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ABSTRACT Many interconnected IoT devices driven by imperatives of efficiency and convenience often
lack adequate security measures, making them susceptible to exploitation by cyber-criminals. Effective
network security necessitates meticulous intrusion detection, which typically involves scrutinizing the
network traffic using deep packet or stateful protocol inspection techniques. However, traditional inspection
methods often require manual feature engineering, which can result in loss of payload information and
thus, false alarms. In this study, a controlled testbed environment is established to capture botnet traffic.
The paper introduces a detection approach that involves converting raw NetFlow data to IDX, short for
‘Index,’ image representations. A hybrid deep learning architecture is designed, integratingVGG19 andGRU
structures to learn the spatial and temporal features, respectively. The detection results show that the proposed
solution achieves 98.883% true positives rate and 0.9% false negatives rate, surpassing conventional anomaly
detection. In addition, an adaptive sliding window technique is introduced for live intrusion detection and
prevention. Through iterative testing and refinement, a runtime of 0.041 ms per image and 0.00171 ms per
packet is achieved, confirming the robust nature of the proposed method.

INDEX TERMS Botnet detection, flow-to-image conversion, intrusion detection, intrusion prevention,
sliding windows, spatial features, temporal features.

I. INTRODUCTION
In today’s interconnected world, security and integrity of
computer networks have become paramount. As organiza-
tions and individuals rely heavily on networked systems
for communication, data sharing, and essential services, the
vulnerability to cyber threats has escalated exponentially.
From large-scale data breaches to sophisticated hacking
attempts, the realm of network intrusions has evolved into a
complex and ever-present challenge [1], [2]. In response, the
field of network intrusion detection has emerged as a crucial
line of defense, aiming to detect and mitigate unauthorized
access, malicious activities, and potential data breaches.

The associate editor coordinating the review of this manuscript and

approving it for publication was Mueen Uddin .

By effectively identifying and responding to network intru-
sions, one can safeguard sensitive information, protect critical
infrastructure, and preserve the trust of network users. This
research endeavors to contribute to the field of network
intrusion detection by addressing the challenges associated
with accurately detecting and mitigating cyber threats in
real-time.

Among the most prevalent and damaging types of network
intrusions is the insidious menace of botnet attacks. A botnet
refers to a network of compromised computers, known as
‘‘zombies’’ or ‘‘bots,’’ controlled remotely by a central
command-and-control (C&C) server. These coordinated
attacks can be orchestrated for various malicious purposes,
such as distributed denial-of-service (DDoS) attacks, man-
in-the-middle (MiTM) attacks, spam dissemination, data
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exfiltration, and even crypto mining [3]. As per the statistics
published by Parachute, botnets were responsible for 51% of
all detected network attacks in 2022 [4]. The severity and
abundance of botnet attacks despite the existing intrusion
prevention infrastructure underscore the need for a robust
network intrusion detection and prevention system capable
of identifying and mitigating these evolving threats.

Traffic classification is an important aspect of botnet
detection [5], [6]. It primarily analyzes specific fields
within traffic packets to determine the likelihood of network
vulnerability or anomalous activity that may pose a threat to
network security. In order to detect and classify the abnormal
traffic, the traffic packets are usually segmented into flows
based on their five-tuple information (i.e., source IP, des-
tination IP, source port, destination port, and protocol) and
timestamp [7]. Presently, the port-based methods, payload-
based methods, and statistical features-based methods are
well-established traffic detection technologies employed
for the identification and analysis of abnormal network
behavior.

The port-based traffic detection method was widely
adopted in the past due to the simplicity of network
protocols and the utilization of fixed port numbers by
specific applications [8]. However, with the advancement
of dynamic port allocation and redirection, the approach
fails to adequately capture the traffic attributes, resulting in
declined detection effectiveness. The payload-based traffic
detection method leverages information from the applica-
tion layer, with deep packet inspection (DPI) technology
being a notable example [9]. DPI involves decrypting and
encrypting transmitted traffic data and effectively identifies
malicious packets [10], [11]. Nonetheless, the growing use
of encryption protocols such as Hypertext Transfer Protocol
Secure (HTTPS) and increasing concerns for privacy have
significantly limited the applicability of DPI. Additionally,
the statistical feature-based traffic detection method relies
on factors such as packet arrival time, packet size, and
statistical characteristics of traffic packet fields to represent
traffic attributes [12]. By employing artificially designed
features and machine learning algorithms, this method offers
relatively reliable techniques for analyzing and detecting
abnormal traffic. However, accurate labeling of traffic data
remains crucial when training supervised algorithms in the
context of this approach.

