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ABSTRACT Recently, multi-modal research combining visual and textual information has emerged in
Pedestrian Attribute Recognition (PAR). In this field, textual information has primarily been addressed
through text modeling using tokenizers and textual encoders. However, separately learned visual and text
encoders often find correlations between visual and textual features that may be insufficient at the human
cognitive level. To address this issue, we drew inspiration from the way people describe pedestrian attributes
and developed a method that mimics this cognitive process. This approach enhances visual encoders’ ability
to discriminate by generating sentences from images, masking important words, and then reconstructing
them. Our method, which improves visual pedestrian attributes using textual information, demonstrates
significant performance enhancements on the RAP and PA100k datasets, as well as on zero-shot datasets
like RAP2zs and PETAzs, which do not overlap with the training and test sets. These improvements yield
more meaningful results.

INDEX TERMS Visual–textual, reconstruction, human understanding, pedestrian attribute recognition.

I. INTRODUCTION
Pedestrian Attribute Recognition (PAR) is a crucial task in
computer vision that focuses on the automatic identification
of various individual attributes from images or videos. This
technology is particularly valuable in surveillance scenarios,
such as those involving CCTV cameras, where it can be used
to identify or track individuals. PAR plays a significant role
in diverse applications, including locating missing persons,
assisting in rescue operations for accidents or falls, and
enhancing security. As surveillance operations typically
require substantial human effort, advancements in PAR
technology are highly beneficial for improving the efficiency
and accuracy of these tasks. Recent developments in deep
neural networks across various fields have led to significant
improvements in human understanding tasks, including
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Human Action Recognition [1], [2], [3], Pedestrian Detection
and Tracking [4], [5], [6], and Facial Attributes Recognition
[7], [8]. These advancements have also influenced several
studies in PAR, which have primarily addressed the prob-
lem using only visual information obtained from camera
modules, which are categorized into two main types: multi-
label classifier-based methods and sequential module-based
methods. Multi-label classifier-based methods define the
problem as a multi-label classification task, aiming to train a
multi-label classifier. To achieve this, these methods leverage
pose estimation [9], [10], region proposals [11], [12], [13],
[14], and visual attention mechanisms [15], [16], [17], [18].
These techniques are used to exploit the correspondence
between pedestrian attributes and specific regions within an
image. Sequential module-based methods approach PAR as
a sequential prediction process, employing recurrent neural
network architectures to explore attribute correlations. The
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recurrent encoder-decoder framework has been integrated
into PAR to reveal relationships among attributes, as well as
hidden connections between attributes [19], [20], [21] and
localized regions [22], [23]. However, sequential modules
are significantly affected by predefined sequence orders and
are challenging to optimize as the length of the attribute
sequence increases. Additionally, these visual-only PAR
methods treat pedestrian attributes as numerical or sequence
labels, excluding important textual information about the
attributes.

Conversely, visual-textual cross-modal approaches have
also been applied to PAR recently [24]. By using pre-
trained language models to embed pedestrian attributes
and perform cross-modal fusion with visual features, these
methods capture the correspondence between textual and
visual information. However, this approach primarily focuses
on extracting fusion information-region correlations and
struggles to comprehend the overall context of an image
and truly understand a ‘pedestrian.’ To deeply understand
pedestrian attributes, it is essential not only to exploit each
attribute and determine their correlations but also to grasp
the overall context of the image. For example, consider
how humans view images: they tend to perceive a photo
as a whole context rather than describing it in parts.
This implies that a single image can be described as a
meaningful sentence. Such an approach allows for estimating
correlations between attributes from a more human-like
perspective, rather than analyzing each region and attribute
separately.

In this study, we propose a context reconstruction
module that helps visual extractors make more advanced
estimates. The proposed module consists of two parts:
a proposal-generation module and a text-reconstruction
module. As shown in Fig. 1, our method employs the
proposal-generation module to identify regions likely to
contain important human attributes. These proposed regions
serve as the basis for our text-reconstruction module, which
simulates how humans describe photographs by applying
weighted information to the identified areas. These modules
enhance the accuracy of pedestrian attribute recognition,
allowing visual encoders to understand human attributes in
a more contextual manner. Additionally, the modules do not
affect inference time and are not included in the final model
parameters.

