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ABSTRACT We propose a low-cost, small-volume, and easy-to-use underwater bionic robot shrimp to solve
the problem of complex underwater scenes and the limited ability of target feature extraction. Specifically,
an improved YOLOv8s underwater bionic robot shrimp model with foreign body recognition is proposed by
introducing the improved Multi-scale Ghost (MGHost) convolution into the CSPDarknet53 to 2-StageFPN
(C2F) module and finally adding an improved attention mechanism Convolutional priority multi space
attention module (CPMS) after the Spatial Pyramid Pooling-Fast (SPPF), the MGC-YOLO algorithm model
was proposed. At the same time, the bionic robot shrimp has a detachable manipulator design and can then
achieve underwater movement, lifting, and hovering functions so that the underwater robot shrimp can carry
out underwater maintenance, sampling, and other operations. Secondly, the image transmission module
can cooperate with the APP side to control the machine shrimp, and the APP side has a deep waveform
display function. The experimental results show that compared with the original model, the improved model
reduces the number of parameters and the amount of calculation by 0.94 and 3.6, respectively, and improves
its accuracy and Mean Average Precision (mAP) by 5.7% and 8.9%, respectively. After deploying the
equipment, the lifting speed reaches 50mm/s, the time for the manipulator to identify the foreign body is
less than 0.2s, and the delay for the return of underwater information is less than 0.2s, which verifies the
feasibility and effectiveness of the model in underwater foreign body recognition.

INDEX TERMS Bionic shrimp, YOLOv8s, CPMS, detachable manipulator design.

I. INTRODUCTION
At present, according to national data, the earth’s total area is
approximately 510 million square kilometers, the total area
of the ocean is approximately 361 million square kilome-
ters, and the ocean’s surface area accounts for approximately
70.5% of the earth’s surface area [1]. However, with the con-
tinuous increase in the country’s population and increasing
demand for industrial and agricultural development, the water
resources in nature are decreasing exponentially. At the same
time, according to the Annual report of China’s Ecological
Environment Statistics, about 1.15 million to 2.41 million
plastic fragments are discharged into the ocean through rivers
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every year [2], equivalent to about a truck of garbage dumped
into the sea every minute [3]. However, the degradation of
most plastic waste takes hundreds of years, and the long-term
accumulation will drift to every part of the water with the
ocean system. The water system will eventually absorb the
garbage into the food chain, which the human body will
absorb. It poses a potential threat to the biosphere and seri-
ously affects human health. Therefore, it is urgent to protect
the marine system’s environment.

With the rapid development of artificial intelligence, arti-
ficial intelligence has gradually come to all fields of life.
Traditional manual garbage salvage has low efficiency, secu-
rity risks, and poor human-computer interaction [4]. In this
paper, we design an underwater bionic machine shrimp
with foreign body recognition against this background. The
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underwater bionic robot shrimp can identify and detect the
target through the algorithm of the host computer. Then, the
host computer sends instructions to bionic shrimp to solve
the dredging function in the narrow water area and com-
plete complex underwater tasks. Bionic robotic shrimp can
improve work efficiency, reduce labor, maintain safety, and
enhance reliability. [5]In response to this issue, a biomimetic
robot underwater intelligent detection framework has been
proposed, which can achieve intelligent motion planning,
yaw control, and obstacle avoidance, providing a valuable
solution for underwater operations in the ocean. However, the
rapid development of computer vision technology provides
new opportunities for improving the visual capabilities of
underwater robots [6].

Underwater robots are being applied in increasing fields,
including environmental monitoring, search and rescue, and
industrial inspections. The typical workflow design for under-
water object detection utilizes robots for complex underwater
environments. This article uses a biomimetic machine shrimp
to detect foreign objects underwater, approach them, and
finally pick them up. At present, a relatively novel approach
is autonomous mobile robots, whose primary purpose is to
achieve agile path tracking and safe collision avoidance in
chaotic environments [7]. The rise in robotics technology
has led to increased interest in three-wheeled mobile robots
(TWMRs) due to their agility and adaptability across vari-
ous applications [8]. However, based on the technology of
three-wheeled mobile robots, intelligent models based on
neural networks are gradually emerging for real-time control
of quadcopter drones [9]. When operating autonomously,
underwater systems tend to use a different set of special-
ized sensors, including (3D) sonar, acoustic sensors, Doppler
velocity logging devices (DVL), and inertial measurement
units (IMU) but primarily rely on two-dimensional imaging
sonar measurements for underwater positioning and naviga-
tion. [10]Describes feature-based underwater positioning and
navigation using two-dimensional imaging sonar measure-
ments but fails to address potential limitations and requires
improvement in areas of use, charging systems, and other
vital aspects such as control schemes. However, in the bionic
robotic shrimp, the main task is underwater foreign object
detection, so target detection algorithms are essential to com-
plete subsequent tasks after successful recognition. Service-
oriented systems are typically environment-aware [11] and
may generate multidimensional quality data. Recently, some
CNN-based methods have improved models’ performance
with different magnifications, which is different from various
segmentation methods based on MS images [12]. However,
there are still challenges in using information for images
with different magnifications. Traditional recognition meth-
ods involve manually designing features and using classifiers
to achieve recognition. Deep learning has gradually emerged
with the rapid development of neural networks [13]. Deep
learning methods train network models end-to-end through
big data, effectively overcoming the limitations of traditional

methods [14]. In object detection, deep learning mainly
falls into two categories: two-stage and one-stage [15]. The
two-stage algorithm first uses the Region Proposal Network
(RPN) to generate candidate boxes that may contain targets
in the input image. Then, it sends the candidate boxes to the
classification network for classification operations. Repre-
sentative algorithms include R-CNN [16], Fast-RCNN [17],
and Faster-RCNN [18]. The first stage algorithms mainly
include SSD and YOLO series. Although existing object
detection methods have shown excellent performance in
general images, underwater object detection still poses
challenges.

