
Received 18 October 2024, accepted 4 November 2024, date of publication 7 November 2024, date of current version 18 November 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3493141

State-of-Charge Estimation of Lithium–Ion
Battery Integrated in Electrical Vehicle
Using a Long Short-Term Memory Network
CHI NGUYEN VAN 1, MINH DUC NGO2, CUONG DUONG DUC1,
LE QUANG THAO 3, AND SEON-JU AHN 4, (Member, IEEE)
1Department of Control and Measurement, Thai Nguyen University of Technology, Thai Nguyen 251750, Vietnam
2Department of Automation, Thai Nguyen University of Technology, Thai Nguyen 251750, Vietnam
3Faculty of Physics, VNU University of Science, Hanoi 100000, Vietnam
4Department of Electrical Engineering, Chonnam National University, Gwangju 61186, South Korea

Corresponding author: Seon-Ju Ahn (sjahn@chonnam.ac.kr)

This work was supported in part by the National Research Foundation of Korea (NRF) through Korean Government (MSIT) under Grant
RS-2024-00454464; and in part by Thai Nguyen University of Technology (TNUT), Vietnam.

ABSTRACT Improving the accuracy of state-of-charge (SoC) estimation is crucial for electric vehicles (EVs)
using Lithium-Ion batteries (LiBs). This helps users reliably predict driving range and optimize the charging
process, thereby extending battery life and ensuring safety during use. However, due to temperature, driving
mode, and charge-dependent electrochemical nonlinear dynamics, SoC estimation for LiB integrated with
EVs remains a significant technical challenge. In particular, SoC estimation in the regions of SoC < 30%
and SoC > 80% is often inaccurate due to nonlinearity and sensitivity to battery aging. Accurate estimation
in these regions is crucial for making decisions regarding recharging and discharging to prolong battery life
and prevent damage. To address this issue, this paper proposes a method for SoC estimation using a Long
Short-Term Memory (LSTM) network, which is capable of retaining information on battery characteristics
related to changes long term electrochemical parameter changes, such as the number of discharge cycles
and the aging effects. The method utilizes practical data from 80,000 samples collected from pure electric
vehicle testing under different driving modes, temperatures, and road conditions over a 30-day period. The
LSTM network was optimized by adjusting the input data sequence and hidden size to minimize the number
of hyperparameters. This makes it suitable for use on low-cost processors with moderate computing power.
SoC estimationwas evaluated across four SoC test regions: SoC< 30%, SoC> 80%, 30%≤ SoC≤ 80%, and
0% ≤ SoC ≤ 100%. The results were compared with feedforward neural network (FNN) and convolutional
neural network (CNN). Despite having a configuration with a hidden size of 96 and a single layer, the LSTM
model achieved estimation accuracy with RMSE = 0.0106, MAE = 0.0077, and MAPE = 1.4116%.

INDEX TERMS Lithium-ion battery, SoC estimation, long short-term memory network, electric vehicles,
feedforward neural network, convolutional neural network.

I. INTRODUCTION
Today, fossil fuel resources are gradually depleting due
to overexploitation to meet the industrial and consumer
demands, primarily for personal transportation means. This
overexploitation is the main cause of greenhouse gas
emissions and global warming, making Earth’s climate more
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severe. Therefore, transitioning to the use of electric vehicles
is an inevitable trend that has been accepted and adopted
by countries worldwide, with each outlining individual
transition pathways. The demand for electric vehicles and
the growth of the electric vehicle market are influenced by
various drawbacks. These include consumer worries about
the remaining battery capacity during long-distance travel,
the accuracy of battery parameter measurements, battery
lifespan, replacement costs, and thermal safety [1], [2].
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Currently, LiBs are widely used in electric vehicles due
to their long lifespan, low self-discharge rate, high energy
density, and usage in smart grid storage systems and
renewable energy storage. To drive the development of the
electric vehicle market, two trends are being implemented:
1) Developing new materials with better electrochemical
properties to manufacture batteries with larger capac-
ity, higher density, faster charging, and improved safety.
2) Advancing methods with higher accuracy to estimate
electrochemical parameters inside cells such as SoC, State
of Health (SoH), in order to optimize charging and dis-
charging control actions, ensuring the battery remains in the
healthiest state and ensuring absolute safety for users [3].
SoC is a crucial parameter of the battery, representing the
remaining capacity within the cell at the time of measurement
compared to the rated capacity of the cell, expressed
by (1):

