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ABSTRACT This paper analyzes the security and performance of the isogeny-based hash functions. The
isogeny-based hash function was first proposed by Charles, Goren, and Lauter, and is referred to as the CGL
hash function. However, Lauter and Petit demonstrated that a collision could be found if the endomorphism
ring of the starting curve is known. Subsequently, isogeny hash functions that mitigate the Lauter-Petit
attack have been proposed. This paper analyzes three methods that counter the Lauter-Petit attack: the
methods proposed by Panny, Zaman and Min, and Larsson. In particular, we propose a new isogeny-based
hash function SHH, which exploits Panny’s method with Hessian curves. We then analyze the security and
performance of the proposed SHH along with the methods by Zaman and Min (SCH) and Larsson (SLH).
More specifically, the security was analyzed in the context of the Lauter-Petit attack, collision resistance, and
fault tolerance. The analysis in this paper shows that all three algorithms can counter the Lauter-Petit attack.
However, for SCH, we demonstrated that collision pairs could be found with carelessly chosen parameters.
This paper also provides guidelines for selecting parameters to make SCH collision-resistant. From a fault-
tolerance perspective, SCH and SLH are not fault-tolerant. We also present the results of implementing the
three algorithms in SageMath. The implementation results show that at the 128-bit security level, hashing a
256-bit message takes 0.130s for SCH, 0.125s for projective-SLH, and 0.162s for SHH. As can be seen from
the implementation results, projective-SLH is the most efficient, while SHH performs slower due to the use
of a larger finite field.

INDEX TERMS Supersingular isogeny, provably secure hash, post-quantum cryptography.

I. INTRODUCTION
Hash functions are critically used in cryptographic algorithms
that require data integrity, such as digital signatures, message
authentication codes, and password storage. The currently
used cryptographic hash functions, mostly follow theMerkle-
Damgård method, which prevents the generation of collisions
by iterating the compression function [19], [20]. The
Merkle-Damgård construction-based hash function is fast and
guarantees collision resistance in a computational manner.
However, with the discovery of collision vulnerabilities in
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SHA-1 [21], NIST launched a competition for a new Secure
Hash Algorithm, and the need for provable hash functions
was raised. A provable hash function is a hash function in
which finding a collision is reducible to solving well-known
computationally hard problems. Examples in this area include
those based on the discrete logarithm, factorization [23],
the syndrome decoding problem for linear codes [22], etc.
Although provable hash functions have the drawback of
being significantly slow in speed compared to dedicated hash
functions such as SHA, as they have the advantage of being
provable from a security analysis perspective, active research
is being conducted in this area. On the other hand, since
provable hash functions are designed based on mathematical
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problems, it is important that these underlying problems
remain unsolved in the current computing environment. With
the recent advance in quantum computing, it is also crucial
for provable hash functions to use underlying problems that
are secure in a quantum computing environment. Therefore,
the current research direction for provable hash functions
is important not only in terms of efficiency but also in
ensuring quantum resistance. As a result, isogeny-based
hash functions, which are based on the difficulty of finding
isogenies between two elliptic curves, are actively being
researched.

The first application of elliptic curve isogenies to hash
functions was proposed in 2007 by Charles, Goren, and
Lauter. In [1], a provable hash function was introduced using
expander graphs. The hash function takes an input and uses
it to determine a path through the graph, with the final
vertex serving as the function’s output. The proposed hash
function can be applied to any expander graph. In [1], the
use of ℓ-isogeny graphs of supersingular elliptic curves was
proposed as the main instantiation, so that the instantiation
of such a hash function using an isogeny graph is known
as the CGL hash function. The CGL hash computes a
2n-isogeny to compute a hash value for an n-bit message,
where each bit’s corresponding 2-isogeny is computed to
prevent backtracking.

The CGL hash is based on the security of the supersingular
isogeny problem, which has attracted considerable attention
due to its exponential complexity even in quantum computing
environments. However, it has the drawback of being
inefficient, which has led to research focused on optimizing
its speed. In 2017, Doliskani et al. enhanced the performance
of the CGL hash function by using cyclic isogenies on
a Montgomery curve [2]. Inspired by the implementation
technique in SIDH [24], by dividing the message m into n-bit
message blocks mi, they compute a cyclic 2n-isogeny with
P + [mi]Q as the kernel, where P and Q are full 2n-torsion
generators. This method is more efficient than the bit-by-bit
computation used in the original CGL hash function. On the
other hand, since elliptic curves in CGL hash function are
defined over Fp2 , the finite field of CGL hash is more costly
compared to other cryptographic algorithms that use a base
field. From this perspective, in [25], by taking advantage
of the Weil restriction, they transform all the arithmetic
operations over Fp2 into those over Fp, which speeds up the
computation of the hash function by about 30%.

However, in 2018, Lauter and Petit demonstrated that the
collisions in the CGL hash can be found by identifying an
isogeny cycle if the endomorphism ring of the starting curve
is known [3], [4]. Although several works have explored
methods for generating arbitrary supersingular curves [5],
an efficient way to generate a supersingular curve without
revealing its endomorphism ring remains unknown. As a
result, the CGL hash function lacks collision resistance unless
supported by a trusted authority.

In 2019, Panny proposed a method to counter the
Lauter-Petit attack by using a specific portion of the

supersingular isogeny graph [8]. Instead of using the entire
ℓ isogeny graph, the proposed method suggests using
r isogenies, where r < ℓ. Under a few heuristics,
by appropriately adjusting ℓ and r , the method in [8] prevents
collisions and permits the use of arbitrary starting curves
while still providing sufficient security.