According to domestic and international research,
Chen et al. [19] proposed SWIPENet in 2020 and validated
it with robot selection data URPC2017 and URPC2018,
obtaining 46.3% of mAP. However, its recognition accuracy
could be higher, and there are false positives. In 2018,
Fulton et al. [20] used the Faster RCNN algorithm to achieve
a detection accuracy of 83.3% for plastic recognition in
garbage recognition. However, the detection speed could
have been faster and met the real-time detection accuracy
of garbage categories underwater. Zeng et al. combined the
Faster RCNN network with an adversarial occlusion network
to construct a new network called the Faster RCNN-AON
network [21]. This network performs well suppressing over-
fitting during model training, but its detection accuracy is
low. Song et al. improved the Mask RCNN network, which
can perform object detection in complex underwater envi-
ronments [22]. Although the proposed region proposal-based
object detection algorithm has high detection accuracy, it is
time-consuming and not suitable for real-time underwater
object detection tasks. In 2024, Gao et al. [23] proposed a
path-enhanced Transformer detection framework to solve the
detailed problem of small-scale underwater targets. They also
set up a way to embed local path detection information to
achieve real-time detection tasks, but the detection accuracy
is not high. The main focus of the first stage of algorithm
research is that in 2021, Dinakaran et al. [24] proposed an
algorithm model combining DCGAN+SSD to improve the
model’s performance in various aspects of object detection.
In the same year, Lei et al. [25] improved the path aggregation
network (PANet) of the YOLOv5 model. They introduced
the Swin Transformer as the backbone network of YOLOv5,
making it more practical for underwater images with blurred
targets. The improved accuracy can reach 87.2%. In 2022,
Tian et al. [26] proposed an improved YOLOv4 model
to deploy and implement a garbage cleaning robot model,
mainly transforming YOLOv4 into a four-scale detection
method to improve detection speed and the detection speed
can reach 66.67 frames per second. In 2023, Wen et al.
[27] embedded SE and CA modules based on the YOLOv5s
model to improve detection accuracy. Then, the number of
necks in the first C3 was increased from 1 to 3, improving
attention to the target. They conducted experiments on data
from the China Underwater Robot Competition, and the
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results showed an average accuracy improvement of 2.4%.
In 2024, Wen et al. [28] proposed the YOLOv8-C2f Faster
EMA algorithm, which mainly focuses on optimizing the
backbone layer, neck network, and C2f module, improving
the accuracy of underwater garbage detection.

However, no matter the two-stage or one-stage algorithm
model mentioned above, the number of parameters must be
more significant. In which the two-stage detection takes a
long time and has low accuracy, it can not meet the real-time
detection of underwater foreign bodies. Given the above
research, compared with YOLOv8, YOLOv8 has significant
advantages in precision and speed. Its model is more eas-
ily deployed than other algorithms. Therefore, we choose
the YOLOv8s model as the primary detection algorithm
model.

Therefore, our research aims to achieve two objectives.
Firstly, our goal is to improve the recognition accuracy and
precision of the YOLOv8s model. Secondly, we will deploy
the identification number model to embedded devices to real-
ize the underwater bionic machine shrimp model for foreign
object recognition. This article provides four different contri-
butions:

In this paper, the contributions of the underwater bionic
robot shrimp on foreign body recognition are as follows:

1. We introduced the Ghost module and improved it to
obtain a multi-scale Ghost module, namely the MGhost mod-
ule, which is embedded into the C2f module. The C2f module
selected is the C2f module in the backbone network, called
the C2f MGConv model, making the model lightweight and
more conducive to deploying embedded devices. Through
experimental analysis, the introduction of a multi-scale Ghost
model not only reduces the number of model parameters but
also improves the accuracy.

2. We use the CPCA model to replace the channel atten-
tion mechanism and spatial attention mechanism module
in Convolution Block Attention Module (CBAM) with the
Multi-Scale Convolutional Attention (MSCA) module. The
improved model is the CPMS model, placed after SFFP, and
adds an enhanced attention mechanism CPMS layer. We pro-
pose the MGC-YOLO algorithm model. When improving
the attention mechanism, the mAP for underwater foreign
object detection has also been enhanced, surpassing previous
algorithm models.

3. After algorithm improvements, the STM32H7 chip
used in the hardware has an RT-Thread operating sys-
tem. The PID algorithm controls the depth stability of the
bionic shrimp in the water, achieving the hovering func-
tion, and enables the robot arm to capture the identified
target.

4. Use the mobile phone interface to observe the underwa-
ter depth waveform in real time and control the bionic shrimp
capture target to provide more accurate information for job
decision-making.

Through rigorous experiments, we have verified that the
model generated by the proposed method is effective for
foreign object recognition underwater.

The rest of this article is organized as follows. Section II
outlines several related works. Section III introduces the
method of optimizing the model in detail. Then Section IV
presents the data set, the experimental environment, and
the analysis of the experimental results, compares it with
the previous research, and discusses the limitations. Finally
Section V summarizes the main conclusions of this study.

II. RELATED WORK
A. DESIGN OF BIONIC SHRIMP
1) DIMENSIONAL COMPOSITION
Foreign bodies picked up by mechanical arms play an impor-
tant role in underwater autonomous detection. It can not
only prevent pollution with underwater organisms but also
provide healthy seafood for human beings. By integrating
advanced sensing technology, the foreign body recognition
system can obtain accurate data about the underwater envi-
ronment. Therefore, this paper proposes an underwater bionic
shrimp with foreign body recognition. Studying the indepen-
dent exploration method using the bionic robot fish as the
carrier [29], we conduct the design of the bionic shrimp,
illustrating the conceptual design of the bionic robot shrimp
as depicted in FIGURE 1. The system of foreign body recog-
nition bionic shrimp is mainly composed of the primary
control device, mechanical arm, and power device, which
includes two manipulators, which are respectively composed
of four waterproof steering gears, which are used to control
up and down, left and right movement and end rotation.
The grip at the end of the manipulator realizes the picking
function. Additionally, we can divide the conceptual calcu-
lation module of the bionic shrimp into the upper decision
layer and the bottom control layer. Specifically, the top-
level decision-making module applied to deep reinforcement
learning planning uses the NVIDIAXavier NX edge comput-
ing platform to provide high-performance CPU, GPU, and AI
computing capabilities for robots and other applications. The
bottom layer adopts the STM32H7B0VBT6 microcontroller
and ARM Cortex-M7 core, which can meet the requirements
of high computing performance and low power consumption.

FIGURE 1. The structure diagram of bionic shrimp.

The whole structure of the self-deformed bionic robot
shrimp adopts a pressure-free structure, and the inter-
nal equipment and electronic equipment are installed in
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FIGURE 2. The prototype of the bionic robot shrimp displayed; (b) The three-dimensional overall structure model
of the bionic robot shrimp; (c) The three-dimensional model of the internal power plant.

an independent pressure-sealed chamber. As shown in
FIGURE 2, we divide the overall design into the primary
device, the mechanical arm, and the power plant. The central
part includes, The main chip; Water pressure sensor; Power
supply; Temperature sensor; Picture transmission module;
Bluetooth module; Ups and downs system. The left and right
solid wings include two mechanical arms, each composed of
four waterproof steering gear.

2) OVERALL PICTURE OF UNDERWATER ROBOT SHRIM
The underwater intelligent operation robot integrates sev-
eral modules, and the central control based on the
STM32H7B0VBT6 chip realizes close coordination and effi-
cient interaction so as to complete the underwater intelligent
operation task.