SoC (t) =
Q(t)
Qf (t)

100% (1)

where Qf (t) is the capacity of the cell when fully charged,
this value changes slowly over time depending on the cell’s
aging level; Q(t) is the remaining discharge capacity at the
time of measurement. According to (1) above, the value
of SoC varies in the range from 0% to 100%. If SoC =

100%, it means the battery is fully charged, and when SoC =

0%, the battery is considered fully discharged. Due to the
characteristics of LiB, operating them when SoC is < 20%
is not permitted in electric vehicles, requiring the battery
to be recharged. SoC depends on several factors, with the
temperature and aging (or usage time) being among the most
prominent. As the temperature increases, the actual charge
in the battery will decrease when compared to the same SoC
value. LiBs are recommended for use within a temperature
range of −10 to 50 degrees Celsius. Similarly, as the battery
usage time increases, the battery will gradually age, and
when this happens, 100% SoC would be equivalent to a
75% – 80% SoC of a new cell [4]. SoC is a parameter that
cannot be directly measured in commercial applications such
as electric vehicles because the measuring devices are bulky
and expensive, and they can only be operated in laboratory
settings. Therefore, in all electric vehicle applications, SoC
needs to be estimated based on variables such as voltage,
current, temperature, and other parameters. Currently, many
researchers are focused on developing methods to estimate
SoC. However, the nonlinearity of SOC and its dependence
on temperature and aging make accurate SoC estimation
very challenging, especially when SoC is <30% and SoC >

85%, and when the battery has aged (old battery cell).
There are three main methods for estimating SoC: traditional
methods, model-based methods, and data-driven methods.
For traditional methods, SoC is estimated based on the rela-
tionship between open-circuit voltage and SoC [5], Coulomb
counting method [6], or using electrochemical impedance
spectroscopy (EIS) [7], [8]. SoC estimated by traditional
methods often suffers from cumulative errors, inaccuracies