While Panny proposed a variant of the CGL hash function
to counter the Lauter-Petit attack, research has also been
conducted on proposing an isogeny-based hash function
in a different form than the CGL hash to counter the
Lauter-Petit attack. In 2023, Zaman and Min introduced
a single-compression hash function based on point evalu-
ation under supersingular isogeny [6]. They overcame the
Lauter-Petit attack by disclosing an image of a torsion
point as a hash value, rather than revealing a codomain
curve of an isogeny. Additionally, they proposed a technique
for treating multiple message blocks as a single block
through a preprocessing step. In 2024, Larsson proposed
a supersingular isogeny hash function based on the Lattès
map on an elliptic curve [7]. Larsson demonstrated that
the Lauter-Petit attack can be mitigated by incorporating a
certain amount of scalar multiplication into the CGL hash
computation. By exploiting a simple structure of the Lattès
map, Larsson also introduced application techniques such as
keyed and dynamic hashing.

As stated above, extensive research has been done on
isogeny-based hash functions. Isogeny-based hash functions
have research value as they are provable hash functions,
where collision resistance can be reduced to another hard
problem. However, unlike commonly used hash functions
such as the SHA family, the main computation involves
isogeny operations, requiring further research on optimiza-
tion. Also, although various countermeasures against the
CGL hash function have been proposed in response to the
Lauter-Petit attack, further research is needed to conduct clear
security analyses for each variant and compare the efficiency
of the algorithms.

In this paper, we analyze the security and performance
of three isogeny-based hash functions that counter the
Lauter-Petit attack: the method proposed by Panny, Zaman
and Min, and Larsson. In this regard, we analyze Panny’s
method, which directly counters the Lauter-Petit attack.
In the process, this paper presents a new isogeny-based
hash function SHH built on Panny’s approach that exploits
the properties of Hessian curves. A Hessian curve, which
has four fixed 3-torsion subgroups and a fixed kernel that
generates backward isogeny, offers a structure well-suited for
‘bit-by-bit’ hash computation. We then analyze the security
and performance of the proposed SHH in comparison to the
methods by Zaman and Min and Larsson.

A. OUR CONTRIBUTIONS
The relationships between the main isogeny-based hash
functions proposed to date can be illustrated in Fig-
ure 1, and these hash functions are the primary focus
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FIGURE 1. Isogeny-based hash functions.

of analysis in this paper. As shown in Figure 1, ttSCH
and SLH is an isogeny-based hash function that counters
the Lauter-Petit attack, but different from the CGL hash
function. Panny’s method can be considered a way of
applying a countermeasure to the CGL hash function to
counter the Lauter-Petit attack, and the SHH in this paper
instantiated that idea through Hessian curves. Within this
context, the contributions of this paper are summarized as
follows:
• This paper proposes a new supersingular isogeny-based
hash function, SHH, which leverages 3-isogenies on
Hessian curves. There is currently no specific instanti-
ation available for Panny’s method. As Panny’s method
is notable for directly countering the Lauter-Petit attack,
to compare with other isogeny-based hash functions,
we employed Hessian curves, which allow for an
efficient instantiation of Panny’s method. Using Hessian
curves, once a finite field Fp2 is established, isogeny
computations on Hessian curves can be performed using
only finite field operations. This eliminates the need
for point arithmetic on elliptic curves, resulting in a
simplified structure.

• This paper evaluates the security of isogeny-based hash
functions in the context of the Lauter-Petit attack,
collision resistance, and fault tolerance. We analyze
that all three algorithms – SCH proposed in [6],
SLH in [7], and our SHH – counter the Lauter-Petit
attack. However, we identified a collision vulnerabil-
ity in SCH, and analyzed the security of the point
evaluation technique used in its design. Our analysis
shows that the point evaluation technique can remain
secure if a prime with an appropriate cofactor is
selected depending on the required security level. Lastly,
SHH is fault-tolerant because it uses supersingular j-
invariants as hash outputs. Details are provided in
Section IV.

• This paper presents the implementation result of our
SHH, SCH, and SLH. In this regard, we propose
parameters for each security level to implement SCH,
SLH, and SHH. To the best of our knowledge, we were
the first to implement SLH. As a result, the projective
implementation of SLH demonstrates the best perfor-
mance among the hash functions analyzed in this work,
making it particularly well-suited for applications such

as keyed and dynamic hashing. Details are presented in
Section V.

B. ORGANIZATION
The rest of this paper is structured as follows: in Section II,
we provide the mathematical background for isogenies on
elliptic curves and the CGL hash function. In Section III,
we review supersingular hash functions that counter the
Lauter-Petit attack and introduce our hash function using
Hessian 3-isogenies. Section IV presents security analysis
for those hash functions, and we provide implementation
techniques and results in Section V. Finally, we summarize
our conclusion for this work in Section VI.

II. ISOGENIES ON ELLIPTIC CURVES
This paper considers a prime p satisfying p ≡ 3 mod 4.
Unless stated otherwise, K denotes the finite field Fp2 of
size p2. The mathematical backgrounds for an isogeny-based
hash are outlined in Section II-A. The CGL hash func-
tion with a supersingular isogeny graph is explained in
Section II-B. Section II-C introduces two examples of
isogenies: Montgomery 2-isogeny and Hessian 3-isogeny.

A. ELLIPTIC CURVES AND ISOGENIES
1) ELLIPTIC CURVES
Given a prime p, an elliptic curve E over Fpn has a group
E(Fpn ) of order pn + 1 − tn, where tn is the trace of the
Frobenius endomorphism and satisfies |tn| ≤ 2

√
pn. If p|tn,

then E/Fpn is called supersingular; otherwise, it is called
ordinary. Since supersingular elliptic curves are all defined
over Fp2 , we assume n = 2 in the remainder of this paper.
Two elliptic curves E and E ′ are isomorphic if there exists an
F̄p-isomorphism between them. This implies that they share
the same j-invariant, meaning j(E) = j(E ′).

