
Received 1 October 2024, accepted 24 October 2024, date of publication 5 November 2024, date of current version 18 November 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3491780

A High-Performance Neural Network SoC for
End-to-End Speaker Verification
TSUNG-HAN TSAI , (Senior Member, IEEE), AND MENG-JUI CHIANG
Department of Electrical Engineering, National Central University, Taoyuan 32001, Taiwan

Corresponding author: Tsung-Han Tsai (han@ee.ncu.edu.tw)

This work was supported by the Ministry of Science and Technology, Taiwan, under Grant MOST 111-2221-E-008-089-MY3.

ABSTRACT The use of the neural network to recognize a speaker’s identity from their speech sounds
has become popular in the last few years. Among these methods, the x-vector extractor, which is based
on time-delay neural networks (TDNN), performs better in noise-canceling and generally achieves higher
accuracy compared to previous methods such as the Gaussian mixture model (GMM) and the support vector
machines (SVM). This paper presents a system-on-chip (SoC) composed of a RISC-V CPU and a neural
network accelerator module for x-vector-based speaker verification (SV). To ensure real-time latency and
enable the implementation of the system on edge devices, this work employs three steps for processing x-
vector including size reduction, pruning, and compression.We are dedicated to optimizing the data flowwith
sparsity. Compared with the conventional sparse matrix compression method compressed sparse row (CSR),
we propose the binary pointer compressed sparse row (BPCSR) method which significantly improves the
latency and avoids the load balancing issue in each PE. We further design the neural network accelerator
module that stores the compressed parameters and computes the x-vector extractor while the RISC-V CPU
processes the rest of the calculations such as feature extraction and the classifier. The system was tested on
the VoxCeleb dataset, containing 1251 test speakers, and achieved over 95% accuracy. Lastly, we synthesized
the chip with TSMC 90 nm technology. It presents 15.5 mm2 in the area and 97.88 mW for real-time
identification.

INDEX TERMS Speaker verification (SV), speaker identification, x-vector, RISC-V, system-on-chip (SoC).

I. INTRODUCTION
The uniqueness of each person’s sound has been commonly
used as biometric identification in recent years. Among
biometric identification with sound, speaker recognition is
one of the leading technologies. There are twomajor branches
of speaker recognition. If the speaker claims to be of a
certain identity and the voice is used to verify this claim, this
is called verification or authentication. On the other hand,
identification is the task of determining an unknown speaker’s
identity. In most cases, both speaker verification and speaker
identification algorithms are similar.

A text-independent speaker verification (SV) system can
identify the person without regard to the content of the
speech. There are several applications in daily life. One of

The associate editor coordinating the review of this manuscript and

approving it for publication was Thomas Canhao Xu .

the famous and successful examples is the bank’s voice-
activated customer service [1]. With the SV neural network
automatically identifying the person, the low reliability
and high repetitiveness of manual checking are no longer
necessary. It can be applied to some applications, such as the
voice assistants on the cellphone or television to distinguish
different users for customized responses.

The recognition accuracy is always a challenge to these
applications. In the past, the Gaussian mixed model (GMM)
[2], [3], [4] and i-vector [5], [6], [7] were the robust meth-
ods for SV. Although the conventional iteration algorithm
achieves adequate accuracy, it has been proved that they
perform poor recognition accuracy in noisy or short-duration
utterances. The d-vector [8] exploits the neural network to
address the reduced accuracy in non-ideal environments, but
it only performs comparable results to the i-vector. Finally,
the x-vector [9], which is based on the time-delay neural

165482

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0001-7524-0621
https://orcid.org/0000-0003-1072-0792

T.-H. Tsai, M.-J. Chiang: High-Performance Neural Network SoC for End-to-End Speaker Verification

network (TDNN) [10], shows a significant improvement over
the previous methods. Other methods like Recurrent neural
networks (RNNs) slightly improve the recognition accuracy
but contain more parameters and increase the computational
complexity [11], [12], [13].

In terms of hardware design, most of the current speaker
verification chips are based on traditional architecture such
as GMM [14], [15] and SVM [16]. Although they have good
results in power consumption, they are more difficult to apply
in applications with a lower tolerance for error verification
such as LOCKs. Some research [17], [18] shows that the
x-vector has better accuracy than traditional mathematical
models, especially in noisy environments, with a large
number of enrolled speakers, or with speech of brief duration.
Besides, the data flow in the x-vector is relatively simple
compared with other neural network-based algorithms. Thus,
we use the x-vector as the base model in this work. We also
compressed the x-vector extractor because even though the x-
vector extractor has outstanding performance, it comes with
a much higher computational effort.

Apart from the accuracy, the power budget and the cal-
culation latency also have strict limitations in implementing
the SV system on edge devices. External memory access
such as reading DRAM causes high power consumption
and latency. Therefore, several recent research [19], [20]
tends to store all the network parameters on the chip to
avoid the above issue. Since the huge storage data may
come with the increasing area, eliminating the unnecessary
parameters in the network is needed. Currently, pruning
can generate sparsity in the weight matrix in the neural
network. It is commonly used for Long Short-Term Memory
(LSTM) [21], [22], CNN, and MLP where it originally
had a relatively large amount of parameters. Additionally,
the storage format is considered to reduce memory size.
Compressed Sparse Row (CSR) and Compressed Sparse
Column (CSC) [23] are popular formats for encoding sparse
matrices, designed to efficiently store and process matrices
with a large number of zero values by only storing non-
zero elements and their indices. However, while CSR and
CSC reduce storage requirements, CSC can lead to load-
balancing issues among processing elements (PEs) [24] due
to its column-wise storage nature, whichmay result in uneven
computational loads.

This paper presents an x-vector-based speaker verification
SoC and implements it as an application-specific integrated
circuit (ASIC) chip. To present a low power, low latency,
and high accuracy SV SoC, three hierarchical challenges
are (1) network compression, (2) efficient dataflow, and
(3) chip architecture. At the algorithm level, we propose
the storage format, BPCSR, to pre-arrange the processing
elements (PEs). It can address the load-balancing issue
and further improve the decoding and encoding process.
At the system level, we make the design more flexible
and support the general peripheral IPs such as UART or
GPIO for back-end devices, the Andes N25F CPU [25] is
included in this design. The CPU also supports other parts

of the work except for neural network computations, such as
feature extraction and scoring. Besides, the neural network
accelerator module stores all the network parameters and
processes the sparse x-vector extractor in parallel and effi-
ciently. We implemented the SV system as an ASIC instead
of a Field Programmable Gate Array (FPGA) [26] because
ASIC has the advantage of lower power consumption. Also,
the whole SV SoC can easily integrate with other chips
or systems.

This end-to-end SV SoC was implemented in the TSMC
90-nm process. Our proposed chip reduces nearly 85% of
computations compared with the original x-vector, and it also
maintains over 95.6% accuracy on the VoxCeleb dataset [27],
[28], which is sufficient to meet most applications in life. The
number of test speakers is up to 1251, which is nearly six
times higher than the majority of prior works. In summary,
this paper presents the following contributions:

• We provide a comprehensive design process from the
software algorithm to hardware implementation for a
complete SV system.

• We design an end-to-end x-vector-based SoC combined
with a RISC-V CPU and neural network module for
large-scale speaker verification.

• We significantly reduce the size of the x-vector neural
network. The parameters were reduced to only 660K
with an ignorable accuracy drop evaluated on the
VoxCeleb dataset.

• We propose the sparse matrix compression method
BPCSR with specific processing elements for fast
decoding and PE load-balancing.

The rest of the paper is organized as follows. Section II
introduces the related works and background. Section III
presents the proposed speaker verification system. Section IV
discusses the x-vector neural network on optimization and
allocation. Section V presents the proposed SoC hardware
architecture. Section VI shows the experimental results and
Section VII gives the conclusions.

II. RELATED WORKS
In this section, we will discuss related research on algorithms
and hardware aspects of speaker verification. Since our
chip design contains an embedded CPU and neural network
computation, speech-related SoC design is discussed in
subsections II-C.

