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ABSTRACT Digital Twin (DT) technology has recently emerged as a powerful tool with the potential
to revolutionize wireless systems as it enables accurate simulations, better decision-making, and tangible
operational improvements. Prior studies on DT within the context of next generation wireless technologies
have primarily focused on identifying potential use cases, application scenarios, standardization challenges,
and conceptual implementation steps. However, the existing research is limited in translating theoretical ideas
into real-world applications. Our research, in this paper, contributes to the practical realization of DT technol-
ogy in the context of 6G wireless networks, demonstrating its potential impact on network planning, perfor-
mance, and user experience. In particular, we explore the construction, validation, and applications of DT uti-
lizing an indoor over-the-air (OTA) 5GNR testbed powered by an in-house developedNext Generation Radio
AccessNetwork (NG-RAN) that is fully compliant with 3rdGeneration Partnership Project (3GPP) andOpen
RAN standards. First, we explain the integration and implementation steps followed to integrate Qualcomm
EdgewiseTM Suite and Service Management and Orchestration (SMO) tools into the NG-RAN architecture,
that will eventually enable the applicability of DT for wireless network operations. We then describe our
procedure to construct and validate a high-fidelity DT of our OTA testbed modeling both Radio Frequency
(RF) environment and system components. We demonstrate two pre-deployment use cases by describing
our extensive coverage estimation and network capacity planning tests in OTA. Lastly, we explore how DT
enables practical machine learning solutions for post-deployment use cases and share our comprehensive
OTA performance results, highlighting that our proposed mobility and positioning techniques outperform
the classical approaches in terms of throughput, number of undesired handovers, and positioning accuracy.

INDEX TERMS Digital twin, open RAN, 3GPP, RAN disaggregation, network planning, mobility, over-
the-air, testbed.
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approving it for publication was Xiaodong Xu .

I. INTRODUCTION
Digital Twin (DT) technology has recently gained signif-
icant attention for their potential to enhance efficiency,
performance, and cost savings for wireless systems. It uses
physical and operational data with historical patterns to
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model a physically accurate network simulation platform,
which provides an up-to-date network status and predicts
future network states [1], [2]. It also provides interfaces
for interactions with the physical network and network
applications/users. Unlike conventional network simulators,
a Digital Twin Network (DTN) supports two-way com-
munication between the physical network and the virtual
twin network to enable closed-loop decisions and achieve
real-time interactive mapping [3]. The authors in [4] offer an
exhaustive examination of DT technology. Their treatment
of DT encompasses multifaceted aspects, including precise
definitions, relevant industry domains, enabling technolog-
ical foundations, practical use cases, service applications,
empirical case studies, and forward-looking trajectories.
However, the discussion in [4] is a general survey on DTs,
and it does not treat DT applications in telecommunications.

The authors in [5] present a vision for real-time DTs
of physical wireless environments which are continuously
updated using multi-model sensing data for distributed
infrastructure and user devices. They present approaches for
constructing and utilizing these real-time DTs and delineate
on its applications and open problems highlighting the
potential research platforms that can be used for such an
investigation. Furthermore, the authors in [6] conduct a
comprehensive survey on DT-enabled 6G services, while the
authors in [7] delineate the potential use cases for DTs in
6G wireless networks. These use cases include network sim-
ulation and planning, network operation and management,
data generation through simulation, Artificial Intelligence
(AI) training and inference, and what-if analysis. In addition,
the authors emphasize the critical prerequisites necessary to
establish DTs for future 6G networks. On a similar vein,
the authors in [8] identify potential research directions and
standardization efforts related to the seamless integration
of DTs within 6G communication networks. However, it is
important to note that despite the comprehensive analysis,
these studies do not present experimental evaluation and
practical implementation of DTs.

The authors in [9], [10], and [11] present experimental
evaluation of DT-enabled use cases for Multiple-Input
Multiple-Output (MIMO) systems. The authors in [9] present
a fingerprinting technique for localization with synthetic data
from DT Radio Frequency (RF) maps and show its efficacy
using practical simulations, realistic propagation models, and
user measurements. The authors in [10] utilize a site-specific
DT to generate synthetic channel state information (CSI)
data and use it to train a Deep-Learning model. Afterwards,
by using the DeepMIMO dataset [12], the performance of
the model is evaluated in a real-world deployment. The
authors in [11] propose a multi-agent Deep Reinforcement
Learning framework to optimize the broadcast beam by
constructing a data driven DT as a virtual environment
for initial training. Their proposed technique enables safe
exploration in the DT environment and faster convergence,
as significant communication overhead involved with real
networks is eliminated by using a DT.

Similarly, different DT frameworks for automatic recon-
struction of a 3D environment and continuous interaction
between the real-world and its twin are presented in [13]
and [14], for beam management and directional beam
selection, correspondingly. The authors in [13], propose
a DT framework that automatically reconstructs the 3D
environment and demonstrate the use of DT for beam
management by implementing solutions for downstream
sub-problems in beam acquisition, using the real-world
dataset from the DeepSense 6G challenge.The authors in [14]
present a framework with continuous interaction between the
DT and the real-world at the edge and they show gains in
beam selection accuracy using a publicly available RF dataset
for DT creation.

The existing literature on DTs for 6G networks predomi-
nantly focuses on potential use cases, application scenarios,
integration challenges, standardization efforts and potential
applications. Real-world implementation aspects of DT
models are discussed only in theory or the experimental
evaluation presented in these studies are based only on
publicly available dataset. To the best of our knowledge,
the existing work lacks practical implementation of DTs
and its integration with a live wireless network towards
enabling closed-loop optimizations. To address this gap, our
current research constructs a DT for an experimental OTA
testbed and integrates it with our NG-RAN research platform.
Through pre-deployment and post-deployment use cases,
we demonstrate the practical viability of DT technology
within a live network environment. With such DT technology
implementation, our work endeavors to contribute towards
the realization of DTs for future 6G networks.

A. CONTRIBUTIONS
Towards enabling DT in our testbed, we have enhanced
our NG-RAN research platform [15]. In particular, we have
integrated Qualcomm Edgewise Suite into the platform,
which accelerates the deployment of cloud-native Artificial
Intelligence (AI) and Machine Learning (ML) solutions
and makes DT technology feasible for the next generation
wireless infrastructure. In this paper, we first cover the
specific enhancements introduced in the NG-RAN research
platform, including the support for Open RAN (O-RAN)
compliant O1 interfaces, the integration of Qualcomm Edge-
wise Suite, updates on RAN Deployment & Orchestration
Framework, and the addition of Near Real-time RAN
Intelligent Controller (RIC) capability. We then describe
the construction of the DT model for our OTA testbed,
including the radio environment and the system components.
With extensive physical testing by utilizing the advanced
NG-RAN architecture and OTA testbed, we validate the
fidelity of the constructed DT in predicting pre-deployment
network coverage and end-user performance, both of which
set the foundation for high-fidelity DT. Furthermore, our
efforts on sophisticated dynamic modeling of 5G RAN
infrastructure and user devices lead to precise wireless
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channel predictions towards enabling high-fidelity network
capacity estimation and planning. We showcase that these
precise channel predictions could help network operators
estimate the number of users with the expected data rates
that real-world deployments could sustain. We also discuss
how this effort can help operators to identify potential
performance bottlenecks and evaluate alternate scenarios to
answer ‘‘what-if’’ questions.

We also demonstrate that the constructed high-fidelity DT
is an enabler of practicalML solutions to improve closed-loop
network operations. By being able to generate synthetic data
at scale, the DT addresses the data collection challenge for
ML applications in real-world deployments. In this work,
we investigate two distinct ML use cases with DT assistance.
First, we propose a novel mobility method, which utilizes
a Long Short-Term Memory (LSTM) based neural network
(NN) model trained using the data generated by the DT.
Second, we show how DT enhances the Reference Signal
Received Power (RSRP) based positioning accuracy of a
mobile device utilizing an NNmodel compared to a weighted
centroid algorithm (WCA).