2) ISOGENIES
Let E and E ′ be two elliptic curves over a finite field K with
|E(K )| = |E ′(K )|. Then, E and E ′ are said to be isogenous
if there exists an isogeny φ : E → E ′, where the identity of
E(K ) is mapped onto the identity of E ′(K ). An isogeny can be
classified as either separable or inseparable, but our focus is
on separable isogenies. Separable isogenies correspond one-
to-one with subgroups of the group of points on a domain
curve E . Given a subgroup H ⊂ E(K ), we can compute
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an isogeny φ : E → E ′ with the kernel H by applying
the Vélu’s formulas. In isogeny-based cryptography, given a
finite subgroup H , the Vélu’s formulas are used to perform
two types of operations: codomain computation and point
evaluation. Codomain computation involves determining the
codomain curve E ′ through an isogeny φ : E → E ′ with
ker(φ) = H . Point evaluation involves computing φ(P) ∈
E ′(K ) for a point P ∈ E(K ).

3) SUPERSINGULAR ISOGENY GRAPHS
For given two primes p and ℓ, we can define the supersingular
ℓ-isogeny graph G(p, ℓ) to have vertex set V , the set of
j-invariants of supersingular curves overFp2 , and to have edge
set E , the set of ℓ-isogenies between supersingular curves
over Fp2 up to isomorphism. Then, for a prime p > 3 we
have

|V | =
⌊ p
12

⌋
+


0 if p ≡ 1 mod 12,
1 if p ≡ 5, 7 mod 12,
2 if p ≡ 11 mod 12.

Since there are ℓ + 1 isogenies of degree ℓ, G(p, ℓ) is
(ℓ + 1)-regular graph. Supersingular isogeny graph has the
Ramanujan property, which implies that a random walk on
the graph mixes very fast. The output of a random walk on
G(p, ℓ) tends to the uniform distribution after O(log |V |) =
O(log p) steps. Consequently, supersingular isogeny graphs
are suitable for constructing hash functions.

B. THE CGL HASH FUNCTION
The CGL hash function is constructed with a supersingular
isogeny graphG(p, 2). Since each j-invariant has three outgo-
ing 2-isogenies, hash functions can be naturally formulated
using G(p, 2). Elliptic curves Ei : y2 = fi(x) have three
2-torsion points denoted as(

x(i)0 , y
(i)
0

)
,
(
x(i)1 , y

(i)
1

)
,
(
x(i)back , y

(i)
back

)
.

To construct a hash function, we aim to compute an isogeny
chain E0 → E1 → · · · → En, and a pair (x(i)back , y

(i)
back )

represents backward 2-isogeny Ei → Ei−1. The remaining
two pairs are generators of kernels required to compute a
forward 2-isogeny depending on the input message bit mi.
When the i-th bit of the message is b, the following 2-isogeny
operation is applied iteratively to update the hash states.

φi : Ei→ Ei+1 = Ei
/〈

(x(i)b , y
(i)
b )
〉
,(

x(i+1)back , y
(i+1)
back

)
:= φi

(
x(i)1−b, y

(i)
1−b

)
.

Upon completing this operation, the hash state is updated as
follows:(

Ei,
(
x(i)back , y

(i)
back

))
→

(
Ei+1,

(
x(i+1)back , y

(i+1)
back

))
The CGL hash function receives the n-bit message m =
(mn−1 · · ·m1m0)2 as input, computes φ0, φ1, . . . , φn−1
sequentially, and the j-invariant j(En) of En is the hash output.

Remark 1: It is possible to compute a 2n-isogeny E0→ En
by using the 2n-torsion point P + [m]Q, where P and Q
are generators of E0[2n]. In [2], the authors proposed a
variant of the CGL hash function that used this approach to
significantly enhance the performance. However, this method
may result in incorrect hash values for hexadecimal inputs.
For instance, SHAKE256 produces distinct outputs for the
inputs ’0× 01’ and ’0× 0001’. Conversely, the isogeny with
kernel ⟨P+ Q⟩ could produce the same hash values for both
inputs, effectively introducing a collision. While this issue
warrants further investigation, this work does not delve into
it. Instead, we adopt a ‘bit-by-bit’ approach, which mitigates
the identified collision risks by ensuring that each bit of the
input is processed separately.

C. SIMPLE REPRESENTATIONS OF SOME ISOGENIES
1) MONTGOMERY CURVES AND 2-ISOGENIES
Let K be a field with a characteristic not equal to 2 or 3. Let
a, b ∈ K such that b ̸= 0 and a2 ̸= 4. The equation Ma,b :

by2 = x3 + ax2 + x defines a Montgomery curve over K .
Then, for given 2-torsion point P ̸= (0, 0) on Ma,b,

φ :Ma,b→ Ma′,b′ : b
′y2 = x3 + a′x2 + x

(x, y) 7→ (f (x), yf ′(x)),

where

f (x) = x ·
xxP − 1
x − xP

, (1)

a′ = 2(1− 2x2P),

b′ = xPb (2)

is a 2-isogeny with ker(φ) = ⟨P⟩ [10, Proposition 2]. In this
case, the kernel of dual of φ is generated by (0, 0) on Ma′,b′ .
Furthermore, two 2-torsion points P = (xP, 0) on Ma,b can
be computed by solving the quadratic equation x2 + ax +
1 = 0, where xp = (−a ±

√
a2 − 4)/2. Thus, 2-isogenies

on Montgomery curve Ma,b can be simply represented by
Montgomery coefficient a. Note that Ma,b is denoted as Ma
for convenience, since Ma,1 and Ma,b are K̄ -isomorphic for
any b.