A. SPEAKER VERIFICATION ALGORITHM
In the past, GMMwas used for speaker recognition in 1995 by
Reynolds and Rose [2]. The speech data is first transformed
into the spectrum. The GMM-based speaker model is
obtained by expectation-maximization (EM) algorithm with
training data. Finally, the log-likely score identifies the
speakers. Based on GMM, a novel algorithm, i-vector was
proposed by Dehak et.al. [4] in 2011. They improved the
problem that GMM contains the speaker information along
with the speech context information. Channel compensation
is a technique that significantly enhances the performance of

VOLUME 12, 2024 165483

T.-H. Tsai, M.-J. Chiang: High-Performance Neural Network SoC for End-to-End Speaker Verification

i-vector-based text-independent speaker verification, making
it a widely adopted and mainstream algorithm in the past.

Recently, the neural network methods in speaker recog-
nition have been proven they have better performance than
traditional algorithms, especially in serious background inter-
ference. In 2014, a famous neural network, d-vector [8], was
proposed. The d-vector is trained to classify speakers with
frame-level acoustic features. However, it only performed a
similar result with the i-vector. In 2018, a robust model, x-
vector, was proposed by Snyder et. al [9]. The TDNN layers
in the x-vector model efficiently extract the speaker’s infor-
mation with time relationships. It also significantly improves
the speaker verification result. Other advanced models such
as RNN [11], [12], [13] help the ability for deeper extracting
the speaker information. Although the recognition result
has a slight improvement in more complex recognition
environments, the computation cost also increases.

B. SPEAKER VERIFICATION HARDWARE
Table 1 summarizes the hardware implementations of the
speaker verification task. References [29], [30], and [31]
used SVM and [32] used the linear predictive coding
method to implement the SV work on FPGA. Although
these methods have lower computational complexity and less
memory usage, the less reliable verification results limit the
application environment of this system. In [26], a mainstream
neural network model, an x-vector extractor, is implemented
on FPGA to improve verification accuracy. However, the
SV system is implemented on a powerful FPGA, VCU118,
and uses a huge part of the computation resources without
optimizing the model, making the system inefficient. The
overall power consumption is over 36W.

References [15], [16], and [33] are the ASIC works
for speaker verification. In [16], they exploit multiple
processing units in the Gaussian kernel unit to accelerate the
verification process. The power consumption has significant
improvement compared with other FPGA works. However,
this design is not fully end-to-end, and the verification
accuracy is worse than most neural network-based SV
systems. In [15], an extremely low-power GMM-based end-
to-end SV system was proposed. The power consumption
can achieve the uW level, which is good for mobile
devices. However, for some applications that require rigorous
verification such as voice-activated door locks, GMM is
not suitable since it is more unstable and more sensitive
to noise. Also, their work was only tested on a clean
dataset, and they trialed only 168 samples, raising concerns
about its overall persuasiveness. In [33], they combined
the keyword spotting and SV features by binarized weight
network, which reuses 93.2% of computations. Also, they
proposed a secondary threshold classification that improves
the verification accuracy.

C. SPEECH PROCESSING SoC
Based on these efficient SV methods, a system-level SoC
combined with embedded CPU and dedicated hardware can

be involved to perform an end-product system. Because the
pre-processing contains many non-linear calculations such as
FFT and logarithm, the CPU can provide more flexibility
to exploit it for speech pre-processing. In [34], a speech
recognition SoC combining a dual-core ARM Cortex-A53
and a neural network accelerator module is proposed. The
A53 CPU processes the pre-processing such as framing and
FFT to obtain computational efficiency. Instead of ARM
architecture, in [35], they used a RISC-V-based Andes N25F
CPU with a simple processing unit for dysarthric voice
conversion of stroke patients.

RISC-V is an instruction set architecture, which has
risen in recent years. In contrast to ARM, RISC-V is
an open-source instruction set architecture that does not
require additional licensing fees and has good scalability.
Additionally, it allows designers to modify or extend the
architecture to meet different requirements. Compared to
ARM, the RISC-V instruction set contains only basic
instructions, i.e., the hardware architecture can get better area
and power consumption.

III. PROPOSED SPEAKER VERIFICATION SYSTEM
This section shows the proposed speaker verification system
with its algorithm discussion. The neural network module
plays a key role in the whole system. We design the neural
network module in this section and propose some techniques
to enhance the performance in the next section.

FIGURE 1. Top level speaker verification flow and example.

A. OVERALL SPEAKER VERIFICATION
The verification steps can mainly be divided into three
phases: the training phase, the enrollment phase, and the
testing phase. Firstly, the training phase is to train an SV
model to extract the information from the speakers. Note that
feature extraction occurs at each of the three stages to extract
information from the source. Secondly, in the enrollment
phase, the enrolled utterances are converted into x-vectors
by processing the well-trained speaker model. Lastly, in the
test phase, after the unknown utterance is converted into
the x-vector, the comparator scores the unknown x-vector

165484 VOLUME 12, 2024

T.-H. Tsai, M.-J. Chiang: High-Performance Neural Network SoC for End-to-End Speaker Verification

TABLE 1. The summary of speaker recognition related works.

FIGURE 2. The model architectures and their configurations. (a) The
original x-vector. (b) The x-vector with size reduction.

to each enrolled x-vector. As long as the score exceeds the
threshold value, or a score is higher than others, the unknown
utterance is considered as belonging to the corresponding
enrolled speaker. As shown in Fig. 1, the SV system tries
to find the source of an unknown voice, and there are two
enrolled speakers, enroll A and enroll B. The trained speaker
model extracts the x-vectors of the unknown voice, speaker
A, and speaker B. The comparator compares the unknown x-
vector to the x-vectors of enroll A and enroll B, respectively.
The similarity between the unknown voice and enroll A is
0.92 (higher than enroll B’s score), i.e., the unknown voice is
considered to enroll A’s voice.

The verification performance is directly affected by
mainly three steps: feature extraction, speaker model, and
the comparator. Mel-scale Frequency Cepstral Coefficients
(MFCC) and Filter banks (FBANK) are two of the wildly
used feature extract methods. This step converts digital
signals from time domain sequential signals to frequency
domain spectrum. The speaker model typically consists of the
neural network [8], [9], [10], [11], [12], [13] or mathematical
model [2], [3], [4], [5], [6], [7]. This step is to compute
the unique characteristics of the speaker through the speaker
model. Finally, the cosine score [36] or Probabilistic Linear

Discriminant Analysis (PLDA) [37] compares each feature
vector’s similarity. Typically, PLDA achieves higher accuracy
than the cosine score, but it contains complex computations.

B. FEATURE EXTRACTION
The main purpose of feature extraction is to convert the
incoming speech from the time domain to the frequency
domain. MFCC and FBANK are the commonly used
methods in the field of speech area. Since FBANK is
less computationally intensive and the accuracy rate [41] is
similar to MFCC or even slightly better, we used FBANK to
capture the features in this work. There are five main steps:
framing, windowing, fast Fourier transform (FFT), Mel filter
bank, and logarithm. The spectrum output is the FBANK
feature.

C. X-VECTOR
X-vector is one of the current mainstream baseline model
frameworks in speaker-related applications [42]. The speaker
characteristic is extracted by the first fully connected layer
during the inference. It allows any length input and transforms
it into a fixed-length feature vector. Also, the x-vector
shows outstanding performance but lower complexity of
computations [9] than other commonly used methods such
as RNNs or deep CNNs. Therefore, our speaker model is
based on an x-vector. It only consists of five TDNN layers,
a statistic pooling layer, and two fully connected layers shown
in Fig. 2 (a).

TDNN performs well in dynamic adaptation to time-
domain features and contains fewer parameters. Traditional
deep neural networks present input layers connected one by
one with the hidden layer. Instead, TDNN processes as 1-D
CNNwith dilation calculations, i.e., the features of the hidden
layer are related not only to the input at the current moment
but also to the input at the future and past moment.