The main contributions of this study can be summarized as
follows:

• We provide our detailed implementation methods for
the enhancements introduced to the NG-RAN research
platform. This NG-RAN architecture is disaggregated,
virtualized, AI-powered, and 3GPP & O-RAN com-
pliant and it supports commercial 5GC and Service
Management and Orchestration (SMO) solutions.

• We demonstrate high-fidelity DT construction and
validation of an indoor OTA testbed, supported by the
NG-RAN research platform.

• We showcase how to utilize the DT for pre-deployment
use cases such as coverage estimation and capacity
planning, which enables new capabilities for network
operators that surpass the state-of-the-art techniques
with significant cost reduction and enhanced operational
efficiency.

• We also propose a novel DT-assisted mobility technique,
or DTAM, that employs an LSTM based NN model.
We demonstrate that the proposed technique reduces the
number of ping-pong handovers, a problem observed
in conventional mobility approaches, especially under
challenging wireless conditions. Our OTA testing shows
that this predictive mobility scheme delivers higher
average throughput (up to 14% during handover events)
and a more consistent user experience (by mitigating
undesired handover ping-pongs) compared to conven-
tional handover schemes.

• We also propose an RSRP-based DT-assisted posi-
tioning technique, or DTAP, that outperforms the
conventional WCA positioning approach and does not
require field data collection for NN model training. Our
experimental results show that at 80-th percentile, DTAP
significantly reduces the positioning error by up to 50%
for some of our OTA routes.

The rest of the paper is organized as follows. Section II
provides an overview of our OTA deployment while
Section III details the advancements in our NG-RAN research
platform. Section IV describes the DT construction and
validation steps. Section V presents two pre-deployment use
cases of the developed high-fidelity DT. DTAM and DTAP
techniques are described and analyzed in Sections VI andVII,
respectively. The OTA performance of each pre-deployment
and post-deployment DT applications are evaluated in
their corresponding sections. The paper is concluded in
Section VIII.

II. OTA DEPLOYMENT
Our 5G network is deployed in a warehouse environment in
one of the Qualcomm buildings in San Diego, as shown in
Fig. 1. The warehouse environment is spread across an area
of 150 ft×125 ft with three rows of metal shelves. The aisle
region between the metal shelves acts as an impediment to
the RF propagation and serve to produce conditions typical
in real-world environment. The deployment is a 5G stand-
alone network consisting of the NG-RAN research platform
described in Section III connected to a commercial 5GC.
Our network deployment comprises of six Radio Units

(RUs), which establish a six cell radio network. Each of
these cells operates in the FR1 band (at 3.5 GHz) using
Time Division Duplex (TDD) mode and a 100 MHz carrier
bandwidth. To achieve PHY layer baseband functionality
for these six cells, we utilize Qualcomm® FSM100xx-
based PHY baseband PCIe cards, which are hosted in
the RU servers [15]. These six RUs are strategically
distributed across the OTA testbed. A subset of these RUs
are directed at the center of the deployment to provide
adequate RF coverage. Our testbed also consists of a com-
mercially available Automated Guided Vehicle (AGV) with
a Qualcomm® X60 5G modem based User Equipment (UE)
onboard which is used for data collection and performance
evaluation.

This AGV with the UE on board is programmed to follow
a set of routes which are utilized for coverage and mobility
studies. The coverage route programmed is shown in Fig. 1
using a dashed line. This is an extensive route covering the
whole deployment with the goal to enable exhaustive data
collection. The mobility route programmed is denoted by A-
B-C-D-E-F-G, where the AGV with the UE on board enters
the area between the metal blockers creating an adverse
scenario for mobility and positioning studies. These routes
are utilized and described further in Section IV-B, VI-D
and VII-C.

III. NG-RAN RESEARCH PLATFORM
The NG-RAN research platform [15] is disaggregated, 3GPP
and O-RAN interface compliant, virtualized and consists
of CU (Centralized Unit), DU (Distributed Unit), and
Radio Unit (RU) that interoperate with each other over
Option 2 high-layer split (3GPP F1) mid-haul interface and

166300 VOLUME 12, 2024



B. Akgun et al.: Advancing Next Generation Wireless Networks With Digital Twin

FIGURE 1. Indoor OTA deployment with 3GPP and O-RAN compliant NG-RAN research platform, a commercial 5GC,
Qualcomm Edgewise Suite and six RUs.

Option 6 lower layer split. In this section, we highlight
the architecture, services, and integration of our NG-RAN
research platform with an SMO platform like Qualcomm
Edgewise Suite, which will pave the path for augmenting
advance technology like Digital Twin into this framework
for wireless network operators. SMO, as defined in [16],
is the central entity that is responsible for managing and
orchestrating the platform, components, and services for the
entire cellular RAN network. SMO provides support for
the FCAPS (Fault, Configuration, Accounting, Performance
& Security) management procedures for O-RAN Network
Functions as well as associated services such as Trace
and File management, Heartbeat management, Physical
Network Function (PNF) startup and registration, PNF
software and reset management, etc. over O-RAN defined
O1 [17] interface. O1 interface specifies the management
services (MnS) between the O1 compliant Managed Ele-
ments (MnS producers) and the SMO (MnS consumer)
and defines the requirements, procedures, and operations.
SMO also includes the Non-Real Time RAN Intelligent
Controller (Non-RT RIC) which enables RAN optimization
with intelligent radio resource management (operates at
timescale of greater than 1 second) and provides policy-
based guidance, ML model management, and enrichment
information to Near-RT RIC function over O-RAN A1
interface [18].

A. QUALCOMM EDGEWISE SUITE
The NG-RAN is integrated with the commercial Qualcomm
Edgewise Suite [19] which is multi-vendor RAN automation
and centralized management platform to alleviate system
complexity, simplify and automate cellular RAN infras-
tructure deployments. Qualcomm Edgewise Suite is also
designed to support and manage both self-developed and
third-party rApps [20] and provides interfaces to assure their
interoperability towards enabling different use-cases as per
customer requirements. The NG-RAN research platform has
been enhanced to support O-RAN compliant Provisioning or

Configuration Management (CM) services and Performance
Assurance Management (PM) services over the O-RAN O1
interface. Fig. 2 highlights the NG-RAN research platform
architecture with support for O-RAN CM and PM services
over O-RAN O1 interface with Qualcomm Edgewise Suite.
O-RAN Configuration Management services [17] allow
SMO (MnS consumer) to configure attributes of managed
objects for Network Functions (MnS producer) and enable
the latter to report configuration changes to the SMO. The
NG-RAN supports O-RAN O1 CM operations (e.g., NET-
CONF get, get-config, edit-config, etc.) for NETCONF [21]
/YANG [22] solution set as specified in [17] and [23].
The NG-RAN implements the Generic Network Resource
Model [24] and 5G Network Resource Model (Stage 2
and 3) [25], along with proprietary extensions to model all
the manageable entities in the NG-RAN research platform.
As shown in Fig. 2, all the O-RANO1 NETCONF provision-
ing operations are serviced at the NETCONF server which are
then propagated to the respective Network Function (NF)’s
O1 CM Agent for processing using the NETCONF server’s
backend interface. Qualcomm Edgewise Suite incorporates
NETCONF client capability and supports the O-RANO1CM
operations towards providing the various afore-mentioned
O-RAN CM services.

In Fig. 3 we show a snapshot of Qualcomm Edgewise CM
dashboard that demonstrates a subset of OTA deployment in
our test location described in Section VI-D. The right panel
shows the network layout with 4 out of 6 cells radiating at
the test location. The left side panel shows the configuration
attributes for each cell that is selected by the network
operator. The exhaustive list of attributes for CU and DU
functions are available in the tabs at the top of the screen.