Previous research has mainly focused on enhancing
classification accuracy and other metrics by operating at the
data link layer. Both traditional machine learning algorithms
and various neural network algorithms in deep learning have
utilized complex feature engineering to extract information
from traffic data. However, feature engineering can lead to
the loss or alteration of original temporal and spatial features
of traffic packets. For example, Yeo et al. [13] extracted
temporal features such as flow inter-arrival time, burst inter-
arrival time, and flow duration, while Yu et al. [14] extracted
temporal features like flow activation time, packet arrival
time, and time interval, as well as spatial features such

as packet number, IP address, and transmission direction.
Although these extracted traffic features enable classification
algorithms to make use of missing data information, the
classification accuracy and other metrics have maxed out,
posing significant challenges for further enhancement.

A. CONTRIBUTIONS
In particular, the paper contributes: i) a traffic handling
approach that eliminates the need for manual feature
engineering and addresses the information loss problem by
working directly with raw NetFlow data and generating
IDX format images, a format designed to store multi-
dimensional arrays, consisting of a header followed by
binary data, ii) an integrated deep learning-based intrusion
detection algorithm that learns the flow features two-fold, and
iii) an adaptive sliding windows-based intrusion prevention
framework that proactively monitors the incoming traffic
and identifies network intrusions in real-time. Beyond the
novelty of the integrated approach which is shown to
outperform existing solutions, the novelty in the constituent
elements includes the introduction of the adaptive sliding
window approach, which enables our system to dynamically
adjust its monitoring window size and type based on
the changing network conditions. Furthermore, our work
introduces a pioneering method for generating IDX format
images from rawNetFlow data, obviating the need formanual
feature engineering and overcoming information loss issues
prevalent in conventional methods. The indexed image format
allows for efficient storage and retrieval of large datasets,
which is crucial for applications like machine learning and
pattern recognition where performance is key. Additionally,
the paper’s contribution extends to the establishment of a
comprehensive testbed, offering a new dataset that will be
made publicly available and can be readily used by the
research community.

It must be noted that the proposed method has the
potential to be leveraged for emerging paradigms, such
as misbehaving source detection in Collective Perception
Message Dissemination for autonomous driving [15]. Such a
system would rely on edge computing nodes, such as RSUs,
to perform real-time detection of misbehaving messages
at the network edge. The conversion to image format is
particularly attractive for such applications, as it allows
the creation of synthetic data for training through the
employment of generative AI approaches [16] which have
been particularly successful for image data.

The remainder of the paper is organized as follows.
Section II details the previous research carried out for
network intrusion detection and prevention using statistical
methods, pattern matching, expert systems, and machine
learning algorithms and the reliability achieved so far.
Section III presents the proposedmethodology and the imple-
mentation details, including the equipment used for setting
up the testbed, data collection procedure, and detection
approach being designed in this research, while Section IV
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discusses the results. Finally, we draw concluding remarks
in Section V.

II. RELATED WORK
Intrusion Detection Systems (IDS) constitute a class of
software tools designed to identify instances of unauthorized
access to computer networks or systems. The concept of IDS
was first introduced by Anderson in 1980, where he empha-
sized the need to develop a threat model to identify types
and sources of potential threats [17]. He categorized threats
as ‘‘internal or external penetrations, and misfeasance’’, and
devised a security monitoring system to detect abnormal user
behavior. Subsequent developments were nicely reviewed
by Axelsson in [18], conducting an extensive survey and
taxonomy of intrusion detection systems, delving into various
aspects, particularly focusing on the principles of detection.