in the one-to-one relationship between open-circuit voltage
(OCV) and SoC, and is therefore not widely used in the
field of electric vehicles. For model-based methods, SoC
estimation uses Kalman filters, Extended Kalman Filter,
Sigma Point Kalman Filter, etc., for a mathematical model
of the battery cell (usually an equivalent circuit model or
electrochemical model) [9], [10], [11]. However, the errors
in these methods will gradually increase as the battery cells
age and sudden temperature variations occur during use,
because the parameters in the model used to estimate SoC
do not accurately reflect the actual cell values at the time
of estimation. For data-driven methods, SoC estimation uses
trainable neural networks to determine SoC based on the
values of input data. The advantage of this method is that
it does not require a model; however, selecting data to
preserve the characteristics of the cell, especially temperature
dependence and aging, is crucial for accurately estimating
SoC. Additionally, the proper structure of the neural network
and choice of learning algorithm also determine the success
of accurately estimating SoC throughout the battery’s usage.
Complex, multi-parameter neural networks can offer accurate
SoC estimation, but in practical deployment, they require
powerful processors, leading to higher hardware costs and
reducing the competitiveness of electric vehicles. Authors
in the literature have used deep neural network (DNN) to
directly estimate SoC from voltage, current, and temperature
data of the battery packs, achieving a minimum error of
2.17% mean absolute error (MAE) [12]. However, the
drawback of this method is the large estimation error. Hansen
and Wang [13] and Anton et al. [14], developed a SoC
estimation method based on support vector machine (SVM),
using US06 cycling driving data for SoC estimation results
with a root mean square (RMS) error less than 6%. Authors
in [15] used a 3-layer feed-forward neural network, using
three input data of current, voltage, and temperature and
adding first and second-order derivatives of them to estimate
SoC for Ni-MH batteries. The estimation results showed
a relatively large estimation variance due to over-fitting
or under-fitting phenomena. A common weakness of SoC
estimation is that all estimation methods tend to exhibit
large errors when the SOC is below 30% or above 80%,
highlighting the limitations of the above approaches. This
is due to the increased nonlinearity of SoC in these two
ranges, driven by the electrochemical characteristics of the
cell. On the other hand, the change of SoC with aging
also increases the estimation error over time. Therefore,
although FNN and CNN can estimate SoC quite accurately
with new cells, the estimation error increase as the cells
age [16]. LSTM neural networks have significantly advanced
the accuracy of SoC estimation for LiB, which is crucial for
the reliable operation of electric vehicles and themanagement
of battery-powered systems. The LSTM’s ability to learn and
retain information over long sequences makes it particularly
well-suited for modeling the complex, nonlinear dynamics of
battery behavior under various conditions. With an increase
in hidden nodes, the ability to represent features of aging cells
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may improve. This network shows promising potential, with
higher accuracy in estimating SoC [6], [17]. Recent studies
have demonstrated the efficacy of LSTMmodels in capturing
the intricate relationships between SoC and factors such as
temperature, voltage, and current. For example, an LSTM-
based approach has been shown to accurately estimate
SoC with errors of less than 1.5% under varying ambient
temperatures, representing a significant improvement over
traditional methods [18]. Another study employed deep
LSTM networks to estimate SoC across different battery
specifications and discharge cycles, highlighting the model’s
versatility and robustness [19]. The authors in document [17]
applied Bi-LSTM networks to estimate SoC, with MAEs
of the estimation error at some temperatures: 0◦C, 10◦C,
and 25◦C are 0.498%, 0.411%, and 0.738% respectively.
However, this method has not yet been improved in terms of
accuracy. The key findings of the papers on the use of LSTM
neural networks for estimating the SoC of LiB are quite
ground-breaking and make a significant contribution to the
field of battery management system (BMS). Firstly, LSTM’s
ability to process and learn from timeseries data has proven
highly effective for SoC estimation, which is a dynamic
process influenced by various factors such as temperature,
aging, and load cycles. These papers demonstrate that LSTM
models can accurately track the non-linear characteristics
of batteries, providing more precise SOC readings than
traditional methods. Some of the research has shown that
incorporating environmental variables such as temperature
into the LSTM model can greatly improve the accuracy
of SoC predictions. This is particularly important for EVs
operating in varying climatic conditions. Studies [17], [19],
[20] show that LSTM networks can be trained with a
relatively small amount of data to predict SoC with high
accuracy, which is beneficial for reducing computational
costs and improving the efficiency of the training process.
Another important finding is the potential of LSTM models
to generalize across different types of LiB. This means that a
model trained on one battery type can be adapted to other
types with minimal adjustments, making it a versatile tool
for SoC estimation. Moreover, the integration of LSTM with
other techniques, such as Kalman filters, has been shown
to further refine the estimation process, suggesting a hybrid
approach could be the way forward in advanced BMS [21],
[22].

This article presents the use of LSTM networks to
estimate the SoC of electric vehicle batteries during use,
selecting several more relevant variables. The data we
collected from 80,000 samples, including vehicle velocity,
pack bus voltage, pack current, electric motor speed, electric
motor temperature, electric motor control voltage, average
cell voltage, and average cell temperature collected from
pure electric vehicle tests under different driving modes,
temperatures and road conditions for 30 days. After analyzing
their correlation, we selected eight variables as inputs, with
SoC as the output. After analyzing the characteristics of SoC,
we established training data intervals and estimation data

intervals (choosing different intervals, focusing on those with
the most variation), especially in the final stages of the test
cycle. Selecting data intervals should focus on ranges where
SoC varies most, quickly, and notably contain intervals with
small SoC values. Next, an LSTM network was set up to
estimate SoC. The LSTMnetwork is then calibrated to reduce
the number of hyperparameters and the length of the data
series with the aim of reducing the computational level to
be able to deploy to low-cost hardware. Using three criteria
to evaluate the SoC estimation error, including RMSE, MSE
and MAPE for four regions SoC > 80%, SoC <30%, 30%
≤ SoC ≤ 80%, and 0% ≤ SoC ≤ 100%, and comparing with
the FNN and CNN models, it shows that the estimation error
of the LSTM network is the smallest.

The structure of this article is as follows: Part 1 serves as
a general introduction; Part 2 discusses the experimental data
collection methods and data preparation steps; Part 3 covers
the configuration of the LSTMnetwork and the training steps,
as well as the selection of training data, evaluation data, and
estimation data. Part 4 presents the SoC estimation results,
evaluation, and comments; Part 5 includes discussions and
exchanges, and conclusions.