2) HESSIAN CURVES AND 3-ISOGENIES
A Hessian curve over K is given by the cubic equation Hd :
x3 + y3 + 1 = dxy, where d ∈ K and d3 ̸= 27. There are
four fixed subgroups ofHd (K ) of order 3, which generate four
3-isogenies on Hd . These 3-torsion subgroups are defined as
follows:

Gi = {(1 : −1 : 0), (−wi, 0), (0,−wi)} (i = 0, 1, 2),

Gb = {(1 : −1 : 0), (1 : −w : 0), (1 : −w2
: 0)},

where w ∈ K satisfies the equation w2
+ w + 1 =

0. From these subgroups, 3-isogenies on Hd can be
defined both in affine and projective coordinates, as shown
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in [11, Theorem 2].

φi : Hd → Hd ′ = Hd
/
Gi (i = 0, 1, 2)

(x, y)

7→

(
m
w2ix + x2y+ wiy2

xy
,m

w2iy+ y2x + wix2

xy

)
(X : Y : Z )

7→ (m(w2iXZ2
+ X2Y + wiZY 2)

: m(w2iYZ2
+ Y 2X + wiZX2) : XYZ ),

withm = 1/ 3√wid2 + 3w2id + 9. Then, the coefficient of the
curve Hd ′ is given by d ′ = m(d + 6wi). In this case, the dual
of φi is generated as follows:

φ̂i : Hd ′ → Hd ′′ = Hd ′
/
Gb (i = 0, 1, 2)

(x, y)

7→

(
m
1− wx3 − d ′xy(1−w)

3

xy
,m

1− wy3 − d ′xy(1−w)
3

xy

)
(X : Y : Z )

7→ (m(−wX3
+ Z3

− d ′XYZ (−w+ 1)/3

: m(−wY 3
+ Z3

− d ′XYZ (−w+ 1)/3 : XYZ ),

withm = 3
√
(−6w− 1)/((d ′)3 − 27). Then, the coefficient of

the curve Hd ′′ is given by d ′′ = d ′m(w + 2). Since φ̂i is the
dual of φi up to an isomorphism, d and d ′′ may not be exactly
the same value, but j(Hd ) = j(Hd ′′ ).
Remark 2: In the isogeny formulas of Montgomery (resp.

Hessian) curves, the dual of 2-isogeny (resp. 3-isogeny) has
the fixed kernel. Consider an isogeny 8 of degree 2n (resp.
3n), where 8 = φn ◦ · · · ◦ φ1 and each φi : Ei−1 → Ei is
constructed so that ⟨(0, 0)⟩ (resp. Gb) is not the kernel.
One may think that 8̂ can be computed by continuously

exploiting isogeny with ⟨(0, 0)⟩ (resp. Gb) as the kernel to
En n times. For each i, when the isogeny Ei → E ′i−1 =
Ei/⟨(0, 0)⟩ (resp. Ei/Gb) is computed, Ei−1 and E ′i−1 are
clearly isomorphic.
However, the kernels representing the backward isogeny

in these curves may differ. Thus, by continuously applying
this process, when E ′′i−2 is obtained from E ′i−1 → E ′′i−2 =
E ′i−1/⟨(0, 0)⟩ (resp. E

′

i−1/Gb), it can frequently be observed
that j(Ei−2) ̸= j(E ′′i−2). Therefore, to the best of our
knowledge, the only definitive information obtainable using
the fixed kernel is j(En−1) in this scenario.

III. SUPERSINGULAR ISOGENY HASH FUNCTIONS
First, we present two supersingular isogeny hash functions:
SCH and SLH in Section III-A and Section III-B. Then,
we review Panny’s approach which mitigates the Lauter-
Petit attack, and propose our Hessian hash function, SHH,
in Section III-C.

A. SCH: HASHING WITH POINT EVALUATION
Zaman and Min proposed a hash function based on the point
evaluation under the supersingular isogeny [6]. Their hash

function combines bits of information frommultiple message
blocks, treating them as a single message block for hashing,
and this hash function is referred to as a single compression
hash (SCH). Given a point P ∈ E(Fp2 ) on the starting curve
E and a message m, 2n-isogeny8 = φn−1 ◦ · · · ◦ φ1 ◦ φ0 and
8(P) are computed by the equations (1) and (2).

In the i-th step of computing the hash value, the CGL
determines the kernel of φi on each bit of the message,
whereas the SCH determines the kernel of φi by mixing
information obtained from multiple message blocks with the
evaluated point (φi−1◦· · ·φ1◦φ0)(P). This process is outlined
in Algorithm 1.

Algorithm 1 Single Compression Hash [6]
Input:Message m = m0||m1|| · · · ||mk−1;

Ma0/Fp2 , where p = 2e23e35e57e7 − 1;
P ∈ Ma0 (Fp2 ) for the starting curveMa0 over Fp2

Output: x-coordinate of 8(P), where 8 is 2e2 -isogeny

1: for i = 0 to e2 − 1 do
2: Re(xP), Im(xP)← xP
3: x ′P← (Re(xP)+ Im(xP))%2e2
4: i′← i%k
5: mi′ ← (mi′ + x ′P)%2e2
6: j← x ′P%(|2e2 − 3e3 | + |5e5 − 7e7 | + 1)
7: b← 0
8: for l = 1 to k do
9: b← b⊕ ml[j]
10: end for
11: C ←