First, as the central control part, the STM32H7 chip has
an RT-Thread operating system and robust computing and
control capabilities. Then, the underwater motion control,
lifting control, and hovering control modules realize intel-
ligent motion and stable hover through the STM32H7 chip
so that the robot can accurately perform tasks underwater.
The manipulator control module controls two detachable
manipulators to achieve object grasping and handling oper-
ations. Then, the picture transmission module transmits the
underwater picture to the mobile phone APP in real-time,
allowing the operator to observe and remotely monitor. Sec-
ondly, the communication module realizes the two-way data

transmission between the robot and the mobile phone APP so
that the operator can remotely control the robot and receive
its feedback information. Finally, the depth sensing module
measures the underwater depth and transmits the data to the
mobile phone APP to provide depth information.

Overall, through the central control of the STM32H7 chip,
the modules realize data exchange and coordination, cooper-
ate closely, and work together so that the robot can have an
intelligent underwater operation and improve the efficiency
and safety of underwater resource exploration, scientific
research, and environmental monitoring. The detailed process
of this article is as follows: after booting up, the system initial-
izes, and the bionic machine shrimp is placed in water to enter
hover mode. When the bionic shrimp patrols in the water,
the detection camera on the top of the bionic shrimp sends
real-time data to the image transmission module through a
USB data cable. The image processor then recognizes the
underwater image. The visual recognition system sends a sig-
nal to the controller to execute the salvage program, driving
the motor to rotate the bionic shrimp’s hand and pick up
foreign objects. Its physical structure is shown in FIGURE 3.

B. CONTROL OF BIONIC SHRIMP
1) MODULE PARSIN
The data exchange and coordination among the mod-
ules are realized through the central control of the
STM32H7B0VBT6 chip. As shown in FIGURE 4, it is the
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FIGURE 3. A real effect picture.

most miniature system board connecting the modules. Each
module cooperates closely and works together to give the
robot the ability to perform intelligent underwater operations
and improve the efficiency and safety of underwater resource
exploration, scientific research, and environmental monitor-
ing. The introduction of each module is as follows, as shown
in FIGURE 5, which is the overall module display diagram
of the bionic shrimp.

FIGURE 4. Minimum system board.

We will introduce the functions of each module in the
modules.

a: GRAPHIC TRANSMISSION MODULE
The image transmission module is installed on the head of
the underwater intelligent operation robot and is directly con-
nected to the mobile phone through WIFI. The WIFI module
has become the primary medium for communication between
mobile phones and machines. The image transmission

FIGURE 5. (a) Graphic transmission module; (b) Power management
board; (c) Mechanical arm; (d) Floating system; (e) Power motor; (f) Water
pressure sensor.

module can transmit underwater images to the mobile phone,
allowing users to observe the underwater environment in real-
time. Ensure efficient and stable image transmission through
appropriate image transmission equipment and protocols.
Users can easily monitor and control the robotic shrimp
through a mobile APP, enhancing the maneuverability of the
robotic shrimp and the efficiency of underwater operations,
providing a convenient and reliable solution for intelligent
underwater operations.

b: POWER MANAGEMENT BOARD
Due to the high power consumption of various modules of
the underwater robot, as well as the sizeable total power
consumption of the servo module of the robotic arm and the
motor controlling the water storage tank, we use a power
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supply consisting of four Panasonic NCR18650B batteries
connected in series, which has an output voltage of 14V and
a working current of up to 10A. At the same time, due to
the independence of each functional module, different power
supply voltages are required. Therefore, we designed and
produced a power management board, which divides the 14V
battery power supply into 12V and 5V through a switch
power module and supplies power to the motor and servo,
respectively. Then, the 5V is divided into 3V3 through a linear
regulator module to supply power to the central control chip
and sensors.

c: MECHANICAL ARM
The control module of the robotic arm is the core part of
the underwater intelligent operation machine shrimp. It con-
sists of two robotic arms, each consisting of four waterproof
servos, used to control up and down, left and right move-
ments, and end rotation. An independent servo controls the
gripper at the robotic arm’s end to achieve grasping and
releasing functions. Using the PWM output port of the
STM32H7B0VBT6 chip, the pulse signal of each servo is
controlled to achieve precise motion control.

The control module of the robotic arm communicates with
the central control system. It can flexibly execute underwater
tasks according to instructions, improving the multifunction-
ality and adaptability of the robotic shrimp. At the same time,
the design of the robotic arm structure and servo drive circuit
considers waterproof performance, using waterproof servos
to ensure the reliable operation of the robotic shrimp in under-
water environments. The design of this module enables the
robotic shrimp to complete complex tasks such as underwater
maintenance and sampling, providing an efficient and reliable
solution for underwater resource exploration and operations.

d: FLOATING SYSTEM
The sinking and floating system of underwater robotic shrimp
use a syringe as a storage tank and adjusts the drainage
volume by controlling the suction or drainage process of
the syringe through the motor and screw inside the robotic
shrimp, achieving underwater lifting function.

The motor and screw system inside the machine shrimp
control the movement of the flange, which does not come
into contact with water, ensuring that the components inside
the machine shrimp are not affected by water. Through the
commands of the control system and feedback from the water
pressure sensor, the robotic shrimp can achieve stable lifting
and lowering movements underwater, adapt to underwater
environments at different depths, and improve the flexibility
and efficiency of underwater operations. The overall design is
simple and efficient, making the sinking and floating system
of the robotic shrimp an essential component for achieving
intelligent underwater operations.

e: POWER MOTOR
The power motors of the underwater machine shrimp are two
waterproof motors installed on both sides of the machine

shrimp. The L298N drive module controls them and can
achieve movements such as forward, backward, and steering
of the robotic shrimp underwater. Ensure the reliability and
stability of the motor in underwater environments through
appropriate power supply and waterproof design. The instal-
lation position of the power motor and the L298N control
module enables the robotic shrimp to adapt to the needs of
different underwater tasks flexibly, providing strong power
support for the entire robotic shrimp. This power motor
design allows the underwater intelligent operation machine
shrimp to move efficiently, achieve diverse underwater oper-
ation tasks, and improve the performance and adaptability of
machine shrimp.

f: WATER PRESSURE SENSOR
The water pressure sensor of this work is the HD710 model
sensor, installed inside the machine shrimp and connected to
the outside of the work through a hose. It is used to mea-
sure the current water pressure and thus determine the depth
of the machine shrimp underwater. The sensor is connected to
the STM32H7B0VBT6 chip to convert themeasured pressure
value into depth information. Deep information is transmitted
in real-time to the mobile app through a Bluetooth module
for operators to monitor the underwater environment. At the
same time, depth information is also used to provide feedback
for the buoyancy system. By controlling the motor screw to
adjust the displacement, the machine shrimp can stably hover
at the designated depth position, improving the accuracy and
efficiency of underwater operations. This design ensures that
the sensor does not come into contact with water during
underwater operations, making the sensor’s measurements
more accurate and reliable.

