algorithm does not use
task segmentation to reduce task complexity, it is slightly
worse than MAT-IGA in resource utilization. The SMRETO
algorithm considers the deadline of the task and uses the
matching strategy to allocate the task. However, the algorithm
ignores the difference in the urgency of the task, which leads
to the lack of delay optimization of important tasks, and then
makes the global optimization effect worse. It can be found

FIGURE 11. Comparison under different SeVs.

from Figure 11 that the optimization effect of the algorithm
is not as good as that of SA-PSO, and it is close to DIS-IGA
as a whole.

Considering the impact of task characteristics on the
algorithm, this paper conducts simulation tests under dif-
ferent task data volume and computational complexity, and
compares the optimization effects of each scheme. The
simulation results are shown in Figure 12 and Figure 13.

FIGURE 12. Comparison under different task data.

FIGURE 13. Comparison under different task computation amount.

Figure 12 and Figure 13 shows the comparison results of
the algorithms under different task characteristics. As the
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complexity of the task increases, the transmission delay and
calculation delay of the task will increase, so the target values
of all algorithms are on the rise. Similarly, with the increase
of computational complexity, the target value also shows an
upward trend. However, in contrast, the MAT-IGA algorithm
still maintains the lowest delay and cost.

In addition to the comparison of the object value, the task
success rate is also an important indicator to measure the
advantages and disadvantages of the algorithm. Therefore,
this paper compares the average task success rate of three
levels of tasks under different schemes, as shown in Figure 14.
Since the MAT-AVG algorithm uses the average resource
allocation method and does not consider the delay bound of
the task, it has the worst effect in terms of task success rate.
The MAT-IGA algorithm can give priority to the resource
requirements of emergency tasks. Therefore, for tasks with
high urgency, the offloading success rate is significantly
higher than that of othermethods, but for tasks with the lowest
level, the offloading success rate is slightly worse than that of
SA-PSO algorithm.

FIGURE 14. Success rate of different levels of tasks.

FIGURE 15. Task success rate under a small amount of timeout.

Figure 15 compares the changes in the task success rate
index of the MAT-IGA algorithm when a small amount of
timeout is allowed. It can be seen that with the reduction of
delay requirements, the success rate of all tasks is increasing,
and the low-level tasks change the most. In the actual

scenario, for some common types of tasks, users often do
not have strict delay requirements. Therefore, this method can
prioritize the resource requirements of emergency tasks while
completing secondary tasks as much as possible, thereby
reducing the computational burden of vehicles.

VII. CONCLUSION
This paper proposes a vehicular task offloading and resource
allocation scheme based on mobile edge computing. Based
on the three-tier computing offloading framework of MEC,
this scheme fully considers the dynamics of environmental
resources, especially the task offloading problem in resource-
constrained scenarios. Firstly, this paper uses the adaptive
task segmentation mechanism to divide the tasks to adapt
to the computing power in the region and improve the
resource utilization. Then, combined with the improved DA
algorithm, the preference value is defined by the factors
such as task urgency, relative distance and communication
delay, and the optimal matching set is solved by the two-way
selection of users and service methods. Finally, the chaotic
genetic algorithm is used to optimize resource allocation. The
simulation results show that the proposed method is superior
to the common baseline algorithm under different task
characteristics and vehicle numbers. Therefore, the method
proposed in this paper makes up for some shortcomings in
the research of task offloading to a certain extent, and also
promotes the further development of the Internet of Vehicles.
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