The main contributions of this study are summarized as
follows.

1) We propose a context reconstruction module that
enables visual encoders to achieve a more com-
prehensive understanding of image context through
text reconstruction, resulting in improved pedestrian
attribute discrimination compared to the baseline by
filling in masked words.

2) We introduce a masking method where different
weights are applied to each word in a sentence,
with higher importance given to key attributes and
less emphasis on verbs or investigative terms. This

approach leads to a more selective and contextually
meaningful form of masking, providing a reasonable
method for word masking.

3) This module enhances attribute discrimination by using
a visual feature enhancement method in conjunction
with the context reconstruction module. It positively
impacts classification performance when fused with
text features processed through the Text-Image Self-
attention module.

4) Since this module is used in a plug-in manner, it has the
advantage of not increasing the model’s parameters or
inference time after training or learning is completed.

II. RELATED WORK
A. PEDESTRAIN ATTRIBUTE RECOGNITION(PAR)
Recently, the field of Pedestrian Attribute Recognition (PAR)
has been divided into two main categories: visual-only PAR
and visual-textual cross-modal PAR.

1) VISUAL-ONLY PAR
Classifier-Based Approaches: These approaches treat pedes-
trian attribute recognition as a multi-label classification
task. DeepMAR [25] introduced a deep neural network
tailored for this task and a weighted sigmoid cross-entropy
loss to handle data imbalance effectively. Liu et al. [16]
developed HydraPlus-Net by leveraging multidirectional
attention modules to process multiscale features across
various levels. Li et al. [9] used a spatial transformer
network to convert estimated keypoints into clearly defined
regions, integrating these regions with part-based features
to enhance attribute recognition. Liu et al. [11] utilized a
framework called the Localization-Guided Network (LGNet)
to localize regions associated with different attributes. The
View-Sensitive Pedestrian Attribute (VeSPA) [10] model
features three view-specific units, each tailored to a specific
view. This model helps generate view-dependent results and
achieve final predictions through cross-view fusion, which
can implicitly localize attributes. These techniques employ
pose estimation and spatial transformation to establish
links between attributes and regions of interest. However,
classifier-based approaches often handle attributes uniformly
and may miss deeper hidden correlations.

Sequential Approaches: This method uses recurrent neural
networks to explore the context and relationships between
attributes with the aim of improving performance. Wang
et al. [19] introduced Joint Recurrent Learning (JRL),
a model that segments images into horizontal strips for richer
context encoding and provides an attention mechanism to
enhance the representation capacity of context vectors. Zhao
et al. [26] proposed Grouping Recurrent Learning (GRL),
which organizes attributes by body region and leverages
both intragroup semantic mutual exclusion and intergroup
correlations using LSTM units. Recurrent convolutional and
attention modules [20] focus on investigating contextual
correlations with ConvLSTM units and highlight key regions.
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FIGURE 1. Overview of proposed method.

Visual-Semantic Graph Reasoning (VSGR) [27] creates a
semantic graph that defines attribute relationships through
directed edges. These sequential methods emphasize the
importance of attribute correlations in recognition and
explore these links using either recurrent or graph-based
models. However, their semantic correlations are learned
from scratch and depend on predefined prediction orders.

However, both methods rely solely on information from
images and do not utilize the rich expressions or relationships
inherent in natural language. A model that can accurately
describe pedestrian attributes using natural language would
provide a clearer understanding of these attributes. This
is similar to how humans gain a better understanding of
photographs when they describe them in words. This suggests
that integrating natural language into PAR could enhance
a model’s ability to understand and represent pedestrian
attributes.

2) FOUNDATION AND VISUAL-TEXTUAL CROSS-MODAL PAR
The visual-textual Baseline (VTB) [24] models attribute
annotations as the textual modality, leveraging pre-trained
textual encoders to explore prior textual correlations among
attributes. Wang et al. [28] propose the Projector-Assisted
Hierarchical Pretraining method (PATH) to enhance the
learning of both coarse- and fine-grained human attributes
at multiple levels of detail. Building on this, HumanBench
has developed a versatile visual-only foundation pretraining

model tailored for human-centric vision tasks, such as
surveillance, autonomous driving, and the metaverse. Tang et
al. [29] introduced Hulk, a foundational multi-modal model
designed to efficiently address a broad range of human-
centric tasks, including 2D and 3D vision, skeleton-based
action recognition, and vision-language interactions, without
the need for task-specific fine-tuning. By incorporating two
universal heads—one for discrete data such as language and
the other for continuous data such as spatial coordinates—
Hulk is adept at translating between various modalities,
enhancing its adaptability across diverse applications.