2) PID ALGORITHM
This design must maintain its depth stability in underwater
operation, so it combines a depth sensor and PID algorithm
to control the water tank system. When the design reaches
the underwater target position, it can maintain depth stability
in the face of external factors. The design goal of the PID
algorithm is to quickly recover to the target position error
of less than one centimeter in case of interference. And the
oscillation phenomenon is not prominent.

The PID algorithm operates based on the combined
operation of three controllers: proportional, integral, and dif-
ferential. The proportional controller adjusts according to the
difference between the controlled quantity and the expected
value; the integral controller adjusts according to the cumu-
lative error between the controlled quantity and the expected
value, which is used to remove the static error; the differential
controller adjusts according to the rate of change of the
controlled quantity, It restrains overshoot and oscillation in
the dynamic process.

The PID algorithm adjustment program built in MCU
automatically adjusts the depth in real-time. After importing
the data of the depth sensor into the parameters of the PID
algorithm, the system can calculate the direction and power
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of the motor in real time and import the estimated parameters
into the DC motor driver to drive the motor to change the
volume of the water tank. As a result, the submarine is close
to the depth of the target. In the case of reasonable parameter
setting, the farther away the submarine is from the target, the
faster the adjustment is, and the closer it is to the target, the
slower the adjustment is to achieve fast and accurate depth
adjustment. The PID algorithm uses ultrasonic and steering
gear speed sensors to convert the collected environmental
parameters into electrical signals when the underwater vehi-
cle is working and then sends them to the STM32 controller.
Then, the STM32 controller processes and analyzes the elec-
trical signals and finally sends the processed signals to the
motor and other executive components, thus realizing the
intelligent operation of the underwater vehicle. FIGURE 6
shows its working principle.

FIGURE 6. How PID works.

The relation of the transfer function of the PID mathemat-
ical model in the control system, as shown in equations 1
and 2.

e (k) = r (k) − c(k) (1)

u (k) = Kp

e (k) +
T
TI

k∑
j=0

e (j) +
TD
T

[e (k) − e(k − 1)]


(2)

where: index k represents sequential sampling instances,
incremented to 0, 1, 2, etc., to mark discrete evaluation or
adjustment times. r(k)represents the target value at each k
instance and is the system’s output target. c(k) captures the
actual input value of the same instance, reflecting the received
real-world input. The control output u(k) corresponds to the
system and aims to solve the difference between the control
output and the target value. The deviation e(k) quantifies the
gap between the target r(k) and the actual input c(k) at each
instance, indicating the error that the system is minimizing.
The previous deviation e(k-1) provides a basis for comparing
the variation of errors with time. The proportional coefficients
P and K affect the immediate response of the system to the
current error, the integral time constants I and T affect the
cumulative error correction with time, and the differential
time constant DT affects the predictive response of the system
to error changes. Finally, T represents the sampling period
and determines the interval between online observation and
adjustment, thus indicating the response rhythm of the
system.

3) INTODUCTION TO HOVER FUNCTION
Implementing the hovering function in underwater environ-
ments is challenging, and achieving underwater hovering is
crucial for precise operations. The robotic shrimp must hover
stably at a designated position for foreign object recognition
and sampling tasks.

The machine shrimp achieved stable hovering underwater
through a well-designed drainage bin control system and PID
control algorithm. This innovation enables the robotic shrimp
to be more accurately positioned and controlled during
operations.

The sinking and floating system of underwater robotic
shrimp uses a syringe as a water storage tank. Through the
motor and screw inside the robotic shrimp, the suction or
drainage process of the syringe is controlled to adjust the
drainage volume, achieving underwater lifting and hovering
functions. As shown in FIGURE 7

FIGURE 7. Water storage tank.

The hardware functions mainly consist of three parts: a DC
motor and drainage chamber, an air pressure sensor, and a
microcontroller.

1. DC motor and drainage chamber
The DC motor is mounted on the drainage chamber

(syringe), and the volume of discharge or suction of the
drainage chamber (syringe) is controlled by controlling the
movement of the motor, thereby controlling the sinking and
floating of the submarine.

2. Air pressure sensor
Used as a water level sensor to read the current depth of

the submarine in real-time.
3. Single-chip microcontroller
Processing the data transmitted by the air pressure sensor,

applying specific algorithms to process the data from the air
pressure sensor, and sending control signals to the DC motor
based on the processed data to control the motor is the control
core.

The detailed introduction of its software program is divided
into four parts: the HD710 pressure sensor, DC motor driver
program, PID algorithm, and operating system.

1. HD710 pressure sensor
Controls the pressure module’s real-time measurement

accuracy and frequency and correctly returns real-time depth
to the microcontroller.

2. DC motor
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By adjusting the duty cycle of the PWM control signal,
high-precision motor power control can be achieved over
an extensive range, improving motor stability and operating
efficiency.

3. PID algorithm
The MCU’s built-in PID algorithm adjustment program

is the basis for real-time automatic depth adjustment. After
importing the data from the depth sensor into the parameters
of the PID algorithm, the system can calculate the direction
and power of the motor in real-time and import the estimated
parameters into the DC motor drive program to drive the
motor to change the volume of the water tank. As a result,
the submarine also approached the target depth. Under rea-
sonable parameter settings, the further the submarine is from
the target, the faster the adjustment, and the closer it is to
the target, the slower the adjustment, thus achieving fast and
accurate depth adjustment. PID regulation is the communica-
tion bridge between the motor and the depth sensor.

4. Operating System
Embedded operating systems can integrate the above three

through thread synchronization, running synchronously at a
macro level, which can control submarines to quickly and
accurately dive to the target depthwhile also resisting external
interference when suspended, maintaining hovering at the
target depth as much as possible and reducing oscillation.

The system diagram of its implementation is shown in
FIGURE 8.

FIGURE 8. System block diagram.