The network architecture and dilation details in this work
are shown in Fig. 2. After the feature extraction, the input
feature dimension is transformed into 30 × 512 where
30 refers to the Mel-coefficient feature and 512 represents
the number of frames. The different dilation represents the
number of intervals between kernels. The following TDNN
layers capture the key messages from the input feature with

VOLUME 12, 2024 165485

T.-H. Tsai, M.-J. Chiang: High-Performance Neural Network SoC for End-to-End Speaker Verification

TABLE 2. The error rate and parameters within different removement.

dilation respectively. These filters are used to capture features
at different time delays when processing sequential data.

D. PLDA
Probability Linear Discriminant Analysis (PLDA) [37] is
a scoring method based on a probabilistic model. PLDA’s
similarity scoring achieves good accuracy under challenging
conditions and significantly addresses the problem of high
recognition difficulty and reduced accuracy. The mathemati-
cal models should be well-trained. All the enrolled and test
the x-vector process the transformation, and the final log-
likely ratio can be seen as the similarity scores.

IV. X-VECTOR NETWORK OPTIMIZATION AND
ALLOCATION
For neural networks with massive parameters such as
x-vector. Before reducing the overall cost of hardware
computing, an efficient and compact dataflow for the
compressedmodel is also critical such as downing or pruning.
In this section, we will discuss the compression in the
x-vector and its data pre-allocation.

A. MODEL DOWNSIZING
Undeniably, the convolutional layer contributes significantly
to the computation in the neural network, and eliminating
parameters (20% to 80% depending on the network) does
not significantly affect accuracy. Therefore, we first remove
the convolutional layers which contain a large number of
parameters.

The removed TDNN layers and their corresponding
information are shown in Table 2. We simulated the SV
accuracy on the VoxCeleb dataset with some different TDNN
layer removal. TDNN5 can be considered a critical layer
because it contains the most oversized filter in the whole
network. Additionally, the statistic pooling layer concatenates
the mean and standard deviation of TDNN5 output as
the first fully connected layer’s input. Namely, TDNN5
indirectly impacts the size of the FC1 layer. Apart from
TDNN5, TDNN2, and TDNN3 also significantly impact the
network size because they contain three 512 by 512 filters.
Finally, we remove TDNN5 and TDNN2 because TDNN2
presents less dilation, which incurs more computations than
TDNN3. By doing so, the error rate maintains nearly 4.2%
but eliminates over 62% of parameters. The simplified
x-vector architecture is shown in Fig. 2 (b). After the

downsizing of the network, it shows a higher computational
efficiency.

B. PRUNING
To further reduce the parameters of neural networks,
we prune the network model. The goal of model pruning is
to keep only the critical weights and parameters in each filter
and maintain the same performance. The ratio of eliminated
weights and parameters is referred to as the pruning rate.

There are two kinds of pruning: unstructured pruning
and structured pruning. Unstructured pruning is considered
element-wise pruning. It does not impose any constraints
on parameters which are needed to be removed. Thus, the
zero values are irregularly distributed in the sparse matrix.
This method typically shows a higher sparsity and is easy to
implement. Instead, the structured pruning removes particular
portions of the continuous parameters such as whole columns
or whole filters. The non-zero values will have a particular
distribution in the output sparse matrix.

In this work, we process unstructured pruning with the
L1 norm. L1 norm pruning is a commonly used pruning
strategy, and the equation is expressed as follows:

w′

i,j =

{
wi,j, if

∣∣wi,j ∣∣ > Threshold
0, otherwise

(1)

where wi,j is the weight in filter row i and column j. The
output result wi,j is based on whether the absolute input value
is greater than the Threshold. Once the absolute input value is
less than the threshold, the output weight will be set to zero.
The reason for removing weights with small absolute values
is that they are usually less influential in neural networks.
Most of the layers in a neural network consist of linear
operations. Weights with smaller absolute values have less
impact on the output to the next layer. This method allows
the pruned result to be less different from the original output.

Fig 3(a) shows the error rate at different pruning rates,
which represents the percentage of a filter’s weight that
is pruned. We follow the pruning procedure in [38]. They
mainly show three pruning steps: training connectivity, prune
connectivity, and training weights. The simulation has no
obvious error rate increase at a pruning rate of 60% (only
an increase of 0.012%). Instead of a particular threshold,
we pruned 60 percent of weights in each layer including
TDNN and fully-connected layers. The total number of
parameters dropped from 1.6M to 640K, which shows a good
balance between accuracy and quantity of parameters.

C. QUANTIZATION
It is critical to quantize the data to a fixed point format
before implementing the hardware since the floating point
calculation is inefficient in area and power consumption.
Usually, the temporary data requires more precision because
the error caused by precision accumulates during the compu-
tation, especially in the models with large-size filters. Thus,
the temporary data is set to a 24-bit (1-bit sign bit, 11-bit

165486 VOLUME 12, 2024

T.-H. Tsai, M.-J. Chiang: High-Performance Neural Network SoC for End-to-End Speaker Verification

FIGURE 3. (a)The size-reduced x-vector error rate at different pruning rate. (b)The size-reduced x-vector
error rate in different weight precision.

FIGURE 4. (a)The example of the sparse matrix. (b) The CSR storage
format. (c) The proposed BPCSR storage format.

FIGURE 5. The BPCSR PE load-balancing illustration.

exponent, and 12-bit fraction) fixed point. We simulated
the post-training quantization error rate in different weight
precisions as in Fig. 3(b). The weight in 8-bit fixed-point
(1-bit sign bit, 0-bit exponent, and 7-bit fraction) and input
24-bit fixed-point data resulted in the ignorable error rate
increment.

D. LOAD-BALANCING ISSUE IN CSR/ PROPOSED BPCSR
As the weight matrix becomes sparse after weight pruning,
the matrix contains a large number of zero elements.
To reduce overall storage and frequency of memory access,
most of the sparse matrix is stored in special storage formats,
which avoids all the zero elements occupying the storage

space. Conventional methods such as CSC/CSR can address
these issues. However, CSC and CSR are difficult to achieve
good computing efficiency in hardware implementation since
the PE load-balancing issue occurs.

To store a sparse matrix in CSR, three necessary arrays are
floating-point array data and two integer arrays (Col_index
and Row pointer). For example, a sparse matrix, Fig. 4(a),
is stored in the CSR Fig. 4(b). The data array holds the non-
zero elements of the matrix and is sized as the number of
non-zero elements of the sparse matrix. Col_index holds the
column indexes of the elements in the data array and is sized
the same as the data array. The Row_pointer array is used
to keep track of the starting index of each row’s non-zero
elements in the data array. Each entry in the Row_pointer
array represents the position in the data array where the non-
zero elements of the corresponding row begin. The size of
the Row_pointer array is one more than the number of rows
in the matrix, with the last entry indicating the total number
of non-zero elements.

The position of each element in the sparse matrix can be
represented in these three arrays. However, achieving perfect
performance with CSR can be challenging on most neural
network accelerators. Initially, the allocation of computations
from the dense matrix to PEs is usually based on the rows
or columns in the matrix, e.g., the first and second rows
are allocated to PE0, and the third and fourth rows are
allocated to PE1. Each PE is allocated roughly equal work.
When the matrix becomes sparse, the non-zero elements
are not regularly distributed in each row. The larger the
matrix, the greater the disparity in distribution. Thus it
results in the computations in the matrix not being evenly
allocated to each PE. Every PE has to wait for the PE
with the most computational work to complete its work.
Typically, to address the PE load-balancing issue, the PE
with more work can assign some of the operations to other
PEs. However, the Row pointer array in CSR is difficult to
separate. The Row pointer array needs to be decoded along
with the data array and col index array since it does not
have the one-to-one property for non-zero elements. Namely,
after a sparse matrix stored by CSR, it has been divided

VOLUME 12, 2024 165487

T.-H. Tsai, M.-J. Chiang: High-Performance Neural Network SoC for End-to-End Speaker Verification

FIGURE 6. The example of PE pre-allocation in sparse matrix with BPCSR.