II. DATA PREPATION STEPS
In this study, we utilized data collected from the platform
of a pure electric vehicle (EV) operated under various road
conditions, temperatures, and driving modes. The data was
sampled using a 10-second/sample cycle over a period of
30 days. The electric vehicle has a battery pack consisting of
95 series-connected cell modules with a nominal bus voltage
of over 300V. The collected data includes odometer readings,
vehicle speed, electric motor speed, electric motor torque,
electric motor temperature, motor voltage, and current, while
regarding the battery pack, data collected includes bus
voltage, current through the battery, actual SoC, battery
insulation resistance, voltage across the 95 battery cells, and
30 temperature measurement points. To determine the actual
SoC, the coulombic efficiency is calculated as a function
of the temperature, from the total ampere-hours discharged
and ampere-hours charged int the test scenarios. Based on
the coulombic efficiency, the depth of discharge (in ampere-
hours) is calculated at each point in time. The discharge
capacity at the time of measurement is Q (t) is 1 - depth of
discharge(t), and finally, the actual SoC is calculated from (1).
These data are shown in Figure 1.

With continuous testing over 30 days, comprising nearly
80,000 data points, features related to battery aging and
SoC fluctuations were observed in the current, voltage,
and temperature data. Driving mode characteristics were
reflected in vehicle speed, motor torque, and electric motor
speed. Battery capacity showed an inverse correlation with
the vehicle’s distance traveled, with the rate of battery
capacity depletion being proportional to the electric motor
speed. For the neural network training process to be
effective, the collected data needs to be analyzed for its
correlation with SoC. Some parameters should exhibit a
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FIGURE 1. Input-output data after normalization to the range from 0 to 1.
The upper plot shows the input data consisting of 8 types, within
approximately 80,000 sampled points. Similarly, the lower plot depicts
the normalized output data (SoC).

strong correlation with SoC, while others may show a weaker
correlation.

In practice, there are two methods to analyze correlation
coefficients: the Pearson method and the Spearman method.
In this study, we employed the Spearman method because

the collected data is influenced by noise and has high
nonlinearity. The formula for calculating the Spearman
correlation coefficient is as follows:

ρX ,Y = 1 −
6

∑n
i=1 di

n(n2 − 1)
(2)

in which, −1 ≤ ρX ,Y ≤ 1 is Spearman’s rank correlation
coefficient of two observations X ,Y ; di is difference
between the two ranks of each observation, n is number of
observations. A value of +1 indicates a perfect positive rank
association, a value of 0 means no association between ranks,
a value of −1 means a perfect negative association between
ranks. Figure 2 describes the correlation coefficients of the
variables with SoC.

FIGURE 2. Spearman’s rank correlation coefficient between SoC and
observations.

Figure 2 shows that voltage is the most relevant parameter
to SoC, followed by some motor-related parameters. Consid-
ering that the Spearman correlation coefficient is sensitive
only to the direction and intensity of changes between
variables, it cannot capture variables with strong instan-
taneous changes in speed and total current. Furthermore,
because mileage is a continuously increasing parameter, it is
not constrained by the correlation coefficient. Taking all
factors into account, the input parameters, excluding battery
insulation resistance (K�), motor torque (Nm), and DC bus
current of motor controller (A), will be used as the final
input parameters. Therefore, the input parameters used to
train the network in this study are eight parameters: Velocity
(km/h), Bus voltage (V), Current (A), Driver motor speed
(r/min), Drive motor temp (0C), Motor controller input
voltage (V), average voltage of cells (V), and average cell
temperature (0C). The distance traveled is a parameter related
to the aging process. These parameters are normalized to a
range of 0 to 1 as follows:

xnorm =
x − xmin

xmax − xmin
(3)

where, xmin and xmax are the minimum and maximum values
of the observed variable X . After normalization, the input and
output data are as described in Figure 3.
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FIGURE 3. Input-output data after normalization to the range from 0 to 1.
The upper plot shows the input data consisting of 8 types, within
approximately 80,000 sampled points. Similarly, the lower plot depicts
the normalized output data (SoC).