C. CONTROL OF BIONIC SHRIMP
1) YOLOV8 MODEL FRAMEWORK
YOLOv8 is a state-of-the-art object detection system known
for its accuracy and speed, tailored to meet the unique
needs of aerial surveillance in marine environments. It retains
YOLOv5’s CSP concept, integrated feature fusion technol-
ogy (PAN FPN), and SPPF module, ultimately achieving a
series of enhancements. This includes introducing state-of-
the-art models for object detection and instance segmentation
at various resolutions, a coefficient scalable model based on
YOLOv5, and a novel C2f module inspired by the ELAN
structure in YOLOv7. In addition, YOLOv8 has innovated in
the detection head by separating classification and detection

functions, using binary cross entropy (BCE) for classifica-
tion loss, and introducing a complex form of regression loss
(CIOU loss+DFL and VFL) to improve detection accuracy.
A key feature of YOLOv8 is its scalability and compatibility
with previous YOLO versions, which helps with perfor-
mance comparison analysis. This feature, coupled with its
advancements in accuracy and the introduction of anchor-free
dynamics and dynamic task alignment allocators, makes
YOLOv8 the most accurate detector to date. This algorithm’s
adaptability and improved computational and detection effi-
ciency make deploying embedded devices more convenient,
so the latest model was chosen for foreign object recog-
nition in underwater biomimetic machine shrimp. Finally,
the feature extraction network in YOLOv8 is designed to
extract single-scale features from images processed by SPPF
and C2f modules. The C2f module is a simplified version
of the original C3 module, which combines convolutional
layers to reduce the burden on the model while integrating
the advantages of YOLOv7’s ELAN structure. This enhance-
ment broadens the gradient flow information using bottleneck
modules in the gradient branches. The SPPF module reduces
the number of layers in the standard SPP (Spatial Pyramid
Pooling), reduces unnecessary operations, and accelerates
feature fusion.

In real-time target detection, the YOLO algorithm is a
model of innovation and efficiency, and many widely praise
its pioneering function. The popularity of this algorithm
stems from its lightweight network architecture, effective
feature fusion methods, and more accurate detection results.
In its iterative process, YOLOv5 and YOLOv7 have become
prominent versions, using deep learning to achieve efficient
and real-time target detection [30]. With the introduction
of YOLOv8 in 2023, its structure retains the CSP module
of YOLOv5, integrates feature fusion technology and SPPF
module, and finally realizes a series of enhanced functions.
Due to the influence of YOLOv7, C2f innovates to replace
the original structure in the Efficient Layer Attention (ELAN)
module, YOLOv8 adopts a new classification loss func-
tion, Varifocal Loss (VFL Loss), which can better handle
the category imbalance problem and enhance classification
accuracy. Second, the regression loss function of YOLOv8
adopts the combination of Complete Intersection Over Union
Distribution Focal Loss (CIOU DFL Loss), which can handle
the bounding box regression problem more effectively and
improve detection accuracy.

The main structure of YOLOv8 comprises a backbone
network, a neck network, and a detection head. The backbone
network is used to extract the features of the image, and the
C2f module is a simplified version of the original C3 module,
which integrates a convolution layer to reduce the model and
integrates the ELAN advantages of YOLOv7. SPPF module
minimizes the number of layers of standard SPP, reduces
unnecessary operations, and speeds up feature fusion. The
neck network is for feature fusion, and the detection head
part is to output the final detection results. It uses features
sampled from 8, 16, and 32 scales to perform multi-scale
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FIGURE 9. System block diagram.

prediction to fine-tune the prediction of small, medium, and
large targets,and its overall model block diagram is shown in
FIGURE 9.

2) LOSS FUNCTION OF YOLOV8 MODEL
IOU is a way to describe the degree of coincidence between
boxes. In the regression task, the regression degree of the
box can be measured by the ratio of the ‘‘goal box’’ to the
‘‘prediction box.’’ The loss function of YOLOv8 consists of
IOU is a way to describe the degree of coincidence between
boxes. In the regression task, the regression degree of the
box can be measured by the ratio of the ‘‘goal box’’ to the
‘‘prediction box.’’ The loss function of YOLOv8 consists
of several parts, classified as loss (VFL Loss) and regres-
sion loss (CIOU Loss + DFL). Among them, CIOU and
YOLOv5 are consistent, and the main improvement of VFL
is the asymmetric weighting operation. Both FL and QFL are
symmetrical; the definition of Varifocal Loss is shown in the
equation 3:

VFL(p, q) =

{
−q (q (log p) + (1 − q) log (1 − p)) q > 0
−αpγ log (1 − p) q = 0

(3)

q is the IOU of bounding box (bbox) and real box, IOU is
the intersection of the prediction box and the real box divided
by the union of the two boxes, and then p is the score, namely
probability. When q is greater than 0, it is a positive sample,
that is, if two boxes intersect, so that q is negative, then the
two boxes do not intersect.

For DFL, the position of the box is modeled as a general
distribution, so that the network can quickly focus on the dis-
tribution of the position close to the target location, as shown
in FIGURE 10.

FIGURE 10. DFL general distribution.

The meaning of DFL expressed in the figure is to optimize
the probability of the two positions closest to the label y in the
form of cross entropy, so as to make the network focus on the
distribution of the adjacent area of the target position more
quickly; that is to say, the learned distribution is theoretically
near the real floating-point coordinates, and the weight of
the integer coordinates around the distance is obtained by the
mode of linear interpolation. As shown in equation 4.

DFL (Si, Si+1)

= − ((yi+1 − y) log Si + (y− yi) log (Si + 1)) (4)

In the formula, Si and Si+1 are the ‘‘predicted value’’ and
‘‘approaching predicted value’’ of the network output. y, yi
and yi+1 are the ‘‘actual value’’, ‘‘label integral value’’ and
‘‘near label integral value’’ of the label.
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III. METHODS
A. IMPROVE THE MODEL OF YOLOV8
1) LIGHTWEIGHT MODEL
In the model of YOLOv8, we can see that YOLOv8n has the
smallest number of model parameters and the least amount of
calculation. Still, its speed is relatively slow, and YOLOv8s
is relatively moderate compared with other models, so this
paper chooses YOLOv8s as the basic model Details of the
parameters are shown in TABLE 1.

Using the C2f feature extraction backbone network in
YOLOv8s is very large and needs a lot of computing
resources, so this paper introduces an algorithm to improve
the GhostNet model. GhostNet is a lightweight end-to-
end neural network with significant advantages over other
lightweight networks. Its design focuses on improving the
computational efficiency of the model, maintaining accuracy
while reducing the number of model parameters, making
it very suitable for deployment on embedded devices and
mobile devices [31]. Because the target detection object of
this paper is underwater target detection and deployed to the
mobile phone, this paper selects the lightweight backbone
network of improved GhostNet to be used in the basic model
of YOLOv8s to achieve efficient and accurate detection.

Han et al. based on the fact that one feature graph in
the redundant feature graph can be transformed into another
feature graph by cheap operation, but one of the feature
graphs can be seen as a ‘‘Ghost’’ of another feature layer, and
then based on this concept, a GhostNet network model [32]
is proposed. The model GhostNet is divided into two parts:
first, conventional convolution is used to generate feature
graphs; second, additional graphs are generated through the
linear transformation of the initial test set; and third, these
mappings are combined to produce the final output. The
core Ghost model structure diagram in GhostNet is shown
in FIGURE 11: The calculation formula of Ghost model is as
follows:

Y ′
= X × F ′ (5)

Yij = φij
(
Y ′
i
)
, i ∈ [1,M ] , j ∈ [1,G] (6)

f1 = M × H ′
×W ′

× Cin × K 2 (7)

FIGURE 11. The Ghost module.