FIGURE 7. The SV procedure within our proposed SoC.

into PEs based on rows or columns. Note that redistributing
the three arrays in CSR is difficult because they are not
interdependent.

To address the problem mentioned above, we propose the
Binary Pointer CSR (BPCSR), which is an improvement over
CSR, making it more efficient for hardware implementation.
In BPCSR, the data array and column index array function
similarly to CSR, representing the non-zero values and their
respective column positions. The row index array, however,
is determined by a change-bit binary array. When the change
bit is 1, the row indexmoves to the next address. For example,
in Fig. 4(c), the BPCSR element (data, col index, change bit)
= (5, 1, 0) indicates that the non-zero data 5 is at coordinate
(0, 1). The row index remains 0 until the change bit becomes
1. For instance, (data, col index, change bit)= (1, 3, 1) shows
that the data 1 is at coordinate (0, 3), and the row index then
moves to the next row. When the next BPCSR element (data,
col index, change bit) = (3, 0, 0) is processed, the row index
is now 2, so data 3 is at coordinate (2, 0).

In practice, the row index array in BPCSR is converted to
the corresponding input address, which can be calculated as:

address = row index ∗ 512 ∗ n+ frame offset (2)

where n is the filter number in a TDNN layer. Since our
model uses 512 dimensions for each input and output layer
in TDNN, each frame is stored sequentially in memory.
This means that each address ROM only needs to store
the address of the first frame based on the row index. For
subsequent frames, the input address is obtained by adding
the appropriate frame offset.

Compared to CSR, BPCSR offers a similar compression
rate with just one additional binary array. The size of this
array is determined by the vector of the matrix. As shown
in Fig. 5, BPCSR allows for dynamic workload distribution
among PEs to achieve load balancing. While some studies,
such as [24], address the load-balancing issue in CSC/CSR,
our approach provides a simpler and more efficient solution
without complex computations. Additionally, BPCSR does
not require a decoder when processing the TDNN, reducing
the overall area and enabling a more compact computation
process. More details are provided in Section V.

E. PE PRE-ALLOCATION
PE load-balancing issues significantly affect overall per-
formance, and proper PE pre-allocation can improve this
problem. Fig. 6 shows the procedure of PE pre-allocation
in sparse TDNN computation with our proposed BPCSR
storage. The TDNN processes are similar to the 1D CNN,
but different filters convolute with different frames and sum
together to perform the dilation computation. Besides, TDNN
is dominated by weight, i.e., each layer contains a large
amount of weight.

Firstly, we initially allocate the workload by the row
index of each filter to increase the data reuse. By doing
so, each PE can completely calculate without reloading the
same inputs until the next frame needs to be processed.
Secondly, all theweights are transformed into BPCSR storage
format, and the row index array in the BPCSR is processed
as the corresponding address array. In Fig. 6, it is evident

165488 VOLUME 12, 2024

T.-H. Tsai, M.-J. Chiang: High-Performance Neural Network SoC for End-to-End Speaker Verification

FIGURE 8. An overview of the proposed SV SoC.

Algorithm 1 The process workload of each PE
N = the number of non-zero elements
P = the number of PEs
concatenate filters in the column dimension
allocate the work-load to PEs by row
encode BPCSR

1: mean = N/P
2: for (i = 0; i < N ; i = i+ 1){
3: w = len(work[i]) − mean
4: if (w ≥ 0) {
5: append (temp, work [i][mean: w])
6: delete (work [i][mean: w])
7: }
8: }
9: for (i = 0; i < N ; i = i+ 1){
10: w = mean− len(work[i])
11: if (w ≥ 0) {
13: append (work [i], temp [w : mean])
14: delete (temp [0 : w])
15: }
16: }

that PE1 has more workload than the other PEs. Finally,
with our proposed BPCSR format, PEs with more work
can be easily assigned to other PEs. The extra work W16,
W17, and their corresponding addresses are reallocated to
PE0 and PE2. Thus, all the PE sets can achieve PE load-
balancing, and the overall process cycle reduces from 7 to 5.
In the actual operation of our proposed system, for example,
if the work of the first TDNN layer is allocated to 16 PEs
by storing the weights in CSR, the maximum workload in
the PEs is three times the minimum one, which is 3096,
and 1091 respectively. This is because the CSR format
compresses the non-zero elements of the sparse matrix

together, causing the computation workload assigned to each
PE to be uneven due to the distribution of these non-zero
elements in the matrix. For example, some PEs may need
to process more non-zero elements, while others process
fewer. This results in some PEs having a heavy workload
(such as 3096) and others having a lighter workload (such as
1091). To mitigate this issue, it may be necessary to further
optimize the weight allocation strategy or improve the load
balancing algorithm to ensure that the workload is more
evenly distributed among all PEs. With the proposed BPCSR,
they can achieve well balancing, namely, each PE is allocated
to the same workload.

We used a simple algorithm to ensure that each PE is
allocated similar workloads. The detail is represented in
Algorithm 1. After the allocation according to the weight
matrix row and the encoding of the BPCSR, each PE is
allocated roughly uneven work. The array work[i] represents
the BPCSR format workloads in i-th PE. Line 1 shows the
amount of work that should be allocated to each PE. Line 2
to Line 8 aggregate the PE overwork, in which PE workloads
are larger than the mean. The overwork will be put into
the temp array and removed from the original allocation.
Line 9 to Line 16 allocate the work in temp to PEs with
less than average workload. This approach ensures that each
PE is allocated an approximately mean workload and solves
the load-balancing problem. Besides, this algorithm does not
affect much data reuse and only fewer circumstances where
it is necessary to reload the same input to different PEs

V. HARDWARE ARCHITECTURE DESIGN
This section describes the hardware architecture of the x-
vector-based speaker verification SoC. The whole system
achieves higher performance by separating neural network
computation and other processes such as feature extraction
and PLDA to neural network modules and CPU respectively.

VOLUME 12, 2024 165489

T.-H. Tsai, M.-J. Chiang: High-Performance Neural Network SoC for End-to-End Speaker Verification

Additionally, in the neural networkmodule, all parameters are
stored on-chip with BPCSR format, collaborating with the
specific hardware architecture to improve power consump-
tion, area, and latency.

A. OVERALL ARCHITECTURE
Figure 7 shows the steps required for the hardware imple-
mentation of speaker verification. It consists of four main
steps, analog front-end (AFE), FBANK feature extraction, x-
vector extractor calculation, and PLDA scoring. The function
of the AFE is to record speech and convert the speech from
analog signals to digital signals. Since the CPU supports
multiple types of peripheral IO, AFE can be replaced by
the other existing recording devices. Thus, the AFE is not
integrated into this work. Since the FBANK feature extraction
includes a huge part of non-linear operations such as FFT
and logarithm, processing FBANK is often more efficient
when performed by the CPU. We designed a neural network
accelerator module because the x-vector extractor consists
of a large amount of multiplication, and the CPU still
hard to affording the x-vector’s workload even through the
pruning and compression in the weight matrix. Finally, the
CPU processes the PLDA scoring since it contains relatively
complex non-linear computations.

The entire SoC architecture is represented in Fig. 8.
The left part of the AHB bus decoder illustrates the CPU
system, and the other side is the neural network accelerator
module. After loading the necessary instructions and data,
the CPU starts to process the program. When the CPU
requires data, it sends the address to the bus decoder to
decode the corresponding location based on the defined
memory map to read the data. Firstly, the CPU processes
the FBANK feature extraction. When the CPU completes
FBANK and the result of each frame has been saved to the
global buffer (GB), the CPU enables the status register to
wake up the neural network module. Meanwhile, the CPU
is set to wait for interrupt (WFI) mode, i.e., the system
temporarily shuts down the CPU and cuts off the core clock
until the interrupt occurs. Since the CPU completes the
feature extraction, the authority of GB access is handed over
from the CPU to the neural network module by the status
register. During the computing in the neural network module,
the module accesses the data from GB, and the processed
data overwrites the original data. When the neural network
module computations are finished, the module disables the
status register to generate the interrupt. Since the CPU wakes
up after an interrupt, the authority of GB access is returned
to the CPU. The CPU copies the x-vector extractor from GB
to other RAM. Lastly, the CPU computes the PLDA score
with previously calculated x-vectors. Then PE’s weight is
stored in ROM to achieve area savings. The output of the
SV can be represented in multiple ways by peripheral IO.
For example, we can exploit the General Purpose input/output
(GPIO) to directly activate some of the back-end devices or
print the result in text form to the target terminal by Universal

Asynchronous receiver/transmitter (UART). Therefore, the
SV system shows better flexibility.