VTB [24] did not effectively utilize language information
and the Hulk model experienced performance degradation
with a reduction in the training of a single task. This
suggests that good performance relies on the use of various
tasks and datasets, necessitating a large amount of data.
Such extensive data requirements can be impractical for
tasks with limited datasets or experimental setups that
require low computational resources. Therefore, we propose
a vision-language cross-modal learning method that can be
implemented with only a single dataset and leverage language
information in depth.

III. PROPOSED METHOD
In this study, we propose a two-stage approach, as shown in
Fig. 1. The first stage involves predicting pedestrian attributes
by integrating textual and visual information, similar to
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existing pedestrian attribute recognition methods. The second
stage generates visual regions within the pedestrian images,
masks them according to natural language prompts, and
reconstructs them. This reconstruction enhances the visual
features necessary for accurate attribute prediction. To guide
the learning process, we employed loss functions for both M
pedestrian attributes and O-length natural language prompts.

A. ATTRIBUTE RECOGNITION MODULE
1) VISUAL ENCODER
The image encoder is tasked with compressing an image of a
pedestrian into a visual embedding, which is a crucial step for
the combination easily with pedestrian attribute predictions
and text embeddings. I = {i1, i2, i2, . . . , iN }, signifies the
whole image, whereas N denotes the count of images within
the full training dataset. VE ′ = {L1,L2,L2, . . . ,LK−1},
refers to the result obtained after omitting the final layer from
the Visual Encoder.

Fv = VE′(concat(ep,Patch(I ))) (1)

Fv ∈ RS×Cv is the visual feature calculated by a vision
transformer, where S represents the number of patches
extracted from the image, andCv denotes the size of the image
channel. The visual features Fv are obtained by passing the
image through the image encoder. Patch(·) is a 2-dimensional
convolution patch embedding operation. VE(·) refers to the
transformer encoder of the vision transformer, and ep is a
learnable patch token. concat(·) is the operation that merges
two patches into one.

2) TEXTUAL ENCODER
Natural language prompts were preprocessed into textual
features to fuse natural-language-based pedestrian attributes
with visual features from a vision transformer, the natural
language prompts are preprocessed into textual features.

Ft = TEmean(annotate(Attr)) (2)

Here, Attr = {a1, a2, . . . , aM } represents the set of M
attributes and ai denotes the ith attribute. The function
annotate(·) processes and tokenizes raw attributes (e.g., ‘ub-
TShirt’ to ‘upper t-shirt’) using theMpnet tokenizer [30]. The
text encoder TEmean(·) based on Mpnet averages the word
embeddings of each attribute sentence to produce a single
feature vector. The output Ft ∈ RM×Ct represents textual
features, where Ct is the channel size of the text encoder.

3) VISUAL-TEXTUAL SELF-ATTENTION MODULE
The visual F̂v and textual features F̂t computed by the
vision transformer and Mpnet text encoder differ in their
dimensions and distributions, respectively. Their dimensions
were integrated using linear layers to fuse them.

F̂v = Lv(Fv + eembed
v ), F̂t = Lt (Ft + eembed

t ) (3)

Here, F̂v ∈ RS×D and F̂t ∈ RM×D represent the
dimensionally integrated features, where Lv(·) and Lt (·) are

linear layers that standardize the dimensions to D, and eembed
v

and eembed
t are learnable embeddings for visual and textual

data, respectively. The fused feature map Z is obtained by
concatenating F̂v and F̂t :

Z = concat(F̂t , F̂v), Z ∈ R(M+S)×D (4)

This combined feature map Z is processed using multi-head
self-attention and multi-layer perceptrons.