√
A2 − 4

12: tp←−A+ C
13: tm←−A− C
14: if b← 1 then
15: t ← min{tp, tm}
16: else {b← 0}
17: t ← max{tp, tm}
18: end if
19: A← 2− t2

20: xP←
xP(xPt−2)
2xP−t

21: end for
22: return xP

Hard computational problems of the SCH are defined as
follows:
Problem 1: Given P′ = (xP′ ,−) ∈ E ′/Fp2 , with the order

of the point P′ is trivially given, find E ′.
Problem 2: Given P′ = (xP′ ,−) ∈ E ′/Fp2 , find a

sequence of 2-isogeny path from a starting curve E to the
curve E ′ where E ′ is unknown.
Zaman and Min stated that these problems would not be

solved quickly for sufficiently large prime p. Obviously, the
isogeny path of degree 2n can be effectively hidden if these
problems are established. However, additional conditions
on the detailed parameters are necessary to ensure the
computational complexities of problems. Moreover, if the
number of message blocks increases, it becomes possible
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to find collision pairs for Algorithm 1. These issues are
discussed in Section IV.

B. SLH: HASHING WITH LATTÈS MAPS
Larsson proposed a supersingular isogeny hash using Lattès
maps on the projective line P to hide an isogeny path [7].
In the context of isogeny on elliptic curves, Lattès maps can
be defined as follows.

Let ι : E → E be a rationalmap, such asmultiplication-by-
N map [N ], and let π : E → P be a morphism of varieties,
such as the projection map x(·) to the x-coordinate. Then a
Lattès maps associated with (ι, π) is a rational map ψ : P→
P with the compositions ψ = π ◦ ι ◦ π−1. To incorporate
Lattès maps into the CGL hash, Larsson sets ι = [2] and
π = x(·). Then, Lattès map ψ = x ◦ [2] ◦ x−1 is uniquely
defined by

ψ(t) = x([2](t,−)), t ∈ P and (t,−) ∈ E(Fp2 ).

For the construction of a chain of supersingular Lattès hash
(SLH) on a Montgomery curve, the following mapping is
applied.

φi : Mai → Mai+1 ,

where ai+1 = 2−
(
−ai + (−1)mi ·

√
a2i − 4

)2

,

ψi = x ◦ [2] ◦ x−1 : P→ Mai → Mai → P,
zi := ψi(zi−1 + j(Mai )), 1 ≤ i ≤ n− 1.

Here, m = (mn−1 · · ·m1m0)2 represents the binary message,
and z0 is initialized as z0 = ψ0(j(Ma0 )). The full computation
process for SLH is detailed in Algorithm 2.

Algorithm 2 Supersingular Lattès Hash
Input:Message m = (mn−1 · · ·m1m0)2;

Ma0/Fp2 , where p = 2nf − 1
Output: Hash value zn
1: j0← j(Ma0 ) = 256(a20 − 3)3(a20 − 4)−1

2: z0← xDBL_affine(j0, a)
3: for i = 1 to n do
4: ai← 2−

(
−ai−1 + (−1)mi−1 ·

√
a2i−1 − 4

)2
5: t ← zi−1 + j(Mai )
6: zi← xDBL_affine(t, ai)
7: end for
8: return zn

In Algorithm 2, xDBL_affine(t, ai) computes [2](t,−)
where (t,−) ∈ Mai (Fp2 ) as follows.

zi =
(t2 − 1)2

4t(t2 + ait + 1)

C. SHH: HASHING WITH HESSIAN 3-ISOGENIES
A CGL-like hash function with a starting curve whose
endomorphism ring is known is vulnerable to collision
attack. Since those endomorphisms are divided into valid

Algorithm 3 Supersingular Hessian Hash
Input:Message m = (mn−1 · · ·m1m0)2;

Hd0/Fp2 , where p = 3 · 22.71λf − 1
Output: Hash value j(Hdn )

1: for i = 0 to n− 1 do
2: di+1←

di + 6wmi

3
√
d2i w

mi + 3diw2mi + 9
3: end for
4: return j(Hdn )

inputs, which correspond to some messages, the fact that the
endomorphism ring of a starting curve is known is a threat to
a CGL-like hash function.

However, Panny presented the method for constructing
isogeny hash, avoiding the known endomorphism prob-
lem [8]. Panny exploits a subset of the full ℓ-isogeny graph,
increasing the probability that an endomorphism on the
starting curve cannot be mapped to valid inputs. Let C be the
length of a cycle derived from the KLPT algorithm [9], and
let r be the number of edges to be used as valid path at each
vertex inG(p, ℓ). Then, the probability that a cycle splits valid
isogeny paths is roughly computed asC(r/ℓ)C . Assuming the
KLPT algorithm runs in time greater than C ≈ logℓ p, we can
estimate the cost of finding collision as follows:

Time for running KLPT
Prob. of finding a valid cycle

≥
C

C(r/ℓ)C

≈

(
ℓ

r

)logℓ p

= (ℓ1−logℓ r )logℓ p = p1−logℓ r .

Thus, the inequality p1−logℓ r ≥ 2λ must hold to ensure a
sufficient security level λ. If we consider the generic birthday
attacks as well, the prime p and (r, ℓ) should be chosen to
satisfy the inequality log2 p ≥ max{2λ,λ/(1− logℓ r)}.
In this section, we propose a supersingular Hessian hash

(SHH) that uses 3-isogenies on a Hessian curve with a subset
of 3-isogeny graphs. As denoted in Section II-C, a Hessian
curve Hd has four subgroups of order 3. One of those
3-torsion subgroups, Gb, is the kernel of dual of other
3-isogenies derived from other 3-torsion subgroups Gi (i =
0, 1, 2). We exploit two of Gi to correspond input bits 0 and
1 to those two 3-isogenies. The computation of SHH is similar
to that of the CGL hash function, and the details are provided
in Algorithm 3.