B. BN25F CPU
We integrate Andes N25F CPU in this work as an SoC.
It is capable of delivering high per-MHz performance and
operating at high frequencies while small in gate count. N25F
also supports single- and double-precision floating-point and
bit-manipulation instructions. The necessary modules such
as the data bus, instruction local memory (ILM), data local
memory (DLM), and peripheral IOs are integrated with the
N25F CPU as the AE350 platform. Andesight is an Integrated
Development Environment (IDE) for the AE350 platform.
It compiles the C or C++ language, which is written by users.
After the compiling, depending on the predefined memory
mapping, the compiler processes the linker script to map each
section of data into the chip. The control and status registers
statement and the necessary data are transferred from the
Andesight software when the CPU boosts. After the CPU
boosts and all the data is transferred by JTAG, the CPU
begins to process the program. CPU fetches the instructions
from instruction local memory (ILM). The data local memory
(DLM) stores the input data and the temporary calculation
data.

C. NEURAL NETWORK ACCELERATOR MODULE
Most neural networks include about 90% of computations
on convolutional layers. It is evident that the use of highly
parallel PE arrays efficiently speeds up highly repeatable
operations. However, unlike conventional convolutional com-
putations, TDNN has the same bottleneck in hardware design
as 1D CNN or LSTM. The memory bandwidth problem is
exacerbated by the high dimension filter and the low reusable
weight in each frame. Namely, if the PE array does not
receive the appropriate weights simultaneously, many stalls
will occur.

To solve the problem of high memory bandwidth require-
ments and low data reuse, we refer to the hardware
architecture in [23], where a hierarchical memory mesh
computing architecture was proposed. Unlike the traditional
approach, a cluster contains only one global buffer (GB).
In [23], each PE cluster is allocated multiple GBs to store
the weights, input activations (iacts), and partial sum (psum).
In this work, all the network parameters are separated into
the different weight ROMs connected to PEs. Additionally,
each PE has its input buffer and relatively large output buffer.
By doing so, the bandwidth has significantly improved.

After processing FBANK feature extraction, a short-
duration utterance is converted into approximately 30 feature
dimensions by 150 frames spectrum. The temporary data
between TDNN layers is 512 dimensions by 150 frames due
to the multiple 512 by 512 filters. We designed a highly
parallel neural network module for this large number of
computations. The architecture detail and its data flow are
shown in Fig. 9. We divided the PE array into 16 PE clusters
to increase the computational efficiency in larger filters.

165490 VOLUME 12, 2024

T.-H. Tsai, M.-J. Chiang: High-Performance Neural Network SoC for End-to-End Speaker Verification

FIGURE 9. The proposed neural network module architecture and dataflow.

FIGURE 10. (a) The TDNN layers and (b) fully-connected layer in xvector
represented as vector-matrix multiplication.

FIGURE 11. The proposed PE architecture.

Namely, each frame is processed in parallel by 16 PEs. On the
other hand, to increase the data reusability further, each PE
cluster has 5 PEs for the parallel calculation with the same
filters but different frames. The address dictionary (addr,
dict) records the address required by PE0 for the first frame
calculation. When the input buffer in the PE0 needs data, the
GB address for input data is the sum of the current addr and
dict value and the frame offset. At the same time, the address
required for the other PEs in a PE cluster can be calculated

from the value in the addr and dict and the frame offset, as the
frames are placed sequentially in the GB.

In the beginning, the control unit takes the current addr
and dict value plus the frame offset as the GB address.
Due to the control unit recording the layer and frame of
the current calculation, the frame offset can be computed.
At the same time, the control unit outputs a control signal
to each PE to ensure that the PE receives the correct value.
In the computation process, the weight ROM address will
be added by one when each computation is finished to allow
the PE to update the weight. The result of the computation is
accumulated in the output buffer.When the input buffer needs
to be updated, the weight ROM and PE computation will be
suspended until the PE’s input buffer has been updated.When
the whole frame process is completed, the adder tree will
sum the PE output buffer of 16 PE clusters according to each
frame. After the batch normalization, data will be stored back
to GB according to the position of the frame.

When the computation in the last frame is finished, the
control unit incurs a local reset to the neural network
module. Meanwhile, the system fetches the input of the
next layer. After processing the TDNN4 layer, the system
accumulates each frame and computes the average and
standard deviation for statistic pooling. Finally, after the FC1
layer, we can get the x-vector. Most of the work is hard to
process the convolutional and fully connected layers in the
same hardware architecture. Even though they successfully
share the computational resource, the system may need the
additional circuit or perform a more complex data path.
Fortunately, as shown in Fig. 10, the process of the fully-
connected layer is similar to the TDNN layer. Namely, the
FC1 layer can share the same hardware architecture as the
TDNN layer in this work.

D. PROCESSING ELEMENT
Processing elements (PEs) are used to process multiplication
and addition in the neural network accelerator. They are

VOLUME 12, 2024 165491

T.-H. Tsai, M.-J. Chiang: High-Performance Neural Network SoC for End-to-End Speaker Verification

FIGURE 12. Detection Error Trade-off curves.

FIGURE 13. (a) The number of parameters and the (b) FLOPs between the
original x-vector and the compressed x-vector in this work.

usually arranged as arrays to acquire high parallelism. Each
PE connects to the global buffer (GB) to receive the input
data and then transfers the output data back to the GB when
the computations are finished.

However, the memory bandwidth can be seen as the
bottleneck in TDNN due to the low data reusability.
To prevent PEs access GB frequently, it is needed to include
a larger output buffer in the PEs. The PE architecture and
its calculation flow in this work are shown in Fig. 11. Each
PE comprises a 3 × 24b input buffer, an index accumulator,
a multiply-accumulate unit (MAC), and a 512 × 24b output
buffer. The temporary data dimension in each TDNN layer is
512. Therefore, a 512 × 24b output buffer ensures sufficient
space to store the entire temporary data of a frame. The
adder tree sums every temporary data in each PE cluster
and operates the batch normalization before writing back the
output data to GB.Namely, 16 PEs are used to process a frame
only on writing back the data to GB once, which significantly
reduces the GB access.

Additionally, our proposed PE combines the decoding of
BPCSR with standard MAC computation. After encoding the
BPCSR storage format, the change, col_index, and data array
are stored into weight ROMc, and the corresponding input

address array is stored into addr_dictc where c represents the
PE cluster. Furthermore, BPCSR does not need to be restored
to the original matrix during the computation. Initially, the
control unit sends the index to the address dictionary to fetch
the necessary input address and sums it with the frame offset
as the GB address. The GB writes the input data to the
input buffer in the PE. Meanwhile, the input buffer receives
the control signals from the control unit to ensure that only
the specific PE can receive the input data. When all PEs
successfully fetch three input data, the MAC unit will begin
the computation. The change, col, and data array connect
to the index accumulator of the input buffer, MAC unit, and
the output buffer address, respectively, as shown in Fig. 11.
During the computation, if the change bit equals 1, the index
accumulator will be added by 1 to update the current input.
Once the index accumulator is larger than two, i.e., all the
input in the input buffer has been processed, PE will be
stalled until the input buffer is updated and reset the index
accumulator.