Ẑ = LK (Z ) = MLPK (MSAK (Z )) (5)

where Ẑ ∈ R(M+S)×D denotes the attention-enhanced feature
map. For attribute prediction, a text-attention feature map Ẑ
is used, and a linear layer Lc is applied to predict the presence
of each attribute.

pci = FFNi(ẑi) = BN(Lic(ẑi)), i = 1, 2, . . . ,M (6)

The final prediction scores Pc ∈ RM are used to determine
the presence of each attribute.

B. PROMPT RECONSTRUCTION MODULE

T̂ = TEeach(T ) (7)

T = {t1, t2, t3, . . . , tO}, T ∈ RO is a prompts composed
of O words that describe the image, similar to the examples
of text prompts in Fig. 2, which has been processed through
the tokenizer of Mpnet [30]. and T̂ =

{
t̂1, t̂2, t̂3, . . . , t̂N

}
,

T̂ ∈ RO×Ct is a series of textual embedding features for
each tokenizedword. TEeach(·) represents the textual encoder,
which utilizes MPNet to generate embedding features for
each word in the prompts corresponding to attributes as
individual features. This method is employed because each
word in the sentence plays a significant role in describing the
image, making it important to consider all words individually.

Hv = Dv(F̂v,Et (T̂ )) (8)

Hv ∈ RS×D is an image-focused feature map. Dv(A,B) is
a transformer decoder for the visual feature map, where A is
used as the query, and B is used as both the key and the value.
Et (·) is a transformer encoder for text prompt features. F̂v
represents the visual features obtained in Section A. Detailed
configurations of the transformer encoder and transformer
decoder will be described in the Experiments section. D is set
to the same dimension as the hidden size of both the encoder
and decoder, as specified in Section A.

Q = Lgauss(Hv) (9)

The gaussian proposal parameters Q ∈ R2×K can be rep-
resented as Q = {(c1,w1), (c2,w2), (c3,w3), . . . , (ck ,wk )}.
K is the total number of gaussian proposals to be used,
and wk , ck denote the width and center of each gaussian,
respectively. Lgauss(·) is the linear layer used to generate
gaussian proposal parameters, and the number of gaussian
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FIGURE 2. Overview of prompt reconstruction stage.

proposals generated varies depending on the hyperparameter
K.

Gki =
1

√
2π (wk/σk )

e
(− (i/S−ck )

2

2(wk /σk )
2 )

,

k = 1, 2, 3, . . . ,K ; i = 1, 2, 3, . . . , S (10)

The gaussian proposal G is used in the masked prompt
reconstruction module. σk is a hyper-parameter that adjusts
the width of the gaussian weights. The gaussian proposal
G ∈ RK×S is a mask that applies weights to specific parts
of the image patch, as depicted in Fig. 2.

1) MASKED PROMPT RECONSTRUCTION MODULE
To enhance the image encoder, a strategy was employed
that utilizes region proposals generated from the proposed
generation module and masked text sentence information.
This involves randomly masking the original text sentences
and then reconstructing them to align with the generated
region proposals and masked text information.

T̂mask = Mask(T̂ , α), 0 ≤ α ≤ 1 (11)

Mask(A,B)is a function that randomly masks words in A at
a ratio determined by B using weighted probabilities. Table 1
shows the weights for softmax-based masking function used
in this experiment, where α was set to 0.5.

H k
t = DGk

t (T̂mask,EGkv (F̂v)) (12)

H k
t ∈ RO×D represents the masked text prompt attention

featuremap. Dt (A,B) is a transformer decoder for the features
of masked text prompts, where A is used as the query,
and B is used as both the key and value. Ev(·) is the
transformer encoder for the visual feature, and both Dt and
Ev perform multi-head attention using the gaussian proposal
Gk , generated in the proposal generation, as attention

weights. Through this process, the visual encoder and the
gaussian proposal generationmodule are enhanced to identify
important parts within the visual feature for reconstructing
the masked text prompt as shown as Fig. 2.

FIGURE 3. Estimation of gaussian mixing ratio through spatial average
pooling.

R = Softmax(MLPratio(SAP(F̂v))) (13)

As illustrated in Fig. 3, the ratio for gaussian proposal mixing,
R ∈ RK , can be represented as R =

{
r1, r2, r3, . . . , rK

}
.