O-RAN PM services allow the RAN NF’s (Performance
Assurance MnS producer) to either stream (in real time)
or report in bulk (through file transfer) performance data
to SMO (Performance Assurance MnS consumer) that can,
for example, enable data collection and analytics for AI/ML
based use-cases. PM services also allow the SMO to conduct
performance assurance operations on the RAN NF’s such
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FIGURE 2. NG-RAN research platform with O-RAN O1 compliance & integrated with Qualcomm Edgewise Suite.

as selecting the measurements to be reported, setting the
periodicity of reporting and other associated attributes. The
NG-RAN implements the O1 Push-based Performance Data
File reporting mechanism [17] using Secure File Transfer
Protocol (SFTP) with PM file naming, content, and XML
format compliant to O-RAN O1 [17], [23]. Fig. 2 shows
this capability with the O1 PM Agent function within
each NF, which provides the PM reporting services. The
NG-RANNF’s implement support for PerfMetricJob IOC (as
specified in 3GPP TS 28.622 [24]) over O1 CM interface
for controlling the various aspects of performance metric
production e.g., activating or deactivating the performance
metrics, selection of metrics to be collected, periodicity
of reporting, managing the scope of data collection across
multiple managed object instances etc. In our OTA deployed
NG-RAN network, the O1 PM Agent function incorporates
the SFTP client functionality and communicates with the PM
services in Qualcomm Edgewise Suite to periodically report
key performance indicator (KPI) metrics in O1 PM XML file
format. The data and reports generated using the PM services
are used for monitoring UE Downlink (DL) throughput
KPI for our deployment. The UE DL KPI throughput plot

generated out of Qualcomm Edgewise PM is provided in
Section VI-D.

B. NG-RAN DEPLOYMENT & ORCHESTRATION
FRAMEWORK
The NG-RAN research platform performs the PNF and Vir-
tual Network Function (VNF) workload deployment on the
RAN infrastructure using the internally developed NG-RAN
deployment and orchestration framework (refer Fig. 2).
Virtualization for the RAN infrastructure is performed using
standard Kubernetes (K8s) framework which manages the
CU and DU hosts (x86 based servers) as part of K8s
cluster and deploys each VNF as a containerized workload
(specifically as a Kubernetes pod) on these hosts. The
NG-RAN deployment & orchestration framework utilizes
HELM charts [26] to package all the VNF workload
artifacts for on-target installation, which also facilitates sub-
sequent upgrades and management of software releases. The
NG-RAN deployment framework also includes NETCONF
client functionality for configuration management required
during the initial phases of the NG-RAN platform setup and
NF provisioning.
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FIGURE 3. Qualcomm Edgewise CM Dashboard for OTA Deployment.

C. NG-RAN NEAR-RT RIC
The NG-RAN research platform has been enhanced to
support our proprietary variant of Near-RT RIC function,
described in O-RAN architecture [16]. Near-RT RIC enables
near-real time control and optimization of RAN function
via fine-grained data collection and actions on a time scale
between 10ms and 1 sec. Near-RT RIC function hosts mul-
tiple applications, called xApps, which contain customized
RAN optimization logic (e.g., using AI/ML algorithms),
communicates through standardized interfaces and service
models towards closed-loop control for optimizing the RAN
functions. In the NG-RAN research platform (refer Fig. 2),
Near-RT RIC is connected to the RAN or Q-E2 nodes (i.e.,
CU and DU) over the Q-E2 interface (modeled as an O-RAN
E2-like interface) and allows the NG-RAN Near-RT RIC to
control radio resource management and other functionalities
of the RAN nodes. Q-E2 interface is logically composed
of two protocols, namely Q-E2 Application Protocol (AP)
and Q-E2 SM (Service Model), similar to E2-AP [27] and
E2-SM [28]. Q-E2 AP incorporates protocol procedures
for interface management (e.g., Q-E2 Setup procedure) and
multiple services (Q-E2 report, Q-E2 control) that collec-
tively implement the Q-E2 SM. For interface management
procedures, after the SCTP [29] connection is established
between Near-RT RIC and Q-E2 node (which is configured
via O1 interface of the Q-E2 IP address and port of the Q-
E2 termination of the Near-RT RIC), Q-E2 node transmits
the Q-E2 Setup Request listing its supported RAN Functions
along with node identifiers. After processing the Q-E2 Setup
Request, Near-RTRIC replies with the Q-E2 Setup Response.
Q-E2 report service involves Q-E2 RIC Indication message
that could be triggered periodically or based on certain events,
and contains relevant telemetry measurements from the Q-E2

RAN node. For the current NG-RAN use-cases described
in Section VI, Q-E2 control service is initiated upon the
reception of Q-E2 RIC Indication message and generates
Q-E2 RIC Control message which contains the outcome of
the RAN optimization logic executed at xApp, which is then
applied at the Q-E2 RAN node. Similarly, for Q-E2 service
models, the NG-RAN platform supports custom service
for DT-assisted mobility use-case described in Section VI,
wherein the Q-E2 RAN node (CU-CP) upon the receipt
of L3 RRC measurement report from UE, constructs the
set of serving and neighbor cell RSRP measurements along
with UE location for the configured time window duration
(to be reported to Near-RT RIC in Q-E2 RIC Indication
message). The NG-RAN Near-RT RIC is currently deployed
as containerized workload (specifically as a Kubernetes
pod) on the CU host and utilizes the Qualcomm® Cloud
AI 100 PCIe (Peripheral Component Interconnect Express)
card [15] for performing AI/ML inference required for RAN
optimization. The NG-RAN’s virtualized architecture allows
Near-RT RIC to be deployed on its own dedicated hosts,
separate from CU and DU hosts, as needed to meet the
use-case requirements.

IV. DT CONSTRUCTION, FIDELITY, AND COVERAGE
A. CONSTRUCTION
In this section, we describe the steps involved in construction
of a high-fidelity DT of our physical OTA testbed along
with the benefits it can bring to coverage estimation. DTs in
mobile networks can exist at various levels, given that 5G NR
networks comprise of multiple hardware and software layers.
It is therefore crucial to define which segments of the network
are modeled in the DT. In our implementation, we create
a DT that includes the physical deployment site (indoor
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FIGURE 4. High-level depiction of steps involved in DT construction.

building), radio environment, RAN, and its associated system
components including six RUs. Each step in constructing the
DT is depicted in Fig. 4 and outlined below.

1) ACCURATE 3D ENVIRONMENT MODELING
The three-dimensional testbed environment is synthesized
utilizing a collection of high accuracy LiDAR (Light
Detection and Ranging) and drone derived image scans.
The images are processed using open drone map (ODM)
[30], a native application for processing drone images,
to generate a predicted point cloud. The point cloud is
imported into Cloudcompare (3D point cloud processing
software) [31], where it is downsampled and aligned with
previous scans. The point cloud is then used to create
a mesh of all the environment using poisson surface
reconstruction algorithm [32] and subsequently partitioned
into various objects such as walls, shelves, poles, and
ceiling. The complexity of the ray tracing based channel
modeling [33] was significantly reduced by a factor of ten
(from 20 minutes down to 2 minutes) through the decimation
of the three-dimensional objects from three million triangles
to sixty thousand. To accurately simulate the electromagnetic
(EM) properties of an object in the EM wave propagation
model, it is imperative to define the material of each
object within the DT. The material allocated to each object
segment is chosen from the International Telecommunication
Union (ITU) standard library, specifically at the OTA testbed
frequency of 3.5 GHz [34].