Since each PE independently works, one PE re-fetch the
input data will not affect the other PEs’ computation. Then
the current input data is multiplied by the data. The col
points out the corresponding data from the output buffer,
then accumulates with the multiplied data and is stored back
to the output buffer with the same address, col. The weight
ROM address is added by one every two cycles. One is for
reading out the data from the output buffer. The other is for
writing back the accumulated data. PEs continue to process
the computations until they finish an entire frame. When the
next frame needs to be processed, PE will reset all the states
and data in the buffers.

In summary, the weights can be processed directly in
the BPCSR format without an extra decoding circuit. The
processing can skip all the zero values without any extra
spending cycles. Also, a larger output buffer in the PE
addresses GB’s congestion problem. Thus, the overall latency
and the power efficiency have significantly improved.

VI. EXPERIMENTAL RESULTS
A. OVERALL ARCHITECTURE
The neural network in the training phase is trained by
Python with Pytorch framework, while Python and Kaldi
v5.5 emulate in the test phase. Kaldi is an open-source
speech-related framework that processes the FBANK feature
extraction and PLDA score in this work. Herebywe translated
the FBANK and PLDA to C language and compiled them on
the Andesight IDE to run on the N25F CPU.

As with most speaker verification in software research,
we use the VoxCeleb2 [27] dataset for training and testing
on the VoxCeleb1 [28] dataset. The VoxCeleb2 contains over
1 million utterances for 6112 different speakers. It records
nearly 3000 hours of speech from YouTube videos. The
VoxCeleb1 contains over 150,000 for 1251 speakers, and it
also provides different trials for evaluating the performance
of SV. We also tested on the speaker in the Wild (SITW)

165492 VOLUME 12, 2024

T.-H. Tsai, M.-J. Chiang: High-Performance Neural Network SoC for End-to-End Speaker Verification

TABLE 3. The error rate in different trials.

dataset. SITW is a more realistic and challenging dataset,
which closely mirrors real-world scenarios.

After downsizing the model, the subsequent step involves
training the network and pruning the training results.
Subsequently, the pruned parameters are retrained, fol-
lowed by quantizing the output to achieve the desired
result.

In the testing phase, we evaluate all the data in the dataset,
with each audio having a length of approximately 8 seconds.
After comparing the two sets of audio, we will calculate the
equal error rate (EER) from the results, and the accuracy will
be derived using 1-EER. The quantity of data utilized by each
tester may vary depending on the information available in the
dataset.

TABLE 4. Accuracy and power consumption.

B. ACCURACY AND FLOPs
We tested the compressed x-vector extractor on three different
trials, VoxCeleb1, VoxCeleb1-H, and VoxCeleb1-E. The
original VoxCeleb1 test list with only 40 speakers. The chal-
lenging version of the VoxCeleb1-H list is where the test
pairs are drawn from identities with the same gender and
nationality. Table 3 shows the evaluation result in equal error
rate (EER) and minimum detection cost function (DCF),
where x represents the x-vector baseline and c represents
the compressed x-vector in this work. EER shows the
error rate when the false acceptance rate (FAR) equals
the false rejection rate (FRR). The DCF can be expressed
as follows:

minDCF = Cfa ∗ FAR ∗
(
1 − ptarget

)
+ Cfr ∗ FRR ∗ ptarget

(3)

where Cfa is the risk factor for false accepted samples, Cfr is
the risk factor for false rejecting a sample, and we set both

Cfa and Cfr values to 1. ptarget is the prior probability of the
false occurring. ptarget is usually set to 0.01 or 0.001.
The result shows that the x-vector extractor can achieve

high accuracy in SV. The EER is between 3.35% to 5.88%
depending on the different test lists. Figure 12 shows the
detection error trade-off curves. However, as in Fig. 13, the
number of parameters and the FLOPs in the x-vector is
extremely high where the parameters are over 4.2M and the
FLOPs are about 372M. The compressed x-vector in this
work eliminated over 84% of parameters and nearly 83% of
FLOPs, which are 660K in parameters and 63.6M FLOPs.
Besides, the EER only increases by at most 1.42%. It shows
a great trade-off between computational load and accuracy.
Additionally, Table 4 shows the accuracy of VoxCeleb1 and
the chip power consumption at different bit precisions of the
parameters.

FIGURE 14. (a) The overall area breakdown. (b) The power breakdown.

C. ASIC DESIGN AND AREA ANALYSIS
To reduce the area, we stored all the weights in ROM. A
64kB ROM shows only 27% area compared with SRAM
in the same size, but ROM slightly increases the power
consumption. The total memory usages are 1.28MB ROM
for storing the neural network parameters and 568KB SRAM
for CPU, GB, and PEs. The area breakdown and the power
breakdown are shown in Fig. 14 (a) and Fig. 14 (b). Due to
the large size of ROM and 80 PEs in the NN accelerator,
it shows nearly 54% area and 47% power consumption in
the whole chip. The CPU does not account for a significant
proportion of the total area and power consumption since it
does not include the Single InstructionMultiple Data (SIMD)
unit.

VOLUME 12, 2024 165493

T.-H. Tsai, M.-J. Chiang: High-Performance Neural Network SoC for End-to-End Speaker Verification

TABLE 5. Comparison with State-of-the-art works.

D. COMPARISONS WITH EXISTING WORKS
Due to a few works implementing the whole speaker
verification system on ASIC, our work is compared with five
ASIC works in this paper. Table 5 shows the comparison
between this work and the prior art. Most of the prior ASIC
works exploited conventional algorithms such as GMM and
SVM to achieve high energy efficiency. However, these
works are difficult to achieve high accuracy in environments
containing lots of speakers or noise.

FIGURE 15. Layout of proposed speaker verification SoC.

In [16], the verification accuracy is only 92.49% tested on a
clean dataset, NIST SRE with 200 speakers. In contrast, our
work shows a 2.71% accuracy improvement evaluated on a
more challenging dataset, VoxCeleb, which has 1251 speak-
ers and more than 579K test samples. Although [15] shows
good verification result which is higher than 99%, they only
test 168 clean samples in the TIMIT dataset. Besides, the
GMM method performs with only 85% accuracy on the
VoxCeleb dataset refer to [28]. In [33], their work only tested
on the VoxCeleb2 test set instead of the whole VoxCeleb

dataset. Although the secondary threshold can achieve
good accuracy, the verification result may become unstable
because of the dependency on the previous verifications.
In [43] and [44], the validation accuracies on the clean
dataset TIMIT are 99.6 and 93.1% respectively. Compared
to [43], our accuracy is 4% lower, but this is because our
work is evaluated on a more challenging dataset, VoxCeleb,
which tests 1.98 times more speakers than [43], and for
power comparison because of the difference in the process,
therefore, the comparison was done after normalization
to 90nm, and after normalization, the power consumption
of [43] is 2.75 times higher than ours. Compared to [44] we
tested a higher number of speakers as well as higher accuracy,
and the power consumption of [44] is 9.94 times higher than
ours.

Since our work contains a CPU, users can modify the
program according to the different applications which are
seldom addressed in the existing works. Thus, this work is
more flexible and can be used in more scenarios. The Andes
N25F CPU shows high energy and area efficiency. However,
the RISC-V instruction set architecture supports fewer
instructions, and the latency is relatively high, which takes
nearly 600ms in FBANK and PLDA at 200MHz operational
frequency. The proposed NN accelerator processes the sparse
data with a compact and efficient data flow. Therefore,
it takes 0.4s at 40MHz operational frequency (maximum can
achieve 225MHz) to finish the compressed x-vector extractor
computations.