In the formula, φ is a cheap operation, which can be either
depth wise convolution or other convolution, where c is the
number of channels, h is the height and w is the width. The
specific meaning is to generate m original features Y ′ after
the input image X passes the convolution kernel Y ′

i Then, the

two main structures of GhostNet are shown in FIGURE 12,
in which the step size of the left image in the depth separable
convolution is 1, and it is used as an extension layer through
the Ghost module, including two Ghost modules in the model
to increase the corresponding number of channels. The step
size of the figure on the right is 2, which also contains two
Ghostmodules, mainly to reduce the number of channels. The
difference between the left and the right is that the right does
not use ReLU after the last Ghost module.

According to the Ghost module, the multi-scale Ghost is
improved. First, the multi-scale convolution layer does not
change the size of the original feature image. Still, it enriches
the features of the image through the convolution operation of
different convolution kernels. The improved model structure
is shown in FIGURE 13.

FIGURE 12. G-Bneck network structure.

FIGURE 13. Improved Ghost model diagram.

2) LIGHTWEIGHT MODEL
Because the classical attention mechanism Squeeze-and–
Excitation-Networks (SENet) [33] only considers the infor-
mation of the internal channel and does not pay attention
to the position information, in the visual effects, the spatial
structure is equally important, which promotes the emergence
of the attention mechanism of CBAM. Still, because CBAM
ignores the critical details in underwater detection, this paper
proposes an improved CBAM, called CPMS, as shown in
FIGURE 14. CPMS includes not only a spatial attention
mechanism module but also a multi-scale channel attention
mechanism module, which can achieve better results than the
SENet attention mechanism with only an attention channel.

The CPMS model proposed in this paper is inspired by
channel-first convolution attention, and the overall structure
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TABLE 1. YOLOv8 model parameters.

of CPCA model still follows the structure of CBAM. First
channel (Channel Attention Module) CA, and then (Spatial
Attention Module) SA, the equation is as follows.

Fc = CA(F) ⊗ F (8)

F̂ = SA(Fc) ⊗ Fc (9)

The channel attention mechanism is improved to a
multi-scale channel attention mechanism on the original
channel. The formula of the original channel and the
improved attention mechanism is shown in formula 5 and 11.

CA(F) = σ (MLP (AvgPool (F)) +MLP(MaxPool(F)))

(10)

CAM (F) = Conv1×1(
3∑
i=0

Input i(DwConv(F))) (11)

Then the expression of the spatial attention mechanism is
formula 8, and the improved equation of the spatial attention
mechanism is shown in 13.

SA(F) = σ (f 7×7 ([AvgPool (F)) +MLP(MaxPool (F)]))

(12)

SAM (F) = Conv1×1(
3∑
i=0

Branchi (DwConv (F))) (13)

In the above formula, Fc is the feature graph, CA and
SA represent channel attention and spatial attention respec-
tively, ⊗ represents element-by-element multiplication, and
Fc and F̂ represent the feature output graph after chan-
nel attention and spatial attention, respectively. Where σ

is signmoid, where Dwconv represents the depth convolu-
tion, Input i, i∈ {0, 1, 2, 3} represents i the branch, Input0
represents the characteristic graph of the input image, f 7×7

represents a convolution operation with filter size 7 × 7,
Branchi, i∈ {0, 1, 2, 3} represents the i branch, Branch0 rep-
resents the characteristic graph after the output of the channel
attention mechanism, and finally CAM (F) and SAM (F)
represent the improved multi-scale channel and multi-stew
spatial attention module.

B. IMPROVE THE MODEL OF YOLOV8
First of all, due to the large number of parameters of the
model, the improved Ghost lightweight model is introduced

and added to the C2f module of the backbone network to
generate the C2f-MGhost model, which can extract more and
more detailed features and lay the foundation for subsequent
feature fusion. Then, by adding the attention mechanism
CPMS after SPPF, we can increase the ability to pay attention
to features, obtain refined features as output, enhance the
model to pay more attention to the information of small
targets and improve the accuracy of small target recognition
and location. The blue box details the enhanced part, and the
improved overall model framework is shown in FIGURE 15.

FIGURE 14. CPMS model.

IV. EXPERIMENT
A. INTRODUCTION TO THE EXPERIMENT
1) DESCRIPTION OF THE DATASET
The data set used in this paper is Trash_ICRA19 [20], which
is currently widely used. The data set consists of three cate-
gories: plastic, biological species, and others. Four thousand
pictures are selected according to Trash_ICRA19 and then
collected according to the open underwater photos of the
ocean on the Internet and integrated into the ROBAT-Date
data set needed in this paper. It contains a total of 5800 pic-
tures. The data set is divided according to 6:2:2, and the
detailed data set classification and label data location size dis-
tribution show that the sample data set has the characteristics
of multi-scale distribution, as shown in FIGURE 16.

There are three main categories of data sets, namely, plastic
(plastic fragments), bio (biology), and rov (other categories).
The recognition effect is shown in FIGURE 17.
The actual image data of the seafloor is shown in

FIGURE 18, indicating white plastic garbage on the seafloor
and biological and other prominent types of waste.
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FIGURE 15. MGC-YOLO model.

FIGURE 16. Tag information distribution.

2) EXPERIMENTAL ENVIRONMENT AND PARAMETER DESIG
The settings of the environment are shown in TABLE 2.

During the experiment, the training set of the data set is 6,
and the training set of the dataset consists of 6 units, with
a proportion of 2 units each allocated to the validation set

and the test set, used for training, validating, and testing the
improved algorithm model. The size of the obtained images
is 640-640, the Batch-Size size is 16, the number of iterations
for training (epoch) is 100, and the initial learning rate is 0.01.
Themodel selects the SGD optimizer for its calculation speed
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FIGURE 17. Visual example of a dataset.

and convergence speed; the momentum is set to 0.93, and the
weight decay is set to 0.0005.

FIGURE 18. Real sea bottom image.

TABLE 2. Detailed data of experimental environment configuration.