2) SPATIALLY CONSISTENT RADIO ENVIRONMENT
MODELING
The process of modeling a radio environment with spatial
consistency employs ray tracing, a scalable methodology
for characterizing wireless channel models specific to an
environment. The foundational steps of ray tracing encom-
pass 3D modeling of the environment, which serves as an
input to the ray tracing software [35], path discovery, and
field computations over the identified paths. Path discovery
is predicated on the principles of Shooting and Bouncing
Rays (SBR) and image theory. During this phase, we inte-
grate antenna characteristics for a specified transmitter and
receiver location, orientation, array configuration, quantity

FIGURE 5. Digital Twin generated RSRP heatmap of the whole testbed
area (left) vs. actual RSRP measurements from the physical testbed (right)
where the UE onboard an AGV is programmed to traverse an extensive
route as seen in the figure.

of antenna elements, antenna pattern, and the polariza-
tion of each individual element. All potential geometric
paths with pre-determined propagation characteristics are
identified. These propagation characteristics encapsulate
multiple orders of reflections and diffractions. Ultimately,
the geometric paths and the type of interactions at each
interaction point are utilized to compute the behavior of EM
wave propagation throughout the path. Upon completion of
this process, multiple propagation paths are identified, and
corresponding features for each path are computed. These
features include power, phase, time of arrival, angles of
departure, and angles of arrival. In conclusion, at the end
of this step in the DT creation process, wireless channel
emulation is developed for a pair of transmitting and receiving
antennas.

3) CALIBRATION OF DT
The calibration of the DT is a multi-level process. In this
study, we calibrate the DT on an elemental basis, wherein
each element of the network is calibrated against its
counterpart, taking into account the effect of the element on
the RSRP. For example, all the gains and losses of the digital
and analog components of the RF paths, such as Intermediate
Frequency (IF) components, Digital to Analog Convertor
(DAC), Analog to Digital Convertor (ADC), and RF Front
End (RFFE), are meticulously measured and incorporated
into the DT. This calibration enables the RSRP at a specific
user location within the DT to be numerically calibrated,
thereby closely predicting the RSRP measured by the user
device in the real world environment.

B. FIDELITY AND COVERAGE
To evaluate the fidelity of the constructed DT model,
we executed a drive test within the OTA testbed as depicted
in Fig. 1, utilizing the UE onboard an AGV that was
programmed to traverse an extensive route. During the test,
we collected data pertaining to the UE reported RSRP and
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FIGURE 6. PDF of difference in RSRP.

FIGURE 7. Absolute CDF of difference in RSRP.

the precise ground truth location from the AGV, which
was carrying the UE. The UE reports the serving cell
and neighboring cell Synchronization Signal Block (SSB)
based RSRP measurements, which are subsequently utilized
to validate the results derived from the DT. We then
computed the RSRP in the DT by calculating the conducted
transmission power, the path loss from the ray tracer, and
normalizing the received power to represent SSB RSRP
reports.

Fig. 5 illustrates a two-dimensional RSRP heat map
generated from both DT as well as physical testbed,
thereby indicating high fidelity of the constructed DT model.
In Fig. 6 and Fig. 7, we plot the probability density function
(PDF) and absolute cumulative distribution function (CDF),
respectively, of difference between the DT computed RSRP
and the UE reported RSRP over the course of the drive
test. From the plot, it is observed that the DT predicted
RSRP closely aligns with the UE measured RSRP and is
within an average of 4.17 dB. The difference in RSRP
can be further minimized by augmenting the DT predicted
RSRP with RSRP measurements from the OTA testbed. This
observation further emphasizes the precision in the DT’s
coverage prediction.

V. DT-ASSISTED CAPACITY
Accurate RF modeling of the physical environment obtained
from the DT along with sophisticated dynamic modeling
of 5G RAN infrastructure and user devices can enable

high-fidelity network capacity estimation and planning. Even
though commercial network planning tools provide coverage
predictions by using 3D maps and ingest field measurements
to provide better coverage estimates, they are not designed
to predict capacity and optimize wireless network operations
such as mobility and positioning. In this section, we describe
how DT can be effectively used towards achieving these
objectives. This entails DT-assisted capacity validation and
leveraging it to predict what-if deployment scenarios.

A. DT-ASSISTED CAPACITY VALIDATION
Our first objective is to build a reliable DT-assisted capacity
analysis platform that can faithfully represent the capacity
Key Performance Indicators (KPIs) of a deployed OTA
network, with verifiable fidelity between observed OTAKPIs
and DT predicted KPIs.

Towards this objective, a subset of the OTA testbed
that is discussed in Section II is considered, which is a
deployment with 2 Cells and 4 UEs (with 2 UEs connected
per cell). The RF model for this scenario is obtained from
the DT framework developed as described in Section III.
This channel model is fed into the 5G RAN research system
emulator that closely emulates the OTA RAN configuration
with the traffic of interest, which is UDP (User Datagram
Protocol) based full-buffer downlink traffic. The emulator
output is processed to compute the capacity KPIs such
as throughput, scheduling, channel quality, and resource
utilization. The DT-predicted KPIs are then compared with
OTA KPIs as perceived by the users in real-time, when
positioned at equivalent locations for the same deployment
scenario and traffic of interest.

Multiple components in the end-to-end DT-assisted capac-
ity analysis model have to be aligned with the OTA
deployment. Apart from accurate RF modeling from DT, the
next requirement is to emulate the OTA RAN behavior in the
5GRAN research system emulator in terms of parameters and
configurations such as frame-structure, overheads, scheduler
user selection, and link adaptation algorithm. Any mismatch
in modeling the RAN configuration could create a significant
departure between OTA performance and DT predictions.
Further, it is of importance to accurately replicate the UE
behavior in the RAN emulator.

Fig. 8 shows the comparison between downlink user
throughput as predicted by the DT-assisted framework and
the actual user perceived throughput in the OTA testbed at
different times for the 2 Cell/4 UE deployment scenario with
full-buffer traffic. It is seen that observed throughput trend for
all the 4 users is similar to the DT-predicted values though the
absolute numbers are slightly different. With RF conditions
changing gradually over time it is also expected to see
slight variations in the user perceived OTA throughput over
time. In order to evaluate the deviations from DT-assisted
predictions, the user perceived throughput in the OTA test bed
are captured at two instances well-separated in time. From
Fig. 8, it is observed that the maximum deviation of DT
predicted user throughput from OTA dataset-1 is at 17% for

VOLUME 12, 2024 166305



B. Akgun et al.: Advancing Next Generation Wireless Networks With Digital Twin

FIGURE 8. OTA vs. DT predicted downlink throughput for 2 Cell/4 UE
scenario.

user 4with DT predictions beingmore optimistic for all users,
while the maximum deviation from OTA dataset-2 is close to
10% for users 1 and 4 with DT over-estimating for user 4 and
under-estimating for user 1. The deviations from DT
predictions are caused due to slight inaccuracies in modeling
the interference and receiver behavior. Receiver modeling
involves simulating the behavior of commercial UEs in terms
of their ability to perform interference cancellation, channel
estimation, demodulation, and decoding. When the simulator
fails to accurately model the spatial nulling of interference
that is seen in OTA environment, it could result in inaccurate
SINR (Signal to Interference plus Noise Ratio) estimation
causing mismatch between the DT predicted throughput and
real-time observed throughput. The discrepancies observed
in the deviation from the DT predicted throughput, upon the
collection of capacity KPIs at disparate intervals, is ascribed
to the environmental changes in the OTA testbed that happens
over time. However, by refining our treatment of these
modeling errors and updating the DT model periodically to
account for the changing physical environment, it is possible
to achieve evenmore accurate predictions fromDT.Our study
was primarily confined to the indoor OTA deployment, with
the examination of outdoor DTs designated as a subject for
future research.