IV. SECURITY ANALYSIS
In this section, we present two types of collisions identified
in SCH. These vulnerabilities arise due to the compres-
sion of message blocks, rather than the point evaluation
technique. We then provide criteria to ensure the secure
application of the point evaluation technique. Finally,
we discuss the fault detection capabilities of the three hash
functions.
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FIGURE 2. Experimental and expected time for solving polynomial derived from proposition 1.

A. COLLISIONS AGAINST SCH
Let k be the number of message blocks. This paper presents
two types of collisions in SCH: the first arises from many
message blocks (k > e2), while the second results from a
fixed b-sequence (k ≤ e2).

1) CASE 1. K > E2
Algorithm 1 shows that the hash value for message m =
m0||m1|| · · · ||mk−1 is computed by iterating the 2-isogeny
e2 times, assuming that each mi is an e2-bit message block.
As denoted in steps 4 and 5 in Algorithm 1, k is involved
when determining b. In the original CGL hash function,
e2k number of 2-isogenies are required to compute the hash
value for the given message m. However, in SCH, only e2
number of 2-isogenies are used. The SCH is designed to use
only e2 number of 2-isogenies by using k to determine b.
Unfortunately, while this feature of SCH leads to improved
performance, we can find collisions from this structure as k
grows. Let two messagesM1,M2 be defined as follows.

M1 = m0||m1|| · · · ||me2−1,

M2 = m0||m1|| · · · ||me2−1||mc||mc.

In this case, the (e2 + 1)-th and (e2 + 2)-th messages of M2
are not affected by step 5 in Algorithm 1, and are XORed
together and canceled out at step 9 since i ≤ e2. ThusM1 and
M2 are collision pairs yielding the same output.

2) CASE 2. K ≤ E2
In this scenario, we begin by fixing an isogeny path for a
specific k . Fixing an isogeny path implies that the sequence
of b exploited in [step 11-20, Algorithm 1] is known. Given
this hypothesis, we can identify the intermediate tuples

(Mai , xPi , bi) and derive the following equations.

mrl = mrl +
ql∑
t=0

x ′Prl+tql (max{0, i− k + 1} ≤ l ≤ i),

bi =
k−1⊕
l=0

ml[ji],

In the above equation, ql and rl are the quotient and
remainder of l/k , respectively. Considering an unknown
message of (e2k)-bit, since there are at most e2 independent
equations, it is possible to find a number of messages m with
(Mai , xPi , bi) as the correct intermediate values.

From these discussions, we provide the computational
cost and the implementation result of SCH in Section V,
specifically for the case where k = 1, with the loop repeating
as many times as the number of bits in the message block to
achieve collision-resistance.

3) POINT EVALUATION TECHNIQUE
To mitigate the risk of the Lauter-Petit attack, SCH reveals
the point evaluated by an isogeny φ : Ma → Ma′ as the hash
value. More explicitly, SCH discloses the x-coordinate of the
evaluated point. This makes it computationally difficult for
an attacker to recover the curve coefficient of Ma′ . Although
SCH does not satisfy collision resistance as discussed in
Section IV-A, disclosing the evaluated points instead of the
image curves is a sufficiently valid approach. However, if the
order of the evaluated point becomes known to an attacker,
it becomes possible to recover the image curve Ma′ as
follows.
Proposition 1: Given an f -torsion point P on a Mont-

gomery curve Ma/Fp2 , one can derive a polynomial equation
of degree O(f 2) from the condition [f ]P = O. By solving
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this equation, the Montgomery coefficient a ∈ Fp2 can be
recovered.

According to the complexity presented in [26] and our
experimental results shown in Figure 2, the complexity of
solving equation in the Proposition 1 is upper bounded by
O(f 4 log2(f )). This implies that Problem 1 can be solved
if the order of the evaluated point is not sufficiently large.
Therefore, to use the point evaluation technique, a prime
p = 2nf − 1 must satisfy log2(f ) ≈ 0.25λ and log2(p) ≈ 2λ
for security level λ. Note that if the order of point P used in
SCH is not large enough, Problem 2 can also be solved by the
discussion in Section IV-A and Proposition 1, which means
that second pre-image resistance is also not satisfied.
Remark 3: At first glance, it may seem that SLH also

uses the point evaluation technique, but upon examining
the Algorithm 2, it becomes clear that this is not the
case. Additionally, while a computation is performed on a
point with the intermediate value as the x-coordinate, the
order of the point is not disclosed, making this discussion
inapplicable.

B. FAULT DETECTION
As hash functions are critical for ensuring data integrity,
security, and system reliability, it is important to have
the ability to detect faults. The use of hash functions
plays a key role in cryptography, ensuring data integrity
during transmission or storage. However, the occurrence of
faults in the computation of hash values may result in the
compromise of data integrity, underscoring the necessity for
the implementation of robust mechanisms for the detection
and rectification of such faults. Environmental factors, such
as voltage fluctuations and electromagnetic interference,
have the potential to induce transient and permanent faults
in hardware implementations, including filed-programmable
gate arrays (FPGAs). The absence of effective fault detection
mechanisms may lead to a significant deterioration in the
reliability of cryptographic systems.

In this context, the SCH and SLH have been designed
to prevent the Lauter-Petit attack by avoiding the direct
disclosure of the image curve. While both functions can
guarantee sufficient randomness under certain conditions,
they are unable to ensure that the hash value has been
calculated correctly. This validation is crucial for ensuring
robustness against both natural and malicious faults, partic-
ularly in hardware implementations where faults may have
dire consequences.