VII. CONCLUSION
In this paper, a large and flexible x-vector-based speaker
verification SoC is proposed. We consider the efficient
realization of the neural network with its algorithm and
architecture design. We propose the BPCSR sparse matrix

165494 VOLUME 12, 2024

T.-H. Tsai, M.-J. Chiang: High-Performance Neural Network SoC for End-to-End Speaker Verification

storage format which can easily pre-allocate the PEs in the
NN accelerator module. With the compression in the x-vector
extractor, over 84% of weights are removed and the accuracy
still maintains 95.6% testing on the VoxCeleb1 dataset
including 1251 speakers. With the proposed PE architecture,
the PE array can achieve good PE load-balancing. Besides,
the data stored in BPCSR format can be directly computed
in PE without extra decoders, making the entire data flow
more compact and efficient. Our system is designed on an
SoC which mainly consists of the Andes N25F and the neural
network accelerator. The accelerator is designed by ASIC
and the chip is synthesized in TSMC 90 nm technology and
performs 15.5 mm2 area and 97.88 mW power consumption.
Through cooperation between the CPU and NN accelerator,
the overall SV system achieves real-time latency and good
power efficiency.

ACKNOWLEDGMENT
Andes N25F CPU and technical problem support are
provided by Andes Technology

REFERENCES
[1] N. Egi, T. Hayashi, and A. Takahashi, ‘‘The proposal of quantification

method of speaker identification accuracy for speech communication
service,’’ in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.
(ICASSP), May 2011, pp. 2424–2427.

[2] D. A. Reynolds and R. C. Rose, ‘‘Robust text-independent speaker
identification using Gaussian mixture speaker models,’’ IEEE Trans.
Speech Audio Process., vol. 3, no. 1, pp. 72–83, Jan. 1995.

[3] P. Kenny, G. Boulianne, P. Ouellet, and P. Dumouchel, ‘‘Speaker and
session variability in GMM-based speaker verification,’’ IEEE Trans.
Audio, Speech Lang., Process., vol. 15, no. 4, pp. 1448–1460, May 2007.

[4] N. Dehak, P. J. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet, ‘‘Front-
end factor analysis for speaker verification,’’ IEEE Trans. Audio, Speech,
Lang., Process., vol. 19, no. 4, pp. 788–798, May 2011.

[5] M. Li, A. Tsiartas, M. Van Segbroeck, and S. S. Narayanan, ‘‘Speaker
verification using simplified and supervised i-vector modeling,’’ in
Proc. IEEE Int. Conf. Acoust., Speech Signal Process., May 2013,
pp. 7199–7203.

[6] S. Cumani, O. Plchot, and P. Laface, ‘‘On the use of i–vector posterior
distributions in probabilistic linear discriminant analysis,’’ IEEE/ACM
Trans. Audio, Speech, Lang., Process., vol. 22, no. 4, pp. 846–857,
Apr. 2014.

[7] C. J. S. de Souza, D. C. G. González and L. L. Ling, ‘‘VVGP features
for speaker verification using i-vector framework,’’ in Proc. Int. Workshop
Telecommun. (IWT), 2015, pp. 1–4.

[8] E. Variani, X. Lei, E. McDermott, I. L. Moreno, and J. Gonzalez-
Dominguez, ‘‘Deep neural networks for small footprint text-dependent
speaker verification,’’ in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process. (ICASSP), Jun. 2014, pp. 4052–4056.

[9] D. Snyder, D. Garcia-Romero, G. Sell, D. Povey, and S. Khudanpur,
‘‘X-vectors: Robust DNN embeddings for speaker recognition,’’ in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), Apr. 2018,
pp. 5329–5333.

[10] A.Waibel, T. Hanazawa, G. Hinton, K. Shikano, andK. J. Lang, ‘‘Phoneme
recognition using time-delay neural networks,’’ IEEE Trans. Acoust.,
Speech, Signal Process., vol. 37, no. 3, pp. 328–339, Mar. 1989.

[11] F. A. Rezaur rahman Chowdhury, Q. Wang, I. L. Moreno, and L. Wan,
‘‘Attention-basedmodels for text-dependent speaker verification,’’ inProc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), Apr. 2018,
pp. 5359–5363.

[12] C. -P. Chen, S. -Y. Zhang, C. -T. Yeh, J. -C. Wang, T. Wang, and
C. -L. Huang, ‘‘Speaker characterization using TDNN-LSTM based
speaker embedding,’’ in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process. (ICASSP), 2019, pp. 6211–6215.

[13] F. Zhao, H. Li, and X. Zhang, ‘‘A robust text-independent speaker
verificationmethod based on speech separation and deep speaker,’’ inProc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), May 2019,
pp. 6101–6105.

[14] J. S. P. Giraldo, S. Lauwereins, K. Badami, H. Van Hamme, and
M. Verhelst, ‘‘18µW SoC for near-microphone keyword spotting and
speaker verification,’’ in Proc. Symp. VLSI Circuits, 2019, pp. C52–C53.

[15] J. S. P. Giraldo, S. Lauwereins, K. Badami, and M. Verhelst, ‘‘Vocell:
A 65-nm speech-triggered wake-up SoC for 10-µw keyword spotting
and speaker verification,’’ IEEE J. Solid-State Circuits, vol. 55, no. 4,
pp. 868–878, Apr. 2020.

[16] J.-C.Wang, L.-X. Lian, Y.-Y. Lin, and J.-H. Zhao, ‘‘VLSI design for SVM-
based speaker verification system,’’ IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 23, no. 7, pp. 1355–1359, Jul. 2015.

[17] D. Snyder, D. Garcia-Romero, D. Povey, and S. Khudanpu, ‘‘Deep neural
network embeddings for text-independent speaker verification,’’ in Proc.
Interspeech, 2017, pp. 999–1003, doi: 10.21437/Interspeech.2017-620.

[18] X. Zhang, X. Zou, M. Sun, T. F. Zheng, C. Jia, and Y. Wang,
‘‘Noise robust speaker recognition based on adaptive frame weighting in
GMM for i-Vector extraction,’’ IEEE Access, vol. 7, pp. 27874–27882,
2019.

[19] D. Kadetotad, V. Berisha, C. Chakrabarti, and J.-S. Seo, ‘‘A 8.93-TOPS/W
LSTM recurrent neural network accelerator featuring hierarchical coarse-
grain sparsity with all parameters stored on-chip,’’ IEEE Solid-State
Circuits Lett., vol. 2, no. 9, pp. 119–122, Sep. 2019.

[20] K. -Y. Fan, J. -H. Chen, C. -N. Liu, and J. -D. Huang, ‘‘Performance
optimization for MLP accelerators using ILP-based on-chip weight
allocation strategy,’’ in Proc. Int. Symp. VLSI Design, Autom. Test (VLSI-
DAT), 2022, pp. 1–4.

[21] S. Wang, P. Lin, R. Hu, H. Wang, J. He, Q. Huang, and S. Chang,
‘‘Acceleration of LSTM with structured pruning method on FPGA,’’ IEEE
Access, vol. 7, pp. 62930–62937, 2019.

[22] X. Dai, H. Yin, and N. K. Jha, ‘‘Grow and prune compact, fast, and
accurate LSTMs,’’ IEEE Trans. Comput., vol. 69, no. 3, pp. 441–452,
Mar. 2020.

[23] Y.-H. Chen, T.-J. Yang, J. Emer, and V. Sze, ‘‘Eyeriss v2: A flexible
accelerator for emerging deep neural networks on mobile devices,’’ IEEE
J. Emerg. Sel. Topics Circuits Syst., vol. 9, no. 2, pp. 292–308, Jun. 2019.

[24] J. Park, W. Yi, D. Ahn, J. Kung, and J.-J. Kim, ‘‘Balancing computation
loads and optimizing input vector loading in LSTM accelerators,’’ IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 39, no. 9,
pp. 1889–1901, Sep. 2020.

[25] [Online]. Available: http://www.andestech.com/en/products-
solutions/andescore-processors/RISC-V-n25f/

[26] M. Jiao, Y. Li, P. Dang,W. Cao, and L.Wang, ‘‘A high performance FPGA-
based accelerator design for end-to-end speaker recognition system,’’
in Proc. Int. Conf. Field-Programmable Technol. (ICFPT), Dec. 2019,
pp. 215–223.

[27] J. S. Chung, A. Nagrani, and A. Zisserman, ‘‘VoxCeleb2: Deep speaker
recognition,’’ in Proc. INTERSPEECH, vol. 1, Sep. 2018, pp. 1086–1090,
doi: 10.21437/Interspeech.2018-1929.