The selection of the dataset used for estimation: from
the normalized output data, the principle is to select data
segments with rapid changes in SoC, especially those with
many segments where SoC < 30% and SoC > 80%.
These are the segments where the nonlinearity of SoC with
respect to the input variables is most pronounced, and it
is crucial that SoC is accurately represented in the lower
regions. We selected data for training in the following regions
(in the red-colored cells, in consecutive order) to ensure that
aging characteristics are represented in the data. Based on the
length of the input data series, the input data series is divided
into 6 regions. The input data region corresponding to the
output normalized SoC data with the most values between
0.3 and 0.8 will be selected as the testing set. Dividing the
data in this way will help the model focus on learning regions
with values below 0.3 and above 0.8, because these value
regions have very high variability. The description of the data
regions selected for network training and testing is shown in
Figure 4.

III. CONFIGURATION OF LSTM AND TRAINING
A. LSTM NETWORK INITIALIZATION
In this study, we use an LSTM network with a single node
structure as described in Figure 5, where xn is the normalized
input including velocity, bus voltage, bus current, drive
motor speed, drive motor temperature, motor controller input

FIGURE 4. The data selected for training and testing.

voltage, average cell voltage, and average cell temperature.
cn and hn represent the state output and hidden output of the
network node n, respectively. These outputs are recursively
used to estimate SoC of the battery cell. cn−1 and hn−1 are
the two outputs of the previous network node n − 1. The
σ symbol represents the sigmoid activation function with a
matrix output, and tanh is the hyperbolic tangent function
with a vector output. Each LSTM network node has three
gates: the forget gate (fn), the input gate (in) and the output
gate (on). These gates are implemented by a regular neural
network and act as filters of information and functions.

The update formulas for the gates are as follows:
• Input gate: Control the update rate of new state
according to (4)

in = σ (Wi[hn−1, xn] + bi) (4)

• Forget gate: Control the forgetting rate of old state
according to (5)

fn = σ (Wf [hn−1,xn] + bf ) (5)

• Output gate: Control the update rate of state according
to (6)

on = σ (Wo[hn−1, xn] + bo) (6)

where, Wi, bi,Wf , bf ,Wo, bo are the weight and bias matri-
ces, respectively. Each network node n has a vector c̃n
determined through a hyperbolic tangent function centered
at 0, with a gradient distribution designed to prevent
vanishing phenomena. c̃n is used to adjust the update rate of
the new state of the state cell, and it is calculated using (7),
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FIGURE 5. Structure of an LSTM network node.

where Wc and bc are the weight matrix and bias vector,
respectively.

c̃n = tanh(Wc[hn−1, xn] + bc) (7)

The output of the network node’s state cn is calculated
using (8) and consists of two components: the previous state
component of the cell to be forgotten, fn ∗ cn−1, and the new
state component to be updated, in ∗ c̃n.

cn = fn ∗ cn−1 + in ∗ c̃n (8)

The hidden state output of network node is calculated
using (9).

hn = on ∗ tanh(cn) (9)

The parameters of the LSTM network node include bias
vectors bi, bf , bc, b0 and weight matrices Wi,Wf ,Wc,W0
across four layers. From the above formulas, we observe
that fn < 0, in < 1, on < 1. This suggests that hn, c̃n
are quite similar to those in RNN, making them capable
of remembering short-term information. In contrast, cn is
functions like a transmission belt in the RNNmodel, selecting
which important remote information will be sent in and used
later as needed.

B. CHOOSING A LEARNING ALGORITHM
The commonly used algorithms for training LSTM networks
include the following:

• ‘sgdm’ — Use the stochastic gradient descent with
momentum (SGDM) optimizer, in which the value of
momentum can be chosen

• ‘rmsprop’ — Use the RMSProp optimizer, which can
adjust the decay rate of the squared gradient moving
average

TABLE 1. Training parameters.

• ‘adam’ — Use the Adam optimizer, which can also
adjust the decay rates of both the gradient and squared
gradient moving averages

In this study, we use the adam optimization algorithm
to optimize the weights at each step, enabling faster
convergence compared to methods using the slope of the
random gradient. This approach is particularly suitable for
models with many parameters, as the learning rate adjusts
based on the distortion of the moving average of the gradient
and the square gradient. The training parameters are listed in
Table. 1.