B. DT-ASSISTED CAPACITY ANALYSIS FOR WHAT-IF
SCENARIOS
Our second objective is to demonstrate the use of DT-assisted
capacity analysis platform to estimate the capacity KPIs
in what-if deployment scenarios – such as with different
user densities, traffic profiles, and intensity. An example of
such a scenario is to estimate KPIs when a larger number
of UEs are deployed in an extended network with more
cells, under a traffic demand profile. To illustrate this,
a deployment consisting of 4 cells and 12 UEs with bursty
traffic under different loading conditions is considered as
shown in Table 1. The bursty traffic is generated from Poisson
based file arrival rate with file size of 0.5 MB such that
low loading corresponds to a mean rate of 4 files per sec
or 16 Mbps and high loading, to 12 files per sec or 48 Mbps.

FIGURE 9. DT predicted mean user throughput in the what-if scenario
under low/high loading with Poisson traffic.

The simulation for this scenario is run on the DT-assisted
capacity framework as described in Section V-A and the
predicted capacity KPIs are analyzed.

TABLE 1. DT-predicted resource utilization % in the what-if scenario
under low/high loading with Poisson traffic.

It can be inferred from Table 1 and Fig. 9 that the
capacity KPIs as perceived by the 12 users for this extended
scenario are aligned with the expected outcomes in terms of
resource utilization, impact of interference, and throughput.
At low loading conditions, the overall resource utilization
is low across all cells resulting in less interference and
higher user perceived throughput. At high loading conditions,
overall resource utilization goes up because of more traffic
and interference. Thus, the user perceived throughput is
significantly reduced due to resource sharing and increased
interference. The reduction in throughput for users 4 and
12 at high loading is caused primarily due to interference
from traffic in the neighboring cells and not due to resource
sharing, as they are the only users in their respective cells.
The throughput reduction for the rest of the users at high
loading conditions is caused by increased interference as well
as resource sharing within the users of the same cell. Thus,
the DT-assisted framework can effectively capture the effect
of changes in traffic loading as observed by the corresponding
increase or decrease in the user throughput.

VI. DT-ASSISTED MOBILITY
In this section, we explore how DT technology can enhance
closed-loop network operations through practical ML solu-
tions. Specifically, we address the challenge of data collection
from real-world deployments, which is often time-consuming
and costly. In many scenarios, collecting field data at scale
is not even feasible. By integrating high-fidelity DT into
ML model development procedure, we can conveniently
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overcome these limitations and achieve more efficient
network management. We can simply generate high-quality
synthetic data from a DT model, which accurately represents
spatial signal patterns in the real world. Then, this synthetic
data from a high-fidelity DT can be used to train ML models,
eliminating the need to collect field data and leading to
enhanced scalability. In our proposed technique, we exploit
this synthetic data from the DT to train a predictive mobility
ML model, which is an LSTM-based NN model. This model
aims at selecting the optimal cell for a device in mobility in
terms of throughput and user experience. Our OTA test results
show that our predictive mobility technique, i.e., DT-assisted
mobility or DTAM, delivers higher average throughput and a
more consistent user experience along the test route compared
to the baseline Release-15 (Rel15) mobility approach.

A. BASELINE REL15 MOBILITY
Before delving into the details of DTAM, we first briefly
explain the baseline Rel15 mobility approach, which is
established by 3GPP in Release 15 RRC specifications (see
Section 9.2 in [36]) and widely adopted for 5G cellular net-
works. Specifically, 5G 3GPP specifications define various
intra Radio Access Technology (RAT) measurement events,
namely A1 to A6 for supporting mobility use-cases. (Note
that inter-RAT mobility is beyond the scope of this work.)

At a high level, intra-RAT handover procedure is used to
transfer the UE connection from a source cell to a target cell to
enable consistent Quality of Service (QoS) and maintain ser-
vice continuity. A handover event is triggered by the source
cell, based on the received measurement reports, which
indicate that the corresponding radio conditions are satisfied
with respect to neighbor cells. Among intra-RAT handover
events, Event A3 is typically used for intra-frequency
handover procedures, since it provides a handover triggering
mechanism based upon relative measurement results, e.g.,
it can be triggered when the RSRP of a neighbor cell is
stronger than the RSRP of the serving cell. Some key configu-
ration parameters and our optimizationmethods are discussed
in SectionVI-D.A call flow describing a typical NR handover
can be summarized with the following steps [36] (please
also refer to Fig. 10): 1) The source cell provides the
UE with measurement and reporting configuration. 2) The
UE reports according to the specified configuration. 3) On
receipt of the measurement report, the source cell decides to
handover the UE based on the measurement reports. 4) The
source cell then initiates a handover request to the target
cell which performs admission control and then returns an
acknowledgment message. 5) After the approval, the source
cell sends a handover command (i.e., RRC Reconfiguration
message) to the UE, and the UE disconnects from the
old cell. 6) The UE then completes the RRC handover
procedure by sending an RRC Reconfiguration Complete
message to the target cell. 7) The network completes
additional handover related procedures with switching the
data traffic to the target cell and releasing the UE context

FIGURE 10. 5G NR intra-RAT handover procedure [36].

at the source cell. Note that during the handover procedure
(i.e., starting from Step 5 and onward), UE cannot be
scheduled, which leads to an interruption in data transfer,
until connection to the target DU cell is established.
Therefore, it is crucial that the handover decision mechanism
and procedures be optimal to enable a more consistent user
experience.

B. PROPOSED MOBILITY METHOD
In this section, we describe our proposed mobility method,
i.e., DTAM, that addresses performance degradation issues
which may occur in a challenging environment with dense
deployment of cells with directional antennas and RF
propagation impediments, e.g., metallic blockers located in
the OTA testbed. Specifically, due to high spatial reuse
and interference, the close proximity of cells and focused
coverage areas lead to frequent handovers as users move
through the network. In addition, these conditions often
lead to handover ping-pong events, that occur when a
UE switches from a source cell to a target cell and then
switches back to its earlier source cell within a short amount
of time. To mitigate these undesired handovers, which
cause network signaling overhead and traffic disruption,
we explore the idea of performing RSRP predictions for
serving and neighbor cells based on the past measure-
ment reports sent by UEs. Hence, the handover decisions
are proactively determined by considering future wireless
channel conditions rather than relying only on the current
measurements.

Due to its superior performance in sequence prediction
and learning long-term dependencies in datasets, we study
LSTM-based neural networks to predict the future RSRP
measurements, and utilize this information for handover
decisions [15]. To enhance the accuracy of RSRP predictions,
we configure periodic measurement reports as described
by 3GPP specifications [37], so that UE performs RSRP
measurements and conveys this information to the CU-CP
network function residing in the NG-RAN as shown in
Fig. 1. The CU-CP network function forwards these RSRP
measurements to the RIC which hosts the LSTM-based
NN model for predicting future RSRP measurements.
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We set the periodicity of the measurement reports as
120 ms to maximize the prediction accuracy, as this
is the minimum allowable value by the 5G NR 3GPP
specifications to achieve the best baseline Rel15 handover
performance.