This is used to appropriately mix weights for K different
gaussian proposals. SAP(·) refers to spatial average pooling,
which pools S image patches containing spatial information.
MLPratio(·) generates k mixing weights from the compressed
visual feature and adjusts them through Softmax to ensure
their sum equals 1.

Ht =

K∑
k=1

rkHt k (14)

The reconstructed mixing gaussian text prompt feature map
Ht ∈ RO×D combines the results of the transformer computed
by each gaussian proposal using the mixing weight R, thereby
allowing the gaussian proposals to be mixed through the
mixing ratio, enhancing the ability to better reconstruct
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masked text prompts by using visual region proposals of
various sizes.

Ps = Softmax(Lr (Ht )) (15)

The score for predicting each word of the prompt,
Ps ∈ RO×d , can be represented as follows, Ps ={
ps1, p

s
2, p

s
3, . . . , p

s
O

}
. Through the mixed gaussian proposal

feature map Ht , and the linear layer, Lr , a reconstructed text
prompt of total lengthO is generated. d is the total number of
words inMpnet’s tokenizer, and softmax is computed over the
d-dimension. Through this process, prompt reconstruction
using Gaussian proposals is performed, enabling the visual
encoder in the pedestrian attribute recognition module to
estimate correlations between each attribute from a more
human-like perspective, rather than estimating by area and
attribute separately.

TABLE 1. Standard masking weight table.

C. LOSS FUNCTION AND OPTIMIZATION
The entire dataset can be represented as Dtrain = (Ii,Yi)Ni=1.
For attribute prediction, a weighted binary cross-entropy loss
function was employed. This loss function is commonly used
in traditional attribute recognition to mitigate the distribution
imbalance among pedestrian attributes [25]

Lc = −
1
N

N∑
i=1

M∑
j=1

wj(log(pcij))) + (1 − yij) log(1 − pcij)),

wj =

{
e1−rj , yij = 1
erj , yij = 0

(16)

Here, wj represents the imbalance weight introduced to
address the data-imbalance issue. rj is the positive sample
ratio of attribute Attrj.

Ls = −
1
N

N∑
i=1

d∑
j=1

(
log

(
psij

))
+

(
1 − onehot

(
tij

)
log

(
1 − psij

))
(17)

The loss function for the text prompt reconstruction results
generated in the prompt reconstruction module is computed
using a cross-entropy loss function. This function is applied
to the masked text prompt reconstruction results to enhance
the learning of the image encoder. Cross-entropy loss is
commonly used in the text prediction domain. Here, onehot(·)

refers to the process of converting text prompt predictions into
index numbers and then to a one-hot encoding format.

Loss = Lc + β(Ls) (18)

The overall loss function is the sum of the loss from the
pedestrian attribute prediction module and the loss from the
text prompt reconstruction module. This sum is then scaled
by a predefined hyperparameter β, which was set to 1 for this
experiment.

IV. EXPERIMENT
A. EXPERIMENT DETAILS
Patch sizes used in pedestrian attribute prediction module
Ph and Pw, are set to 16. The number of layers for the
image encoder is set to correspond to the Vision Transformer,
with 8 blocks used for ViT-small and 12 blocks for ViT-
base. The size of the image feature map, S, and the size
of the text feature map, M , are both 768, obtained using
pretrained models Vision Transformer [31] and Mpnet [30],
respectively. The dimension size used for merging two
different modalities, D, is set to 768. The parameter O,
which determines the maximum length of text sentences,
varies depending on the number of pedestrian attributes in
the dataset. Each word in the sentence is not masked with the
same probability but is determined by weights and softmax,
as shown in Table 2. The proposed method was trained and
evaluated using an NVIDIA Titan RTX GPU. The model was
trained for 20 epochs on the RAP [32], RAP2 [33], PA100k
[16], PETA [34], RAP2-zs [35], and PETA-zs [35] datasets.
The initial learning rate was set to 2e-3 and adjusted using a
cosine learning rate scheduler [36]. An SGD optimizer was
employed, with a weight decay of 1e-4 and a momentum of
0.9. The batch size was set to 64, and the input images were
resized to 256 × 128. Only the results from the pedestrian
attribute prediction module were used for evaluation. During
inference, the proposed model and VTB [24] had the same
total number of parameters. For ViT-small, it is 49.35M,
and for ViT-base, it is 87.15M. Similarly, the inference
speed is the same, with 7.56G for ViT-small and 12.71G for
ViT-base.