Notable works include the work of Fadlullah et al. in [19]
presenting a novel approach – Detection and TRAceBack
(DTRAB), to counter attacks on encrypted protocols by
utilizing traffic-feature analysis. The paper focused on
developing an anomaly-based IDS using the non-parametric
cumulative sum (CUMSUM) algorithm for strategically
distributed monitoring stubs. DTRAB achieved a 100%
detection rate in detecting individual attackswhen the number
of flows remained below 7, but its performance was observed
to degrade as the number of flows increased, highlighting
a limitation in scalability. Nadiammai and Hemalatha [20]
explored the application of data mining algorithms to
intrusion detection databases, comparing the performance of
various traditional rule and function-based classifiers. The
results indicated that the sequential minimal optimization
(SMO) classification algorithm outperformed others in terms
of accuracy, specificity, and sensitivity, reaching an accuracy
of 97.78% with a detection time of 2.56 seconds. However,
the focus on traditional ML techniques may limit adaptability
to emerging attack vectors and the dynamic nature of today’s
network ecosystem. Gogoi et al. [21] presented a multi-level
hybrid intrusion detection system (MLH-IDS) that combined
supervised, unsupervised, and outlier-based techniques to
improve detection efficiency for both existing and zero-
day attacks. The performance evaluation of MLH-IDS
demonstrated a detection rate ranging from 81.43% for U2R
attacks to 99.99% for DoS attacks. However, the performance
of MLH-IDS is contingent on the quality of input features;
if the feature selection process is not optimized, it may
lead to suboptimal results. Bang et al. [22] utilized LTE
signaling to extract spatial and temporal characteristics of
traffic data in wireless sensor networks. They employed
the semi-Markov model to detect potential attacks. Their
approach was successful in differentiating attack nodes and
maintaining a very low rate of false positives. Nonetheless,
this reliance on LTE signaling limits the applicability of
their method to environments where such infrastructure is
available, potentially excluding many scenarios in diverse
network topologies. Danish et al. [12] introduced a novel

LoRaWAN-based Intrusion Detection System (LIDS) for
jamming attacks. They developed a real experimental testbed,
and trained LIDS on real join request data utilizing two
statistical algorithms: Kullback Leibler Divergence (KLD)
and Hamming distance (HD). Their performance evaluations
based on Receiver Operating Characteristic (ROC) produced
high detection rates, with KLD achieving up to 98% and
HD up to 88%, both with a 5% false positive rate. However,
the reliance on statistical algorithms can lead to challenges
in generalizing results across diverse network conditions
and attack scenarios. Liu [23] proposed a unique approach
for features extraction and encoding from NetFlow data
into NetFlow images using feature correlation analysis
and surrounding correlation (SC) matrix. These NetFlow
images were then utilized as input to the 3-layer CNN
and ResNet18 models, resulting in an accuracy of 93%
and 95.86%, respectively. While this method showcases the
potential of using image representations for network data,
it primarily focuses on static feature extraction, which may
not adequately address the dynamic nature of evolving cyber
threats. Souza et al. [24] proposed a hybrid IDS approach
using a Fuzzy Neural Network. The IDS operated as a host
intrusion detection system and underwent malware detection
tests on three publicly available malware pattern datasets.
Their simulation results demonstrated a striking accuracy of
99.02% with a detection time of 4.03 seconds. However, this
approach may face challenges in scalability and adaptability
in real-time scenarios where rapid response is crucial.

We now shift our focus to Intrusion Prevention Systems
(IPS), exploring the research efforts dedicated to developing
and evaluating methodologies that not only detect unau-
thorized activities but also incorporate preventive measures.
Zoppi et al. [25] proposed an unsupervised anomaly detection
approach using sliding windows for monitoring dynamic IoT
systems. The study explored the limitations and drawbacks
of anomaly detection in systems where the expected behavior
changes over time and conducted a quantitative analysis using
Statistical Predictor and Safety Margin (SPSM) algorithm to
compute adaptive bounds for anomalous activities as well as
K-Means andHistogram-based Outlier Score (HBOS).While
their scores were not as favorable, themethodology employed
in this research holds promise for future investigations
in the field. Moreover, the gap lies in their reliance on
unsupervised techniques, which can struggle with high false
positive rates in highly dynamic environments. Krishna et al.
[26] proposed the utilization of deep learning-based Multi-
Layer Perceptron architecture for immediate classification
of DoS, Probe, R2L, and U2R attacks which resulted in
an accuracy of 91.41%. Additionally, they implemented a
prevention phase using a background script and IPtable that
make decisions based on the classification results. Despite
these advancements, the approach primarily focuses on
immediate classification without adequately addressing the
evolving nature of attack vectors, which may affect long-
term effectiveness. Furthermore, the reliance on a background
script for prevention may introduce latency and is limited
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FIGURE 1. Overall Workflow (a) Preprocessing Pipeline, (b) Intrusion Detection Schematic.