Fig. 11 highlights the key functional components of our
DTAM NN model design with the required inputs and the
outputs. In the first step, UE provides periodic measurement
reports belonging to the serving cell and all the available
neighbor cells. In addition to these RSRP reports, the AGV,
which carries the UE, is capable of recording and sending
its two-dimensional location information every 80 ms to the
CU-CP Network Function over a separate communication
network (e.g.Wi-Fi).We exploit this additional data to further
enhance the RSRP prediction accuracy in our design. After
gathering both RSRP measurements (over 5G) and location
information, they are transported to the RIC where the NN
module, or RSRP predictor, is located. This NN module,
pre-trained using DT-generated synthetic data, consumes this
input sequence and provides predicted RSRP values for the
prediction horizon h. In other words, the RSRP predictor
takes an d × l input matrix Xt = [xt−l, xt−l+1, . . . , xt−1],
where l is the sequence length and d is the feature size. Each
xk ∈ Xt is a vector with d entries and includes UE-reported
RSRP measurements of n = d−2 cells and two-dimensional
(x-y coordinates) UE location at time k . After the inference
is performed by the RIC, it returns a n × h output matrix
with predicted RSRP values Yt = [yt , yt+1, . . . , yt+h−1]
in the prediction horizon h, where each yk ∈ Yt is a
vector with n entries, i.e., RSRP predictions for n cells for
horizon k .
Upon receipt of RSRP predictions, the CU-CP Network

Function processes the predicted RSRP values and applies
majority voting logic to determine whether to trigger a
handover decision. In particular, the CU-CP gets predicted
RSRP values Yt for inference at time t as input and outputs
the predicted cell index zt with the following rule. Let H
and K denote the handover margin and minimum number
of instances in the majority voting scheme that satisfy the
requirements to trigger a handover, respectively. Also, let
1 [.] denote the indicator function. Given that s represents the
serving cell index, if there is any cell i ∈ {0, 1, . . . , d − 2},
where i ̸= s such that

h−1∑
j=0

1 [Yt [j, i] > H + Yt [j, s]] ≥ K (1)

then, trigger a handover to cell i, i.e., zt = i.
Fig. 12 shows the high-level model structure of the RSRP

predictor and NN model parameters are summarized in
Table 2. In this structure, a single LSTM layer is used, while
the LSTM hidden size is set to 16. Two fully connected layers
follows this LSTM layer, by utilizing Rectified Linear Unit
(ReLU) as activation function. The size of the fully-connected
layers is set to 256. The other key design elements are
depicted in Fig. 12.

FIGURE 11. DT-assisted Mobility: Proposed handover technique that
utilizes an LSTM-based neural network model.

FIGURE 12. The NN model structure for the RSRP predictor.

TABLE 2. Summary of NN model parameters.

C. NN MODEL TRAINING
We use DT-generated synthetic dataset for training, val-
idation, and test purposes of the LSTM model with
0.8/0.1/0.1 split, respectively. In our synthetic data genera-
tion, we consider UEs with a height of 1.46 meters assuming
a Single Input Single Output (SISO) transmission scheme.
These UEs are distributed in an area of 25.92 m × 13.56 m
with 12 cm steps in both dimensions. These dimensions
lead to a UE grid with a size of 217 × 113. Let xu
and yu denote the UE indices in this grid system where
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FIGURE 13. RSRP heatmaps generated by the DT with linear interpolation for RU 0, 1, 3, and 5, respectively.

xu ∈ [0, · · · , 216] and yu ∈ [0, · · · , 112]. For each one of
these UEs, we then compute RSRP values for all n cells,
utilizing the DT. Hence, for a UE with the index of (xu, yu),
we obtain a vector s(xu,yu) =

[
s0(xu,yu), · · · , sn−1

(xu,yu)

]
where

each sk(xu,yu) ∈ s(xu,yu) represents RSRP value of cell k . Note
that due to computational resource constraints, 12 cm is the
smallest spacing that can be handled in the DT. However, the
configuredRSRP reporting interval is 120ms in theNG-RAN
and the target AGV speed is 30 cm/s. This fact necessitates
the interpolation of the RSRP values generated by the DT,
as the maximum spacing between two consecutive RSRP
measurements should be 120 × 30 × 10−3

= 3.6 cm for
a more accurate representation of the actual OTA scenario.
To increase the statistical robustness, we further reduce this
spacing to 2.4 cm in our dataset, which expands the original
UE grid to an aggregated grid represented by G1081×561.
In this expansion, we utilize linear interpolation on the
generated RSRP values in dB domain per cell. We simply
apply the interpolation in one dimension (e.g., x axis) and
then in the other dimension, while creating the DT-generated
RSRP vectors of p(xr ,yr ) =

[
p0(xr ,yr ), · · · , pn−1

(xr ,yr )

]
where

each pk(xr ,yr ) ∈ p(xr ,yr ) represents the corresponding RSRP
for cell k ∀ (xr , yr ) ∈ G. Fig. 13 shows the RSRP heatmap
generated by the DT with linear interpolation for RU 0, 1,
3, and 5. When these figures are compared with Fig. 1, the
area occupied by the metallic blockers are clearly seen with
very low RSRP values (note that Figs. 13 are 90◦ rotated
version of Fig. 1 in clockwise). Furthermore, depending on
where the RU’s are located and their orientation, the region
with higher RSRP coverage changes. For example, RU 0 and
RU 1 cover the left and bottom parts of the area, respectively,
whereas RU 3 is stronger at the top left section and RU 5 is
stronger at the right side of the area. This deployment leads to
handover events when the AGVmoves around various routes,
especially inside the alleys created by the metallic blockers.

The next step is to sample random paths from the
aggregated grid G to generate the datasets to be used in

Algorithm 1 Random Path and Dataset Generation Process
1: Input: Aggregated grid:G, DT-generated RSRP vectors:

p(xr ,yr ) ∀ (xr , yr ) ∈ G, stride: α, number of paths:N ,
length of each path: L, lookback size: l, horizon size:
h

2: Output: A time series of RSRP values O = (X ,Y )

3: for each path i in {0,N − 1} do
4: Pick a random starting point g0 ∈ G
5: for for each j in {0,L − 1} do
6: Pick a random direction from {up, down, left,

right}, but never go back
7: Go in the selected direction by α steps and

appendOwith the corresponding
(
Xj,Yj

)
pair

8: end for
9: end for
10: return O

training, validation, and testing. Algorithm 1 summarizes
the random path generation process with the required inputs
and the output. Let α, N , and L denote the stride, number
of paths to be generated, and the total length of each path,
respectively. Then, the following steps are repeated N times
until all the paths are generated. First, a random starting point,
i.e., g0 ∈ G, is chosen. We then pick a random direction
from the following options: Up, down, left, or right. However,
to prevent unreasonable scenarios and to keep the analysis
less complicated, the UE is not allowed to go immediately
back. That is, if the previous direction is down, the new
selected direction cannot be up. After the new direction is
determined, the UE moves α steps towards this direction
and then adds the grid point g1 to the sample set. The UE
then randomly selects a new direction and repeats the same
process L times to complete a path. Therefore, for each
path i, a sample set of gi = [g0, · · · , gL] is generated
where i ∈ {0,N − 1}. During this process, a time series
of RSRP values O = {(Xk ,Yk)}

N×L
k=0 of length N × L is
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FIGURE 14. High-level block diagram for the NN model training.

generated by appending the corresponding RSRP samples
at each step to the dataset O. Here, each Xk denotes a
(n+ 2) × l matrix where each column represent a feature
set at the corresponding sampling time. For example, let
us consider a generic sampling point gk ∈ gi at time k
where i ∈ {0,N − 1}. Then, Xk = [xk−l+1, · · · , xk ]
consists of vectors corresponding from the sampling point
gk−l+1 to the current sampling point gk where there is a
one-to-one correspondence between the sampling time k , the
sampling location gk , and the sample xk . As discussed in the
previous section, the vector xk consists of n RSRP values
corresponding to each one of n cells and two-dimensional
coordinates at time k . Furthermore, Yk denotes an n×hmatrix
where each column represent RSRP measurements from n
cells for the horizon length of h at the sampling time k . That
is, Yk = [xk+1, · · · , xk+h].
After the completion of this dataset generation procedure,

we randomly split O = {(Xk ,Yk)}
N×L
k=0 into training dataset,

validation dataset, and test dataset with 0.8/0.1/0.1 ratio,
respectively. Fig. 14 show the high-level block diagram for
the NN model training. We use cross entropy loss as loss
function. Therefore, the target truth Yk ∀k ∈ {0,N × L}

are tokenized to the corresponding indices in the token
set during training. Furthermore, uniform Xavier weight
initialization method are used in both LSTM and fully
connected layers where all biases are set to 0.We also employ
batch normalization and dropout techniques (where dropout
ratio is 0.1) to train the fully connected layers.