[28] A. Nagrani, J. S. Chung, and A. Zisserman, ‘‘VoxCeleb: A large-
scale speaker identification dataset,’’ in Proc. Interspeech, Aug. 2017,
pp. 2616–2620, doi: 10.21437/Interspeech.2017-950.

[29] R. Ramos-Lara, M. Lopez-Garcia, E. Canto-Navarro, and L. Puente-
Rodriguez, ‘‘SVM speaker verification system based on a low-cost
FPGA,’’ in Proc. Int. Conf. Field Program. Log. Appl., Aug. 2009,
pp. 582–586.

[30] R. Ramos-Lara, M. López-García, and E. Cantó-Navarro, ‘‘Real-time
speaker verification system implemented on reconfigurable hardware,’’ J.
Signal Process. Syst., vol. 71, pp. 89–103, Jun. 2013.

[31] E. Cantó-Navarro, M. López-García, R. Ramos-Lara, and R. Sánchez-
Reíllo, ‘‘Flexible biometric online speaker-verification system imple-
mented on FPGA using vector floating-point units,’’ IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., vol. 23, no. 11, pp. 2497–2507, Nov. 2015.

[32] A. S. Bora, R. Reddy, S. Satpathy, H. Balachander, V. Vijendra, G. Trivedi,
and R. Sinha, ‘‘Power efficient speaker verification using linear predictive
coding on FPGA,’’ in Proc. Int. CET Conf. Control, Commun., Comput.
(IC), Jul. 2018, pp. 260–265.

[33] B. Liu, H. Cai, X. Zhang, H. Wu, A. Xue, Z. Zhang, Z. Wang, and J. Yang,
‘‘A target-separable BWN inspired speech recognition processor with
low-power precision-adaptive approximate computing,’’ in Proc. Design,
Autom. Test Eur. Conf. Exhib. (DATE), Mar. 2022, pp. 196–201.

VOLUME 12, 2024 165495

http://dx.doi.org/10.21437/Interspeech.2017-620
http://dx.doi.org/10.21437/Interspeech.2018-1929
http://dx.doi.org/10.21437/Interspeech.2017-950

T.-H. Tsai, M.-J. Chiang: High-Performance Neural Network SoC for End-to-End Speaker Verification

[34] T. Tambe, E.-Y. Yang, G. G. Ko, Y. Chai, C. Hooper, M. Donato,
P. N. Whatmough, A. M. Rush, D. Brooks, and G.-Y. Wei, ‘‘9.8 a
25mm2 SoC for IoT devices with 18ms noise-robust speech-to-text latency
via Bayesian speech denoising and attention-based sequence-to-sequence
DNN speech recognition in 16 nm FinFET,’’ in IEEE Int. Solid-State
Circuits Conf. (ISSCC) Dig. Tech. Papers, vol. 64, Feb. 2021, pp. 158–160.

[35] T. -J. Lin, C.-Z. Liao, Y.-J. Hu, W.-C. Hsu, Z.-X. Wu, and S.-Y. Wang,
‘‘A 40 nm CMOS SoC for real-time dysarthric voice conversion of stroke
patients,’’ in Proc. 27th Asia South Pacific Design Autom. Conf. (ASP-
DAC), 2022, pp. 7–8.

[36] M. D. Balasingam and C. S. Kumar, ‘‘Refining cosine distance features for
robust speaker verification,’’ in Proc. Int. Conf. Commun. Signal Process.
(ICCSP), Apr. 2018, pp. 0152–0155.

[37] S. J. D. Prince and J. H. Elder, ‘‘Probabilistic linear discriminant analysis
for inferences about identity,’’ in Proc. IEEE 11th Int. Conf. Comput. Vis.,
Jul. 2007, pp. 1–8, doi: 10.1109/ICCV.2007.4409052.

[38] S. Han, J. Pool, J. Tran, and W. Dally, ‘‘Learning both weights and
connections for efficient neural network,’’ in Proc. Adv. Neural Inf.
Process. Syst., 2015, pp. 1135–1143.

[39] Y. Zhang, ‘‘Hello edge: Keyword spotting on microcontrollers,’’ 2017,
arXiv:1711.07128.

[40] R. Serrano, M. Sarmiento, C. Duran, K.-D. Nguyen, T.-T. Hoang,
K. Ishibashi, and C.-K. Pham, ‘‘A low-power low-area SoC based in RISC-
V processor for IoT applications,’’ in Proc. 18th Int. SoC Design Conf.
(ISOCC), Oct. 2021, pp. 375–376.

[41] F.Müller and A.Mertins, ‘‘Feature extraction with amultiscale modulation
analysis for robust automatic speech recognition,’’ in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process., May 2013, pp. 7427–7431.

[42] L. He, R. Li, and M. Niu, ‘‘A study on graph embedding for
speaker recognition,’’ in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process. (ICASSP), Seoul, South Korea, Apr. 2024, pp. 10741–10745, doi:
10.1109/icassp48485.2024.10448308.

[43] H. Wu, ‘‘An always-on ultra-low power speaker verification accelerator
based on binary weighted neural network with system co-optimization,’’
in Proc. IEEE 14th Int. Conf. ASIC (ASICON), 2021, pp. 1–4.

[44] X. Zhang, ‘‘A TWN inspired speaker verification processor with hardware-
friendly weight quantization,’’ in Proc. IEEE Int. Conf. Integr. Circuits,
Technol. Appl. (ICTA), Jul. 2022, pp. 160–161.

[45] Y.-H. Tsai, Y.-C. Lin, W.-C. Chen, L.-Y. Lin, N.-S. Chang, C.-P. Lin,
S.-H. Chen, C.-S. Chen, and C.-H. Yang, ‘‘A 28-nm 1.3-mW speech-
to-text accelerator for edge AI devices,’’ IEEE J. Solid-State Circuits,
vol. 59, no. 11, pp. 3816–3826, Nov. 2024, doi: 10.1109/jssc.2024.
3389965.

TSUNG-HAN TSAI (Senior Member, IEEE)
received the B.S., M.S., and Ph.D. degrees
in electrical engineering from National Taiwan
University, Taipei, Taiwan, in 1990, 1994, and
1998 respectively.

From 1999 to 2000, he was an Associate
Professor of electronic engineering with Fu Jen
University. He joined National Central University,
in 2000. Since 2008, he has been a Full Professor
with the Department of Electrical Engineering,

National Central University. He is currently the Director of the Intelligent
Chip and System Center, National Central University, and also the Principal
Investigator of the National Program for Intelligent Electronics. His research
interests include VLSI signal processing, video/audio coding algorithms,
DSP architecture design, wireless communication, and system-on-chip
design. He has been awarded more than 40 patents and 230 refereed
papers published in international journals and conferences. He received
the Industrial Cooperation Award in 2003 from the Ministry of Education,
Taiwan, the Best Paper Award from the IEEE International Conference on
Innovations in Bio-Inspired Computing and Applications (IBICA) in 2011,
and the IEEE International Conference on Innovation, Communication and
Engineering (ICICE) in 2015. His research team has won many international
IC related student design contest awards, including ISOCC in 2015, TI DSP
Asia Design Contest in 2008, and ISSCC in 2011. He was the General Co-
Chair of the IEEE International Conference on Internet of Things 2014.
He serves as a technical program committee member or the session chair
for several international conferences. He served as the Guest Editor for a
Special Issue on Journal of VLSI Signal Processing Systems.

MENG-JUI CHIANG received the B.S. degree
in electrical engineering from National Central
University, Taiwan, in 2020, where he is currently
pursuing the M.S. degree in electrical engineering.
His research interest includes deep learning for
computer vision.

165496 VOLUME 12, 2024

http://dx.doi.org/10.1109/ICCV.2007.4409052
http://dx.doi.org/10.1109/icassp48485.2024.10448308
http://dx.doi.org/10.1109/jssc.2024.3389965
http://dx.doi.org/10.1109/jssc.2024.3389965