Previous research has investigated fault detection schemes
for promising hash functions, including the SHA family
and BLAKE [12], [13], [14], [15]. Although it may appear
challenging to apply such fault detection schemes to SCH and
SLH, SHH possesses a distinctive property that enables it to
detect faults with a high degree of certainty based solely on
its output. In particular, the output of SHH is the j-invariant
of the supersingular curve, and the probability of randomly
generating a supersingular j-invariant is approximately 1/p.

Therefore, in the event of a fault, the output is likely to fail
the supersingularity test. This distinctive feature enables the
effective detection of faults in the computations of SHH alone.
Table 1 presents a summary of the results of the security

analysis of SCH, SLH, and SHH, highlighting the comparative
capabilities of these functions in addressing fault detection
and their implications for cryptographic robustness.

TABLE 1. Resistance to known attacks.

V. IMPLEMENTATION
In this section, we provide our implementation details,
computational costs, and implementation results of SCH,
SLH, and SHH. Note that M, S, I, and E refer to
field multiplication, squaring, inversion, and exponentiation,
respectively. Generally, isogeny-based cryptography prefers
to use Montgomery-friendly prime p, which is of the form
2nf − 1, and to use a supersingular elliptic curve E/Fp2 with
|E(Fp2 )| = (p+ 1)2. Since the binary form of p+ 1 contains
many zeros, the hammingweight of p is approximately log2 p.
Thus, in this work, we count exponentiations, such as a

p−3
4

and a
p−1
2 , as 2 log2 p multiplications over Fp2 .

A. FINITE FIELD OPERATION
This section defines the finite field operations essential
for implementing the algorithms presented in Section III.
Specifically, SCH and SLH rely on 2-isogeny over
Montgomery curves, while SHH uses 3-isogeny on Hessian
curves. To support these operations, three additional finite
field operations are required beyond basic arithmetic: inverse,
square root, and cube root. These operations are vital for
efficient isogeny computation and ensuring the security of
the proposed hash functions. First, given x = a + bi ∈ Fp2 ,
the inverse x−1 can be computed as follows.

x−1 =
a− bi
a2 + b2

.

Note that a, b ∈ Fp so that (a2 + b2)−1 is computed as
Fp-exponentiation, (a2 + b2)p−2. The square root operation
is implemented following the algorithm described in [17,
Algorithm 9], and the specific process is outlined in
Algorithm 4.

In Algorithm 4, step 7 implies that a is an element over
Fp, which rarely occurs. Therefore, Algorithm 4 typically
involves two (log2 p)-bit exponentiation. Finally, the cube
root of elements in Fp2 can be computed as Proposition 2.
Proposition 2: Let p be a prime satisfying p ≡ 4 or 5

mod 9. Then a cube root 3
√
a of a cubic residue a ∈ Fp2 can

be computed as 3
√
a = a

p2+2
9 .
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TABLE 2. Computational costs of SCH, SLH, and SHH.

Algorithm 4 Square Root ComputationOverFp2 ,With p ≡ 3
mod 4 [17]

Input: a ∈ Fp2 ; i ∈ Fp2 such that i2 = −1
Output:

√
a ∈ Fp2 if it exists, False otherwise

1: a1← a
p−3
4

2: x0← a1 · a
3: α← a1 · x0
4: if a0 = −1 then
5: return False
6: end if
7: if α = −1 then
8: return i · x0
9: else

10: b← (1+ α)
p−1
2

11: return b · x0
12: end if

Proof: a ∈ Fp2 is a cubic residue in Fp2 if a
p2−1
3 = 1 [18,

Theorem 8]. Let a be a cubic residue in Fp2 and p2 + 2 be

divisible by 9. Then,
(
a
p2+2
9

)3

= a · a
p2−1
3 = a. □

From the above computations, we count the square
root operation as 1SQRT ≈ 2Ep + 3M and the cube
root operation as 1CBRT = 1Ep2 , where Ep represents
(log2 p)-bit exponentiation and Ep2 represents (2 log2 p)-bit
exponentiation. Additionally, since Fp2 -multiplication can
be converted to four Fp-multiplications and Fp2 -inversion
requires exponentiation over Fp, we count an inverse
operation as 1I = 0.25 · (1Ep)+ 1M + 2S.

B. PROJECTIVE IMPLEMENTATION
In isogeny-based cryptography, projective coordinates
are used to improve computational efficiency. Similarly,
in isogeny-based hash functions, projective coordinates can
be applied to avoid inversion operations. In this section,
we examine the efficiency of applying projective coordinates
to the SCH, SHH, and SLH.

1) SCH
While projective implementation of SCH is possible, it is not
considered in this work. In SCH, the part where projective
coordinates can be applied is the point evaluation process.
SCH uses the x-coordinate of the evaluated point for selecting
the direction of the isogeny path in the preprocessing step.

TABLE 3. Primes used in the implementations.

TABLE 4. The implementation results of each algorithm (second).

Hence, implementing projective coordinates would require
fundamental changes to the algorithm’s structure, rather than
a simple adjustment. Moreover, Algorithm 1 is confirmed to
be an insecure hash function as shown in Section IV-A.

2) SHH
For SHH implementation, affine coordinates are more effi-
cient than projective coordinates. As shown in Algorithm 3,
SHH relies heavily on inversion and cube root operations,
which could indicate that a projective version would be
more efficient. However, as demonstrated in Proposition 2,
when using p ≡ 4 or 5 mod 9, the cube root can be
computed using (2 log2 p)-bit exponentiation.Meanwhile, the
inverse-cube root can be computed as follows.

a−
1
3 = a

p2−1
3 −

p2+2
9 = a

2p2−5
9 ,

which can also be computed using (2 log2 p)-bit exponen-
tiation. Applying a projective context would require com-
puting the cube root twice, which is inefficient. Therefore,
a projective implementation of SHH is not considered.
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TABLE 5. Summary of isogeny-based hash functions.