D. PERFORMANCE EVALUATION
This section describes the performance comparison con-
ducted between the baseline and DTAM schemes, focusing
on the following KPIs:

1) NUMBER OF HANDOVERS/PING-PONGS
This KPI quantifies the aggregate count of handovers
throughout the entire test duration, encompassing both reg-
ular handovers and ping-pong handovers. For our evaluation,

a ping-pong handover is defined as any sequence of
handovers where the UE handovers to a target cell and returns
to the serving cell in less than 3 s.

2) DIFFERENTIAL THROUGHPUT GAIN
This KPI quantifies the differential in DL throughput
between the DTAM and the baseline schemes. Specifically,
it examines regions of the test run where the NR Physical Cell
ID (PCI) differs between the two schemes, highlighting the
potential throughput advantage of DTAM over the baseline
scheme. Our primary focus here is solely on DL, while the
investigation of uplink (UL) throughput remains a topic for
future research.

In our performance study, we conducted tests using a
subset of four cells from our larger six cell OTA deployment.
These selected cells were configured to establish a cell-edge
scenario within a warehouse environment, where an AGV
(with a UE onboard) followed a predefined route denoted
by A-B-C-D-E-F-G-A covering the entire deployment area,
as shown in Fig. 1. The RU IDs considered for these tests
were 0, 1, 3, and 5. The selection of these RUs provided
sufficient coverage while also necessitating handovers due to
the directional nature of our RU transmit antennas. To ensure
realistic conditions, we enabled DL Link Adaptation (LA)
with MCS Table 2 (see Table 5.1.3.1-2 in [38]). Full-
band Physical Downlink Shared Channel (PDSCH) spanning
12 symbols were configured on all D and S slots of the
DDSU TDD slot pattern. The UE was configured to report
SSB-based RSRP measurements for serving and neighbor
cells defined by baseline configuration parameters, including
A3 offset, hysteresis, and time-to-trigger. The UE reported
RSRP measurements were used by the CU to trigger A3
event-based handovers for the baseline scheme [37]. The key
configuration parameters for the DTAM scheme were H and
K defined in Section VI. The ranges for these parameters
were H ∈ [0 dB, 15 dB] and K ∈ [1, 16].
In our investigation, we systematically explored a range

of configuration parameters to identify the most optimal
settings for both the baseline and DTAM schemes. Notably,
we observed substantial run-to-run variations during our
experiments. To ensure robustness in our reported findings,
we selected a single representative run for each scheme. This
selection process involved removing outliers based on the
observed number of handovers and ping-pongs across all runs
and subsequently choosing the median run. By adopting this
approach, we accurately reflect the average performance gain
achieved by the DTAM scheme over the baseline scheme
whilemitigating the influence of anomalous results. The PMF
of all the runs based on total number of handovers for both
baseline and DTAM schemes are shown in Fig. 15a and
Fig. 15b, respectively.
The selected baseline Rel15 mobility run shows six

handovers with one of the handovers characterized as a
ping-pong and the selected DTAM run shows four total
handovers with no ping-pongs. The throughput and serving
cell PCI over time curves obtained from Edgewise PM for
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FIGURE 15. PMF of number of handovers observed during (a) baseline
Rel15 mobility and (b) DTAM runs.

both baseline and DTAM schemes over the full test route are
shown in Fig. 16. The handover characterized as ping-pong
for the Rel15 baseline run can be seen in Fig. 16 where the
UE onboard the AGV handovers from PCI 5 to PCI 3 and
back to PCI 5 in less than 3 sec, whereas no such instance is
observed in the DTAM run.

To understand where this ping-pong happened in our
OTA deployment we plot the UE location vs. serving cell
PCI for the whole run in Fig. 17a and Fig. 17b for the
baseline and DTAM runs, respectively. It can be seen
that the ping-pong handover for the baseline Rel15 run
happened in the aisle region between the metal shelves of our
OTA deployment evident from the consecutively highlighted
handover instances where UE onboard the AGV had PCI
0 as its serving cell. The adverse RF conditions created
by the aisle region between the metal shelves of our OTA
deployment, made baseline Rel15 mobility to perform an
unnecessary handover because of relatively shorter timescale
RSRP change, whereas in the DTAM run no such handover is
observed considering theMLmodel’s ability to predict RSRP
changes in advance.

FIGURE 16. Throughput and serving cell PCI over time for baseline Rel15
mobility and DTAM runs obtained from Qualcomm Edgewise PM
dashboard.

There are two key findings from these observations. Firstly,
DTAM demonstrates a significant reduction in the total
number of observed handovers compared to the baseline
scheme. This reduction is accompanied by the elimination
of ping-pong handovers. The performance improvement of
DTAM can be attributed to the predictive capabilities of our
LSTM-based NN model. Our model predicts RSRP based
on prediction horizon size, ensuring a selection of target cell
that the UE can sustain its link. Notably, the absence of
ping-pongs in DTAM stems from intelligent decision-making
based on predicted RSRP values. Rather than switching
between cells based on current RSRP conditions only, DTAM
prioritizes staying with the current cell when instantaneous
RSRP changes occur. Consequently, DTAM scheme proves
more robust to RSRP fluctuations in our OTA deployment,
mitigating potential performance degradation observed in
baseline handovers. Secondly, DTAM demonstrates an aver-
age differential throughput gain that is 14% higher than that
of the baseline scheme throughout the entire run. In particular,
it enhances this KPI from 232.3 Mbps to 264.9 Mbps.
This figure is derived by averaging the throughput across
all occurrences where a differential PCI was observed for
baseline and DTAM schemes, respectively. This gain is a
direct consequence of the reduced number of handovers in
DTAM. By minimizing handover occurrences, we effectively
mitigate the instantaneous throughput degradation associated
with handover events. Fig. 18 delineates the individual
instances where DTAM and the baseline scheme exhibit
divergent PCI values due to handover events and Fig. 17
portrays the regions in the OTA deployment where these
divergent PCIs are observed. For the first and fifth instance
where the PCI differs for baseline Rel15 mobility and the
DTAM run, DTAM scheme triggered a handover before the
baseline scheme acquiring the potential throughput gain as
evident from the first and fifth bar in Fig 18. Similarly,
in the second instance, the DTAM scheme handed over
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FIGURE 17. (a/b) UE location vs. serving cell PCI for (a) baseline Rel15 mobility and (b) DTAM runs. (c) Areas where the PCI differs for baseline Rel15
mobility and DTAM runs.

FIGURE 18. Differential throughput gain of DTAM over baseline scheme
at each handover instance.

to PCI 5 later than the baseline scheme. Looking at the
corresponding bar on Fig. 18, we can see that this was a
better decision, as DTAM run showed a better throughput in
this region. In the third instance, depicted by the negative
bar in Fig. 18, the DTAM scheme chooses to stick with
PCI 1, while the baseline Rel15 mobility scheme performs
a ping-pong handover to PCI 0. As a result, the baseline
Rel15 mobility scheme experiences an immediate increase
in throughput, leading to the negative bar. However, the
DTAM scheme trades off this instantaneous gain to avoid
ping-pong handovers, resulting in a more consistent user
experience with fewer interruptions compared to the baseline
Rel 15 mobility scheme. Specifically, these handovers led
the baseline scheme to forfeit potential throughput gains that
would have been achievable by intelligently choosing when
to handover, as demonstrated by the discussion above. This
underscores the efficacy of our proposed DTAM technique.

In summary, our DTAM scheme optimally utilizes avail-
able network capacity by judiciously avoiding unnecessary
handovers, thereby demonstrating more consistent user
experience that can provide better QoS for the users in a wider
range of scenarios. As the NN Model was trained only using
synthetic data generated from the developed high-fidelity DT,
its effectiveness in predicting RSRPs in a real world scenario
highlights the high-fidelity of our DT. We also observed that
the model was tolerant to small changes in the environment
because of the training strategy used, eliminating the need
to recreate changes in the DT and retraining the model.