B. TECHNICAL DETAILS OF PROPOSED MODULES
The generation and reconstruction modules proposed in this
study are based on the transformer architecture introduced
by Vaswani et al. [37]. Two distinct transformers are
employed for each module to effectively process visual and
textual features. In the proposal generation module, a visual
transformer handles the visual features, while a textual
transformer processes the textual features. Both features
are encoded using self-attention mechanisms within their
respective transformers. These encoded features are then
decoded using the decoder of the visual transformer. The
resulting fused feature is used to derive gaussian parameters,
which are employed to create a gaussian mask highlighting
the important attributes of the pedestrian. This gaussian mask
is referred to as a gaussian proposal. In the reconstruction

VOLUME 12, 2024 164183



Y. Lee et al.: Improving Visual Pedestrian Attributes Discernment With Textual Reconstruction

module, both the visual and textual features, along with the
previously generated Gaussian mask, are encoded through
self-attention mechanisms within their respective transform-
ers. Decoding is then performed by referencing only the
restricted areas using the textual transformer’s decoder and
the gaussian mask. The masked fusion features generated
through this decoding process are combined according to
the ratio provided by the spatial average pooling Module.
Finally, the combined features are used to predict words
using the MLP. This visual feature enhancement method
improves attribute discrimination by leveraging the proposed
modules to enhance the visual backbone. This whole process
is illustrated in Fig. 2.

C. DATASET AND EVALUATION METRIC
To evaluate the proposed model, we utilized six pedestrian
attribute recognition datasets: RAP [32], PA100k [16], PETA
[34], PETA-zs [35], RAP2-zs [35], and RAP2 [33]. The
RAP dataset [32] consists of 41,585 images, with 33,268
used for training and 8,317 for testing. These images are
annotated with 69 binary attributes and three multiclass
attributes. However, only 51 attributes were used for training
and evaluation in this study, as specified by the official
protocol. The PA100k dataset [16] includes 100,000 images
obtained from outdoor surveillance cameras. It is divided
into 80,000 training images, 10,000 validation images, and
10,000 testing images, and is annotated with 26 pedestrian
attributes. The PETA dataset [34] contains 19,000 images:
9,500 for training, 1,900 for validation, and 7,600 for testing.
This dataset is annotated with 61 binary attributes and four
multiclass attributes. For this study, only 35 attributes with
a positive ratio greater than 5%, which are common in
pedestrian attribute recognition, were used for training and
evaluation. In addition to the commonly used datasets in
pedestrian attribute recognition studies, this study employed
three additional benchmark datasets: PETA-zs [35], RAP2-
zs [35], and RAP2 [33]. RAP2 is an extended version of
the RAP dataset [33] and consists of 84,928 images, divided
into 67,943 training images and 16,985 testing images.
Although there are 72 pedestrian attributes, only 54were used
according to the official protocol. Jia et al. [35] noted that the
evaluation performance in the RAP2 and PETA datasets may
be distorted because the same individuals appear in both the
training and testing image splits. To address this issue, they
proposed zero-shot datasets, PETA-zs and RAP2-zs, where
the same individuals do not appear in both the training and
testing images. These datasets are derived from the PETA
dataset [34] and the RAP2 dataset [33].
For the evaluation, this study utilized one label-based met-

ric and four instance-based metrics, totaling five evaluation
metrics commonly used in pedestrian attribute recognition.
The label-based metric employed was mean accuracy, which
calculates the average accuracy for both positive and negative
samples of each attribute. The instance-based metrics used
were accuracy, precision, recall, and F1-score.

D. SINGLE-SIGMA
Table 2 categorizes the methods of pedestrian attribute
recognition into four types. The first type consists of
classifier-based methods including DeepMAR [25], HPNet
[16], LGNet [11], VeSPA [10], PGDM [9], HDMTL [38],
SSR [39], ALM [40], Rethinking [41], MT-CAS [42], PD-
Net [43], JLAC [44], SSC [35], and DAFL [45]. The second
type includes sequence-based methods, such as JRL [19],
GRL [26], and RC/RA [20]. The third type is an image-
text fusion-based method, represented by VTB [24]. The
fourth type is the method proposed in this study, which
involves image-text fusion and text–sentence reconstruction.
Here, VTB* are the performance recorded under the same
experimental conditions as ‘VTR’ using ViT-Base/16 and
ViT-Small/16.