3) SLH
SLH can be effectively implemented in a projective version,
unlike the other two algorithms. In SLH two inversion
operations are required for the j-invariant computation
and xDBL_affine. These operations can be computed
efficiently by using projective coordinates. Let zi = Zi/Di.
The projective version of SLH is illustrated in Algorithm 5.

Algorithm 5 Supersingular Lattès Hash (Projective)
Input:Message m = (mn−1 · · ·m1m0)2;

Ma0/Fp2 , where p = 2nf − 1
Output: Hash value zn
1: J0← 256(a20 − 3)3

2: K0← (a20 − 4)
3: (Z0,D0)← xDBL(J0,K0, ao)
4: for i = 1 to n do
5: ai← 2−

(
−ai−1 + (−1)mi−1 ·

√
a2i−1 − 4

)2
6: T ← Zi−1(a2i − 4)+ 256Di−1(a2i − 3)3

7: U ← Di−1(a2i − 4)
8: (Zi,Di)← xDBL(T ,U , ai)
9: end for

10: zn← Zn
Dn

11: return zn

In Algorithm 5, xDBL(T ,U , ai) computes [2](T/U ,−)
where (T/U ,−) ∈ Mai (Fp2 ) as follows.

Zi = (T 2
− U2)2,

Di = 4TU (T 2
+ aiTU + U2).

C. COMPUTATIONAL COSTS AND IMPLEMENTATION
RESULTS
Let λ be a security level and assume that all hash algorithms
described in this work are hashing on an (2λ)-bit message.
The primes are set to satisfy the following conditions:

pSCH ≈ 2n1 f1 − 1,

pSLH ≈ 2n2 f2 − 1,

pSHH ≈ 2n3 · 3f3 − 1,

where log2(f1) ≈ 0.25λ and f2, f3 are small cofactors
satisfying log2(pSCH) ≈ log2(pSLH) ≈ 2λ and log2(pSHH) ≈
2.71λ. Based on these primes, the computational costs of the
hash functions are obtained as in Table 2.

As shown in Table 2, the projective version of SLH has
the lowest computational cost, while SHH has the highest.
The reason is that, unlike other algorithms that use a
2λ-bit prime, SHH uses a 2.71λ-bit prime to ensure sufficient
security. We estimate the total number of Fp2 -multiplications,
considering the cost of finite field arithmetic, and these
approximations are described in Table 2.
To evaluate the performance, we implemented the algo-

rithms using SageMath. SageMath was used for the finite
field operations. The elliptic curve arithmetic and isogeny
computations were implemented manually and used com-
monly across all three algorithms. In each instance of
implementation, the prime was selected in accordance with
the required security level λ, as illustrated in Table 3.
The performances of our implementations are evaluated

on the Intel Core i7-12700K at 3.60 GHz, running Ubuntu
22.04.2 LTS. Our implementation results and the comparison
with SHA3 are presented in Table 4.

As denoted in Table 4, the projective implementation
of SLH demonstrates the fastest performance, while SHH
exhibits the slowest. These results align closely with the cost
estimations presented in Table 2.
Since all algorithms use Montgomery-friendly prime,

overall performance can be improved by implementing finite
field arithmetic using it. However, as shown in Table 4,
it does not yet show sufficient performance for actual use,
thus future work will be needed. Summarizing the result,
Table 5 describes the security and performance results of this
paper.
Remark 4: Should a projective version of SCH be pro-

posed, the number of multiplications may be slightly less than
that of SLH. This is due to the fact that the cost of point
evaluation of Montgomery 2-isogeny is slightly cheaper than
Montgomery point doubling. However, as per Section IV-A3,
it is anticipated that projective SLH will ultimately prove to
be the most efficient, given that SLH utilizes more efficient
Montgomery-friendly primes.

VI. CONCLUSION
In this paper, we analyzed the security of previously proposed
isogeny-based hash functions SCH and SLH, and proposed
a new supersingular isogeny hash function SHH, based on
3-isogenies on Hessian curves.
SCH utilizes a point evaluation technique and a single

compression method to ensure the randomness of the results.
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According to our analysis, it counters the Lauter-Petit attack
by not revealing the supersingular j-invariant. However, our
analysis also revealed that while SCH’s single compression
method offers the advantage of improved performance when
hashing multiple blocks, it also introduces a vulnerability that
could allow collisions to be found through other methods.
In this paper, we provided guidelines for selecting parameters
to securely use SCH.
SLH uses Lattés maps to efficiently compute hash values,

enhancing the CGL hash with elliptic curve multiplications.
The security analysis of SLH in this work confirmed
that it is collision-resistant. Lastly, our SHH exploits the
strategy proposed in [8] that prevents valid collisions by
limiting the use of edges in the supersingular isogeny graph
to resist the Lauter-Petit attack. SHH takes advantage of
the efficiency of computing 3-isogeny chains on Hessian
curves.

The implementation results show that isogeny-based
hash functions still lack practical aspects, which is also a
characteristic of provable hash functions when compared
to dedicated hash functions. However, as the develop-
ment of a quantum computer becomes visible, research
on the efficiency of quantum-safe hashes is important
in provable hash area, and this research will serve as a
foundation for future developments. Furthermore, future
research will be conducted to enhance performance through
Montgomery-friendly implementation of finite field oper-
ations and low-level programming. There will also be
investigations to determine the potential applications of these
hash functions in various domains and how to apply fault
detection.
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