C. TURNING THE HYPERPARAMETERS OF THE MODEL
We use a standard LSTM model with the configuration
described in Figure 5 with the hyperparameters listed in
Table. 2. To evaluate the SoC estimation error, we use three
error evaluation criteria: MSE, RMSE, and MAPE as defined
in (10)-(12). The MSE criterion is commonly used and is
calculated based on the mean square of the SoC estimation
error. The closer the MSE value is to 0, the better the model’s
performance. RMSE measures the dispersion of the SoC
estimation error and indicates the difference between the
SoC values estimated by the model and the actual value.
RMSE is useful for understanding the absolute fit of a model.
The MAPE criterion helps to evaluate the error relative to
the correct data, so the MAPE criterion should be used
when evaluating the estimation error with different data sets.
The configuration of the LSTM model with hyperparameters
listed in Table. 2 is shown in Figure 6a.

MSE =
1
N

∑N

i=1

(
yi − ŷi

)2 (10)

RMSE =

√
1
N

∑N

i=1

(
yi − ŷi

)2 (11)

MAPE (%) =
1
N

∑N

i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ 100 (12)

Firstly, the parameter in LSTM that is adjusted is the length
of the input data sequence. If the sequence is too long,
it may introduce unnecessary noise. Reducing the length of
the sequence allows the model to focus more on important
signals, potentially improving its ability to capture context,
as the output data may depend only on a small segment of
previous data. By keeping hidden size at 128 and the number
or layers at 4, and varying the sequence length with five
values (256, 128, 64, 32 and 16), we get the results describing
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TABLE 2. Hyperparameters of the standard LSTM network model.

FIGURE 6. a) The configuration of standard LSTM model with
hyperparameters listed in Table. 2 and b) configuration of the final LSTM
model used for SoC estimation.

the values of FLOPs, RMSE, MAP and MAPE, as shown
Table. 3.
From the results in Table. 3, we observe that reducing

the sequence length significantly decreases the FLOPs index,
with a slight improvement in error performance. However,
when the sequence length is reduced to 16, although the
computational resources are reduced, the error increases
substantially due to the loss of critical information related to
the output sequence. Therefore, we select a sequence length
of 32 to continue to investigate the effects of changes in
hidden size and the number of layers. By reducing the hidden
size to 128, 96, and 64, and the number of layers to 4, 3,
2 and 1, respectively, we obtain the results on the number
of training parameters, the values of FLOPS and, the error
evaluation metrics (RMSE, MAE, and MAPE), as shown in
Table. 4.
The results in Table. 4 show that reducing the hidden

size significantly decreases the amount of computational
resources and memory usage. Additionally, reducing the
hidden size lowers the possibility of overfitting the model.

TABLE 3. Comparison results of FLOPs, RMSE, MAP and MAPE when
changing the length of data series for 05 cases.

FIGURE 7. Comparison of SoC estimation results in the range of 30% ≤

SoC ≤ 80% for the FNN, CNN, and LSTM models.

However, when the hidden size is reduced to 64, the model
is unbale to capture complex relationships in the data series.
Therefore, we select the V11 configuration with a hidden size
of 96 and one layer. While deeper LSTM models can learn
more complex relationships, they often face challenges such
as vanishing or exploding gradients, which make training
difficult. Reducing the number of layers also improves the
computational speed and resource efficiency. Thus, the V11
LSTM model provides a balance between the number of
FLOPs and the output error. The configuration of the V11
LSTM model is shown in Figure 6b.

IV. SoC ESTIMATION RESULTS
For comparison, we used CNN and FNN for evaluation.
Both FNN and CNN are widely recognized for their strong
performance in time series forecasting tasks, as they can
model the nonlinear characteristics of data that are correlated
over long periods. Therefore, the results of the proposed
LSTM model were compared with those obtained from
applying the FNN and CNN models to the same dataset. The
SoC estimation results were evaluated across four SoC test
regions: SoC < 30%, SoC > 80%, 30% ≤ SoC ≤ 80%,
and 0% ≤ SoC ≤ 100%. Figures 7, 8 and 9 compare the
SoC estimation results for the three regions using the FNN,
CNN and LSTM models, respectively. Table 5 presents the
error metrics (RMSE, MAE and MAPE) when estimating
SoC using the LSTM model in this study, as well as the FNN
and CNN models. Figure 10 provides a comparison of error
metrics for the LSTM, FNN, and CNN estimation models.

The criteria for evaluating the SoC estimation error across
the 0% to 100% range are described in Table. 5. The proposed
LSTM model achieved RMSE, MAE, and MAPE values of
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TABLE 4. Comparison of FLOPs, RMSE, MAP, and MAPE results for five cases with varying hidden sizes of data series.