3) ASSESSMENTOF INDICATORS
To objectively evaluate the model’s performance, the indi-
cators selected in this experiment are accuracy (Precision,

P) [34] and recall rate (Recall, R), which can comprehen-
sively evaluate the detection effect of the algorithm model.
Then, the average accuracy (mean Average Precision, mAP),
the number of parameters (Parameters), and the number of
floating-point operations (floating-point operations, FLOPs)
are selected to evaluate the performance of the algorithm.
According to the categories of the selected marine data sets,
the average accuracy average mAP is used as the evalua-
tion index, which comprehensively considers the detection
accuracy and recall rate of marine target categories. Calcu-
lating the average accuracy of different categories reflects
the model’s overall performance in seafloor foreign body
recognition, making the evaluation more comprehensive and
objective. The number of parameters can measure the com-
plexity of the algorithm model. In contrast, FPS can measure
the real-time detection speed of the model, and FPS can be
obtained by calculating the predicted consumption time. Each
index expresses its formula as follows:

P =
TP

TP+ FP
∗ 100% (14)

R =
TP

TP+ FN
∗ 100% (15)

AP =

∫ 1

0
P(R)dR (16)

mAP =
1
N

n∑
i=0

APi (17)

In the formula: if the sample is correctly predicted as a
positive sample, it is called TP (True Positive), that is, a pos-
itive sample; the sample is correctly predicted as a negative
sample, called TN (True Negative), that is, a negative sample;

VOLUME 12, 2024 163253



Y. Tang et al.: MGC-YOLO: Underwater Biomimetic Shrimp With Foreign Object Recognition

the number of negative samples predicted as a positive sample
is the quantity, then it is called FP (False Positive), that is,
a negative sample; the number of positive samples predicted
to be negative is called FN (False Negative), that is, a posi-
tive sample. Among them, negative samples represent wrong
predictions, while positive samples are marked with correct
predictions. Then P represents precision and R represents
recall rate in equation (16).

B. EXPERIMENTAL RESULTS
1) THE INFLUENCE OF MGHOST
To verify the effectiveness of the lightweight moduleMGhost
proposed in this paper, this paper uses Partial Convolution
(PConv) and Ghost, and the improved Ghost algorithm pro-
posed in this paper as the backbone network of YOLOv8s,
and the ablation results on the test set are shown in TABLE 3.

According to the data in TABLE 3, it can be seen that
the parameters of the improved MGhost are compared with
the other two lightweight models; the number of parameters
of MGhost is 0.17M smaller than that of PConv, and then
0.19m higher than that of Ghost; according to its calcula-
tion amount FLOPS, MGhost is 0.4 and 0.5 slower than
PConv and Ghost respectively, and then PConv is the fastest
per second and Ghost the slowest; in terms of accuracy,
PConv is obviously much lower than Ghost, followed by
little difference between MGhost and Ghost. According to
the recall rate, Ghost is the weakest of the three, and MGhost
is 2% and 3.8% higher than PConv and Ghost, respectively;
the average accuracy of PConv is the smallest, and there is
little difference between Ghost and MGhost. By comparing
the improved model with the original C2f model, it can
be found that all the indexes after improvement are better
than those without improvement. To sum up, the improved
MGhost is efficient and lightweight in the backbone network
of YOLOv8s. The enhanced model pays more attention to the
information of small targets, improves the recognition and
location accuracy of small targets, and names the improved
model MGYOLOv8s. The visualization result analysis is
shown in FIGURE 19.

2) THE INFLUENCE OF CPMS
To evaluate the model more comprehensively, the researchers
conducted the ablation experiment on themodel in the test set.

As shown in TABLE 4 according to the number of
parameters, the amount of calculation, and accuracy, the
experimental results constructed MGYOLOv8-CBAM and
MGYOLOv8- CPMS models, in which experiment 1 was
compared with the basic model YOLOv8s and experiment
2 was compared after introducing MGhost convolution into
the YOLOv8s model. The first experiment is the YOLOv8s
model before improvement, and the second experiment adds
the improved MGhost module and CBAM attention mecha-
nism based on the YOLOv8s model.

The experimental results in TABLE 4 show that the pri-
mary benchmark is constructed based on the YOLOv8s

FIGURE 19. Lightweight model comparison diagram.

model, embedding the CBAM attention mechanism module
into the network. The precision P increases by 2.8%, the
recall rate R rises by 3.4%, and the number of parameters and
GFLOPs decreases by 3.8%, respectively. When embedding
the CPMS attention mechanism in the network, the precision
P increases by 5.7%, the recall rate R increases by 7.3%,
the map rises by 8.9%, and the frame rate per second of
the improved model is much higher than that of the original
model.

In summary, the average accuracy of the improved
algorithm is higher than that of other attention mechanism
modules introduced and shows better index characteris-
tics than the YOLOv8 model. The detection speed of this
algorithm is much higher than that of the YOLOv8 model,
and it can detect 256 frames of images per second, which
can meet the real target of underwater garbage recogni-
tion. Through table analysis, the changed model is named
MGC-YOLO.

To observe the change of index parameters more intu-
itively, this paper combines the improved network model
with the comparison results of the above two models, such
as FIGURE 20, mAP@0.5 in the left represents the average
accuracywhen the IoU value is 0.5, andmAP@0.5:0.95 in the
right represents the average accuracy when the IoU value is
0.5-0.95. From the figure, it is evident that the average accu-
racy of the improved algorithm surpasses that of YOLOv8
significantly. When the algorithm iterates to the 80th round,
the mAP@0.5 rises to about 0.861 and finally stabilizes to
about 0.941, while when the YOLOv8 algorithm iterates to
the 80th round, the value of mAP@0.5 is about 0.822 and
finally stabilizes around 0.853. The model with the CBAM
attention mechanism is also quite different from the improved
CPMS model.

3) HORIZONTAL CONTRAST EXPERIMENT
Comparing the experiments to mainstream object detection
algorithms benchmarks the performance of the enhanced
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TABLE 3. Comparative analysis of lightweight models.

TABLE 4. Comparison of ablation experiments.

FIGURE 20. MAP curve analysis.

YOLOv8 model and the alternative model proposed in this
study. These include highly accurate two-stage detectors,
faster R-CNN, and single-stage detectors such as SSD and
YOLOv5. We are presenting the results in TABLE 5.
The improved YOLOv8 model proposed in this paper

achieves an average accuracy of 94.3%, reducing the number
of model parameters to 9.68m, and its floating-point oper-
ation is 24.8, 256.4 seconds per frame. Compared with the
SSD model, the number of parameters decreased by 16.6 and
37.9, and the mAP_0.5 was also much higher than that of the
SSD model, while the mAP_0.5 increased by 5%. Compared
with the Faster R-CNN model, the number of parameters
and GFLOs of the improved model were much lower than
those of the Faster R-CNN model, the frame rate of FPS was
higher than that of the model, and the FPS was 4.6 higher.
Compared with the YOLO series, the parameter number of
v5 is also much higher than that of the improved model, but
the performance of FPS and mAP_0.5 is not good. Although
there is little difference in the number of parameters between

v8 and v8, its average accuracy mAP_0.5 is lower than that of
the improved model by 8.4%. In summary, the large GFLOP
and larger model size make it less suitable for actual scenario
deployment. The improved model has obvious advantages
over other single-stage detectors regarding mAP_0.5 and
GFLOs indexes. Display the horizontal target detection and
recognition map as shown in FIGURE 21.