Table 3 and Table 4 present the results of experiments
conducted with the image-text fusion-based method VTB
[24] and the method proposed in this study, referred to as
VTR. These experiments varied the size of the image encoder
across different datasets. In this research, the hyperparameter
K for gaussian proposal generation was fixed at 1, while the
value of sigma varied during the experiments. For PETA**,
where VTB did not provide results, the performance was
replicated under the same conditions as those used in the
VTR experiments. Table 2 shows that both classifier-based
and sequence-based methods perform worse than the image-
text fusion-based method VTB. Additionally, compared
with the three methods mentioned above, the method
involving image-text fusion and text sentence reconstruction
demonstrated the best performance on the RAP dataset in
terms of accuracy and F1-score, and it achieved the highest
performance across all five metrics on the PA100k dataset.
For the RAP dataset, the highest F1-score indicates that the
method effectively addresses the data imbalance problem
without biasing towards either precision or recall. The use
of gaussian weights, generated with appropriate sigma values
to restore masked text sentences, positively influenced the
image encoder, thereby enhancing the performance of the
pedestrian attribute prediction module. However, a drawback
of this approach is the need for continuous experimentation
with varying hyperparameters until satisfactory results are
achieved.

E. MULTI-SIGMA MIXING
To address these limitations, a method was devised that
uses the average of various gaussian proposals created with
multiple sigma values. This approach is referred to as the
multiple-only(mean) method in Table 5 and Table 6. The
best-performing experiments from Table 3 and Table 4 are
labeled as ‘‘best.’’

As shown in Fig. 4, the multiple sigma(mean) and
multiple+mixing sigma(spatial average pooling) methods
required only a single training session, whereas the best
method required multiple training sessions. As indicated in
Table 5 and Table 6, the best method outperformed the
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TABLE 2. Performance with other models.

TABLE 3. Performance comparison between the baseline and the single-sigma method.

TABLE 4. Performance comparison between the baseline and the single-sigma method.

TABLE 5. Performance comparison between the baseline, single-sigma, multi-sigma, and mixing ratio multi-sigma methods.

existing VTB [24] method in all 12 experiments, while the
multiple sigma(mean) method demonstrated improvements

in 7 out of 12 experiments with only one trial. This suggests
that the mean method was effective in the majority of exper-

VOLUME 12, 2024 164185



Y. Lee et al.: Improving Visual Pedestrian Attributes Discernment With Textual Reconstruction

TABLE 6. Performance comparison between the baseline, single-Sigma, multi-Sigma, and mixing ratio multi-sigma methods.

TABLE 7. Performance comparison between the baseline, single-sigma, multi-sigma, and mixing ratio multi-sigma methods.

FIGURE 4. Comparing the fixed sigma, multiple sigma(Mean), and
multiple+mixing sigma(SAP) methods.

iments without needing multiple training sessions. Using
the mean method for gaussian mixing across all datasets
may not adequately address data imbalances. Therefore,
a spatial average pooling method was designed to enable
the neural network to dynamically adjust the mixing ratio of
gaussians as it learns. As observed in Fig. 4, the mean method
mixes all the gaussian proposals at equal ratios, whereas
the spatial average pooling method adjusts the mixing ratios
dynamically through learning. This approach facilitates better
reconstruction of masked text sentences, thereby providing
more effective training information to the image encoder.

As the result as shown in Table 7, while the fixed sigma
method achieves strong results. but in fixed sigma method,
the model must be trained multiple times depending on the
number of sigma values. In contrast, both the mean and
SAP methods complete the process in just one train. The
Mean method averages all sigma, but the SAP method uses a
flexible mixing ratio via MLP and softmax, leading to more

robust performance. This flexibility allows the SAP method
to achieve comparable or even better results, particularly in
all metric scores, demonstrating it as a more efficient and
effective strategy.

FIGURE 5. Comparison between baseline and ours(VTR).

FIGURE 6. Comparison between baseline and ours(VTR).