TABLE 5. Comparison of error metrics for SoC estimation using the proposed LSTM model and FNN, CNN models across various SoC regions.

FIGURE 8. Comparison of SoC estimation results in the SoC > 80% region
for the FNN, CNN, and LSTM models.

FIGURE 9. Comparison of SoC estimation results in the SoC < 30% region
for the FNN, CNN, and LSTM models.

0.0106, 0.0077, and 1.4116%, respectively. Low RMSE and
MAE indicate minimal prediction error and high accuracy in
forecasting actual values. The low MAPE further indicates
that the LSTM model provides high accuracy in predictions
compared to actual values, with an average error below 2.3%.

The SoC estimation error is smallest in the range 30% ≤

SoC ≤ 80%, while the largest error occurs in the SoC < 30%

range, which aligns with the electrochemical behavior of the
battery. Overall, the LSTMmodel consistently shows smaller
errors in nearly all regions. However, it is noted that the
LSTM model exhibits a higher MSE than CNN in the SoC <

30% range (0.0122 for LSTM compared to 0.0104 for CNN),
despite demonstrating better overall predictive capability.

The LSTMmodel, with an RMSE of 0.0106, demonstrates
high prediction accuracy and very small average prediction
errors. Since RMSE is particularly sensitive to large errors,
a low RMSE value indicates that the LSTMmodel is not only
accurate but also less impacted by noise during estimation.
The MAE value of 0.0077 further highlights the model’s
precision, as it suggests very small absolute errors, meaning
the LSTM model’s predictions closely match actual values.

Unlike RMSE, which can be influenced by large errors,
MAE provides a straightforward view of the average error.
The small MAPE value of 1.4116% also indicates that the
LSTM model has high accuracy, with an average prediction
error of less than 2%. MAPE expresses prediction error as a
percentage of the actual value, making it useful for comparing
different models and problems. A low MAPE indicates that
the LSTMmodel’s predictions are very close to actual values,
highlighting its high accuracy.

Thus, the LSTM model, specifically designed to handle
time series data and capable of retaining long-term informa-
tion, is well-suited for time series forecasting or cyclic data
problems. Its gating mechanisms help mitigate the vanishing
gradient problem, enabling better learning over long periods.
However, in practice, LSTM model may require more
computational resources and longer training times compared
to simpler models, especially with large or complex datasets.
LSTM often demands extensive parameter tuning and can
be challenging to optimize hyperparameters. For this reason,
in this study, we employed an LSTM model with a single
layer and a minimal number of parameters, making it easier
to implement on processors. Despite a configuration with
a hidden size of 96 and just one layer, the LSTM model
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FIGURE 10. Comparison of error assessment criteria for the LSTM, FNN, and CNN estimation models.

achieved estimation accuracy metrics consistent with those
reported in the literature [23].

V. CONCLUSION
This paper presented a method for estimating the SoC of
battery packs in electric vehicles using LSTM networks and
a modified Adam training algorithm. The proposed method
utilized features extracted from one month of operational
data, including vehicle speed, bus voltage, pack current,
motor speed, motor temperature, motor control voltage, and
average cell voltage and temperature. The collected data
were normalized and fed into an LSTM network with a
hidden size of 96 and a single layer. The modified Adam
algorithm was employed to enhance the learning process and
improve the accuracy of SoC estimation. The performance
of the LSTM model was evaluated using three key error
metrics: MSE, RMSE, and MAPE. The results were assessed
across four SoC ranges: SoC < 30%, 30% ≤ SoC ≤

80%, SoC > 80%, and 0% ≤ SoC ≤ 100%. Comparisons
with CNN and FNN models demonstrated that the LSTM
consistently achieved lower error values across most SoC
ranges, highlighting its superior predictive capability. Future
work will focus on further optimizing the LSTM model’s
architecture and exploring advanced training algorithms to
improve its performance in regions where it underperformed.
Additionally, the method could be extended to handle a
wider variety of operational conditions and to incorporate
real-time processing capabilities, enhancing the practicality
of the approach.

APPENDIX
The tables of weight matrices of the input gate, output gate,
and forget gate of LSTM are available at this link below:
https://drive.google.com/file/d/1xbJRztA9pn3sMcVhVcOW
4t8L1RJKHoQ4/view?usp = sharing
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