In short, the improved model described in this paper main-
tains high detection accuracy and achieves reduced model
size and optimized computational complexity. They are prov-
ing that the enhanced model has better recognition results
than YOLOv5, YOLOv8, Faster R-CNN, and SSD in the
mainstream models. This paper studies the problems of large
model size, recognition accuracy, and deployment difficulties
in underwater foreign body recognition and detection. The
lightweight GhostNet is integrated into the backbone network
to reduce the dimension of the model. In addition, we are
introducing the attention mechanism CPMS for the improved
CBAM. The experimental results show that the enhanced
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TABLE 5. Algorithm comparison test.

FIGURE 21. Different model inspection diagrams.

model exceeds the baseline in most evaluation indicators.
It reduces the model’s size and enhances its generalization
ability without affecting detection accuracy.

4) TARGET DETECTION RESULTS OF DATASET
As shown in FIGURE 22, the PR curve of the model is
displayed. The rate of change in accuracy increases with the
increase in recall. The PR curve of the proposed model is
close to the upper right corner, indicating that the proposed
framework has high recall and accuracy. The area under the
PR curve is relatively large, indicating the model’s good
performance. In addition, the PR curve is smooth, suggesting
a relatively stable relationship between the PR curve and the
relatively large one, indicating that the model’s performance

is good. In addition, the PR curve is also smooth, suggesting
that there is a relatively stable relationship between recall and
accuracy in the improved model.

To directly see the recall and accuracy of the model when
dealing with different behavior characteristics, the experi-
mental results tested by the test set are shown in TABLE 6.

As shown in TABLE 6, the improved algorithm performs
well in the detection data set, and its accuracy can reach
99.9% in biometric identification (bio), with an average
accuracy of 94.3%. However, its recall rate reaches 75.4 in
biometric identification (bio), but the overall recall rate is still
reasonable.Compared with the unimproved YOLOv8 model,
according to the accuracy analysis, the improved plastic the
accuracy analysis, the improved plastic recognition is 8.8%
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TABLE 6. Comparison of ablation experiments.

FIGURE 22. PR curve.

FIGURE 23. Confusion matrix.

higher than the unimproved. The biometric (bio) is 3.49%
higher and 4.8% higher in other categories. The results show
that the improved model can also achieve higher accuracy in
marine foreign body recognition andmore accurately identify

object types. It displays the visualization results of two of
these models in FIGURE 23 and FIGURE 24.

In addition, FIGURE 25 shows the heat map generated
on the ROBAT-Date test set image using the GradCAM

VOLUME 12, 2024 163257



Y. Tang et al.: MGC-YOLO: Underwater Biomimetic Shrimp With Foreign Object Recognition

FIGURE 24. Confusion matrix.

FIGURE 25. Thermal map.

visualization model highlighting vital behavioral characteris-
tics. The prominent orange area in the heat map indicates the

underwater target recognition network’s successful location
of the relevant image features. This visualization consolidates
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FIGURE 26. Test effect diagram.

FIGURE 27. Mobile phone recognition interface diagram and UI function diagram.

the effectiveness of the proposed method in accurately iden-
tifying and highlighting the identification of underwater
foreign bodies.

The above comparative analysis proves that the model
effectively recognizes underwater garbage and can provide
critical environmental detection tasks for the current hard-
ware equipment. As shown in FIGURE 26, the image on the
left is the trained image, and based on verification, the picture
on the right is displayed.

C. UI INTERFACE ANALYSIS
The bionic shrimp accurately controls its rise and fall under-
water, ensuring operations are conducted at different depths
and adapting to changes in varying water depths. At the same
time, it can achieve underwater hovering, hovering stably in
the designated position to carry out maintenance, sampling,
and other tasks. The bionic shrimp can accurately measure
the underwater depth and transmit the depth data to the
mobile phone APP. The mobile phone APP can display the

underwater depth change through a wave graph. This data
visualization method enables the operator to understand the
changing trend of the underwater environment more intu-
itively and provide more accurate information for operation
decision-making. FIGURE 27 (b) below shows the control
interface of the underwater bionic shrimp. It was deployed
on embedded devices to verify the improved model’s actual
performance. Experiments demonstrated that the recognition
accuracy of the enhancedmodel reached 87%, surpassing that
of the comparison model. This indicates that the proposed
improved model is suitable for deployment on edge comput-
ing devices, such as mobile terminals. FIGURE 27(a) shows
the image of the underwater foreign body recognized by the
mobile phone.

V. CONCLUSION
This paper introduces MGC-YOLO, an underwater bionic
robotic shrimp model designed for accurate marine for-
eign body identification, addressing challenges such as
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large memory requirements, object density, and occlusion.
To enhance efficiency, the model replaces part of the stan-
dard convolution in the original feature extraction network
with improved multi-scale ghost convolutions. A lightweight
architecture is also adopted to reduce network complex-
ity and increase computational speed for faster recognition.
Furthermore, the CPMS attention mechanism is integrated
into the network backbone to improve feature extraction
capabilities for behavioral state and location information.
Finally, the model is implemented in a mobile platform to
enable the bionic shrimp to clean identified underwater for-
eign bodies autonomously. However, experimental evaluation
has encountered limitations, mainly due to the dispersion of
objects in the dataset, which poses challenges in achieving
optimal detection on all targets. In addition, the scarcity
of datasets tailored for underwater garbage limits further
improvement and performance enhancement of the model.
Future efforts to enhance system proficiency will require
expanding datasets and continuously improving models. The
subsequent experimental evaluation confirmed the enhanced
ability of our model to recognize small objects, emphasizing
its proficiency and universality in different target types.

The experimental results show that, compared with the
original model, the recognition accuracy, recall rate, and
average recognition accuracy of the improved algorithm are
93.5%, 84.2%, and 94.3%, respectively, and the number
of parameters and GFLOPs are 9.68% and 24.8 respec-
tively. A series of comparative experimental results prove
the improved algorithm’s real-time performance and effec-
tiveness; the enhanced algorithm and the up-and-down speed
of the improved algorithm can reach 50mm/s after deploying
mobile devices. According to the corresponding time of the
garbage identified by themanipulator, the corresponding time
is less than 0.2s, and the delay of underwater information
return is less than 0.2s, which verifies the feasibility and
effectiveness of the model. It has practical application value
for underwater foreign body recognition.
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