Fig. 5 and Fig. 6 compare the results of previous studies
with the proposed method in this research. The proposed
generation module creates regions in the images, as shown on
the far-right side of the figures, that are considered important
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TABLE 8. Comparison of attribute-wise accuracy on PETA dataset.

TABLE 9. Comparison of attribute-wise accuracy on PETA dataset.

TABLE 10. Comparison of attribute-wise accuracy on PETA sataset.

for inferring pedestrian attributes. Based on these proposals,
weighted text and image attention were applied, leading to
sentence generation using a prompt reconstruction module.
This module is used not primarily for accurate sentence
creation but to guide the image encoder by highlighting areas
to focus on for predicting pedestrian attributes.

Table 8-Table 10 show the attribute-specific accuracy for
the PETA dataset, comparing the baseline and the pro-
posed method. The proposed method generally demonstrates
improved results compared to existing methods. Notably, the
attributes ‘‘Accessory-Nothing,’’ ‘‘Male,’’ and ‘‘AgeLess30’’
showed improvements of 1.29%, 1.36%, and 1.84%, respec-
tively. These attributes require understanding not only of
the pedestrian’s immediate surroundings but also of the
overall context. Furthermore, comprehending the meaning of
natural language and its relevance is crucial. Therefore, the
proposed method effectively enhances the image encoder by
extracting the visual features of pedestrians through the text
reconstruction process. The method proposed in this study
offers a learning approach that improves pedestrian attribute
prediction performance without increasing the computational
load or the stored weight capacity of the model during
inference. Additionally, this method has been found to
positively impact smaller-sized image encoders, confirming
its effectiveness in supporting learning.

F. ROBUSTNESS IN VARIED CONDITIONS
To test the robustness of our method, we compared its
performance with the baseline method under various envi-
ronmental conditions, including day, night, and rain. Since
the original PAR dataset only included bright and clear
conditions, we augmented the data to simulate different
natural environments for a more comprehensive evaluation.
Only the day condition was used during training, all three
conditions were used for evaluation.

TABLE 11. Augmented images for various conditions.

Table 11 shows examples of these augmented images.
Panel (a) displays images simulating nighttime with reduced
light, and panel (b) shows images representing rainy weather.
We used these images to assess the methods’ performance in
different conditions. Table 12 lists the performance metrics
for both VTB and our method (VTR) in these conditions.
The results show that VTR consistently performs better than
VTB. For instance, in the Day condition, VTR improves
mA from 83.26% to 85.82%, in the Night condition from
74.93% to 81.79%, and in the Rain condition from 76.93%
to 83.14%. Table 13 summarizes the average performance
changes and percentage differences from Table 12. It shows
that VTR has smaller performance drops compared to the
baseline. For example, with the ViT-B/16 encoder, the
baseline method’s performance decreases by −10.1% in
Night and −9.6% in Rain, while VTR’s decreases are
−4.36% and −7.53%, respectively. Similarly, with the ViT-
S/16 encoder, the baseline method’s performance drops by
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TABLE 12. Comparison of model performance variations based on weather conditions and time.

TABLE 13. Comparison of model average performance variations based
on weather conditions and time.

−12.09% in Night and −5.63% in Rain, whereas VTR’s
drops are −7.33% and −4.78%, respectively.

V. CONCLUSION
In this study, we introduce a plug-in Proposal Generation
Module and a Masked Prompt Reconstruction Module
for pedestrian attribute recognition tasks. These modules
enable the vision encoder to gain a deeper understanding
of pedestrian attributes by 1) generating natural-language
sentences, 2) masking arbitrary regions, and 3) reconstructing
them. Our proposed method requires slightly more training
time due to additional parameter tuning compared to
existing methods. However, extensive testing across various
datasets demonstrates that our method generally outperforms
others. In experiments evaluating robustness under different
day and weather conditions, our approach consistently
produced more stable results. Importantly, these modules
are removed after training, keeping the model’s original
parameters and computational cost unchanged. This makes
the performance improvements particularly significant, as no
additional datasets or tasks are needed. In conclusion, our
method not only enhances the accuracy and efficiency of
pedestrian attribute recognition but also ensures robustness
across varying conditions, making it an effective solution in
real-world applications.
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