FIGURE 19. High-level block diagram of DT-assisted positioning
procedure.

FIGURE 20. NN model architecture used in DTAP method.

This shows the ability of the developed DT to be used
for closed-loop application in next generation of cellular
networks.

VII. DT-ASSISTED POSITIONING
In this section, we show how a DT can be used to improve
the RSRP based positioning accuracy of a UE in an indoor
environment. While conventional RSRP based positioning
algorithms, e.g., weighted centroid algorithm (WCA), do not
provide a good positioning accuracy, ML approaches are
more promising and show relatively enhanced performance.
However, ML approaches heavily rely on field data col-
lection for NN training, which are very expensive and
time-consuming as discussed before. Here, we propose an
RSRP based DT-assisted positioning technique (DTAP) that
outperforms the conventional WCA approach and does not
require field data collection. Before explaining the details
of DTAP, we provide a brief description of the conventional
WCA in the next subsection. Then, we demonstrate our
DTAP approach in Section VII-B. Finally, in Section VII-C,
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FIGURE 21. OTA routes for performance comparison between DTAP and WCA.

FIGURE 22. Positioning error CDF comparison between DTAP and WCA for three different OTA routes.

we provide experimental results where we show performance
comparisons between WCA and DTAP approaches.

A. WEIGHTED CENTROID ALGORITHM
In RSRP based positioning, the goal is to position a UE given
a set of SSB RSRP measurements at the UE from multiple
cells with known locations. The idea can be summarized as
follows: For a given target UE, let r1 ≥ r2 ≥ · · · ≥ rM denote
the measured RSRP values (in dBm) from M different cells,
and let P1,P2, · · · ,PM be the different cells’ locations. The
UE position estimate is then given by the weighted sum of the
cells’ positions, where the weights are a function of the RSRP
values. Specifically, the UE position estimate P̂ is calculated
as:

P̂ =

∑N
k=1 wkPk∑N
k=1 wk

, (2)

where N is the maximum number of cells used in the
equation, N ≤ M , and w1, · · · ,wN are the cells’ weights
where wk = 2

rk−r1
λ for a scaling factor λ > 0.

B. PROPOSED POSITIONING METHOD
Our proposed procedure is depicted in Fig. 19 and can be
summarized as follows. First, in the training phase, an NN
model is trained on a DT-generated dataset. The dataset
generation follows the same steps as in Section VI-C. Partic-
ularly, the dataset is composed of RSRP vectors, where each

vector represents RSRP values received at a different receive
point from the six different cells. Similar to the procedure in
Section VI-C, the receivers are modeled as a dense grid of
receive points with 12 cm spacing in both the horizontal x
and y axes, corresponding to a grid with a size of 217 × 113.
Also, each receiver models a UE at a height of 1.46 m with
an almost omni radiation pattern to match its real counterpart
and the RUs in the DT are located at the same locations as
their real counterparts with heights ranging from 4.56 m to
4.83m, with radiation patterns matching the real deployment.

After the NN model is trained only on DT-generated data,
the inference can be performed using field RSRP measure-
ments as an input to the trained NN model to obtain UE
position estimates. The NN model used in DTAP consists of
two fully connected hidden layers with an input layer of size
6 and an output layer of size 2. The NN takes six RSRP values
from the six different RUs as input and outputs the estimated
UE positions x and y coordinates. The NN architecture is
depicted in Fig. 20. In training phase, we minimize an MSE
loss function using Adam optimizer with initial learning rate
of 0.01 and batch size 50 for 150 epochs.

C. EXPERIMENTAL RESULTS
Our field RSRP measurements are comprised of three
separate OTA datasets, each of which constitutes a particular
routewithin the test area, as shown in Fig. 21. Specifically, the
first OTA dataset, denoted by OTA1, is collected along a route
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TABLE 3. Positioning error percentiles for the three different OTA routes
with DTAP and WCA.

outside of metallic blockers, i.e., A-B-C-D-G-A in Fig. 1. The
second OTA dataset, denoted by OTA2, is collected along a
route around the metallic blockers, i.e., G-D-E-F-G in Fig. 1.
The last OTA dataset, denoted by OTA3, is collected along a
full route around the testing area, i.e., A-B-C-D-E-F-G-A in
Fig. 1.

Fig. 22 shows a comparison between the cumulative
distribution functions (CDFs) of the positioning errors of the
conventional WCA and our proposed DTAP approaches. For
all OTA routes, DTAP shows improvement in positioning
accuracy over WCA. For example, at 80-th percentile, DTAP
has gains of 1.53 m, 7.01 m, and 2.04 m over WCA
for OTA1, OTA2, and OTA3, respectively. In addition, the
high gain of 7.01 m at 80-th percentile for OTA2 shows
the DTAP capability to mitigate the positioning errors
due to NLOS/blocking conditions. Table 3 summarizes the
CDF error comparison between our proposed approach and
conventional WCA solution for three OTA routes.

VIII. CONCLUSION
With demonstrations in our OTA testbed, we bridged the gap
between theory and implementation, towards achieving the
promised benefits of DT technologies. Furthermore, as we
move into the next phase of 5G Advanced and 6G, our
work will empower the wireless operators and researchers to
access the capabilities of DT technology for network plan-
ning, management, and enhancement, refining foundational
aspects even further. In this study, we particularly showed
how to construct and validate a high-fidelity DTmodel of our
OTA testbed. We then explained how to exploit this model
for pre-deployment use cases such as coverage estimation
and network capacity planning by sharing our OTA results.
We further highlighted that the DT can serve as an effective
methodology to generate large-scale synthetic data to train
NN models. To showcase a potential post-deployment appli-
cation, we proposed a DT-assisted mobility technique which
utilizes an LSTM-based NN model. Our OTA results showed
that DTAM outperforms the baseline mobility scheme in
terms of throughput and ping-pongs during handovers.
We also showcased another post-deployment application

where RSRP-based positioning approach is enhanced by an
NN model trained with DT-generated synthetic data.

As discussed throughout the paper, we have identified
several key areas for future exploration to enhance the
application of DT technology in wireless networks. First
of all, the discrepancies observed in the deviation from
the DT predicted throughput, due to environmental changes
in the OTA testbed over time, highlight the need for
continuous refinement. Future work will focus on improving
the treatment of these modeling errors and incorporate a
closed loop periodic updating strategy for the DT model
to account for the evolving physical environment. This
approach aims at increasing the prediction accuracy of the
DT. Additionally, while our current study was confined to
an indoor OTA deployment, future research will extend
to outdoor DTs. This will involve examining the unique
challenges presented by outdoor network deployments (such
as quality of outdoor maps, building shapes and heights, roof
structures, vegetation, poles and other structures), dynamic
motion of objects, seasonal and weather conditions, user
distribution, and traffic demand behavior modeling. Outdoor
networks also involve a wide variety of UEs (i.e., enhanced
Mobile Broadband or eMBB, reduced capacity or RedCap,
extended reality or XR etc.) and a plethora of UE operating
modes resulting in more complex interference patterns.
Finally, we acknowledge that the implementation of DT
technology in wireless networks can raise concerns about
energy consumption and costs. However, it is important to
note that we are in the early stages of utilizing DT concepts in
wireless networking. The benefits of DTs, such as improved
network optimization and reliable capacity planning, have
significant potential to enhance user experience, ultimately
outweighing these initial costs and energy expenditures in
the long term. By focusing on these practical aspects of
integrating DT solutions into real-world networks, we plan to
explore additional use cases for DT technology. Our ongoing
studies in this research area include investigating how DTs
can optimize efficient resource allocation for different service
types in consideration of network energy savings and utilizing
DTs to develop sophisticated scheduling algorithms.
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