in its ability to adapt to new threats in real time. Later,
in 2021, a game theory-based preventive approach was
proposed by Govindaraj et al. [27] to mitigate DDoS attacks
and ensure network stability. They modeled a system as
a 2-player Bayesian signaling zero sum game, where the
Nash Equilibrium represented optimal strategies for both the
attacker and the system. The results of the study, simulated
on ns3 network simulator, demonstrated an 80% detection
rate, 90% prevention rate, and a false positive rate of 6%.
While this approach provides a novel perspective on DDoS
mitigation, it primarily focuses on a theoretical model, as well
the reliance on game theory can introduce computational
overhead. Baldini and Amerini [28] presented a real-time
algorithm based on a sliding window approach with the
application of Morphological Fractal Dimension (MFD)
for detecting DDoS attacks. They aimed to address the
computational cost associated with existing IDS and explored
the use of MFD. Their results demonstrated a significant
improvement in DDoS attack detection compared to entropy-
basedmethods. In addition, they introduced a novel algorithm
for automatically defining the sliding window size that
achieved a high detection accuracy of 99.30%, outperforming
similar approaches on the same dataset, while maintaining
a fast execution time of 34ms. However, while MFD is
effective for certain patterns of DDoS attacks, it may not
capture the full spectrum of network behavior associated
with different types of intrusions. Kumar et al. [29] proposed
the implementation of a Network-based Intrusion Prevention
System (NBIPS), utlizing the existing Snort framework,
to protect cloud servers and IoT systems from unauthorized
access. The proposed NBIPS, positioned behind a firewall,
acts as a defense mechanism by inspecting network activity

streams, identifying misuse instances, and taking preventive
measures. Their system, installed as either an inline or
passive model, monitors and blocks traffic using signature-
based protocols, thereby preventing attacks on IoT systems.
Their results indicate communication cost minimization up
to 384 bits. While the NBIPS demonstrates effectiveness in
preventing known attacks through signature-based detection,
it may struggle to address emerging threats that do not
match existing signatures. This reliance on pre-defined sig-
natures can leave the system vulnerable to zero-day attacks.
Patil et al. [30] developed an architecture that combines
the Snort IDS/IPS with machine learning to create a robust
and secure system for detecting and preventing attacks in
domestic networks. Their system, named JARVIS, utilized
Random Forest models to detect malicious patterns in
real-time network traffic data. By dynamically updating
Snort rules based on the model’s suggestions, they achieved
resource consumption optimization and improved the sys-
tem’s efficiency. The results showed an accuracy of 97%
in detecting incoming attacks and suggesting deployable
rules through the web interface, enabling effective prevention
of further damage. While JARVIS effectively enhances
detection rates, its utilization of Random Forest models may
limit its capacity to handle adaptive attacks that do not
conform to historical patterns. Yungaicela-Naula et al. [31]
proposed a novel approach using Software-Defined Network-
ing (SDN) to automate detection and mitigation of slow-rate
DDoS attacks. By leveraging SDN’s centralized control and
programmability, their system was configured to conduct
state assessment and to implement blocking mechanisms
to prevent DDoS attacks. The scheme’s effectiveness was
demonstrated through experiments using the live generated
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SDN-SlowRate-DDoS dataset, achieving accuracy ranging
from 91.66% to 100%. Nonetheless, their dependency on a
centralized architecture raises concerns about potential single
points of failure, which could be exploited by attackers to
disrupt the detection and mitigation processes.

We found that most previous research employed shallow
classification models, yielding excellent results when the
feature dimension is small. However, in scenarios with
large datasets and large feature dimensions, the classification
performance is compromised. Furthermore, the existing
landscape of intrusion prevention faces several challenges,
such as high-speed network traffic, complex rule-based
approaches, and a significant number of false alarms.
To address these gaps, this paper proposes a flexible network
intrusions mitigation solution that, in particular, incorporates
live data capture in a realistic network setting, eliminating the
need for prior feature engineering, and ensuring no incoming
packet information is discarded. By prioritizing dynamic
implementation, our proposed scheme leverages a two-fold
detection approach via image-based deep nested classifiers.
We establish real-time evaluation and deployment support
utilizing adaptive sliding windows for efficient handling
of network traffic considering the real-world network con-
straints.We resolve to define a time-efficient adaptivemethod
that relies simply on flow statistics and channel parameters to
determine the optimal window size.

III. METHODOLOGY
This section is structured into two subsections. The initial
subsections provide an extensive overview of our proposed
approach highlighting the testbed and IDS design. The
detailed workflow, including preprocessing stage and IDS
design, is illustrated in Figure 1. The final subsection focuses
on the practical implementation of the proposedmodel within
a dynamic network environment, specifically incorporating
adaptive sliding windows.

A. TESTBED SETUP AND LOCAL AREA NETWORK
CONFIGURATION
A testbed is elemental in facilitating extensive experiments
and evaluations in the field of network testing and anal-
ysis. The objective is to establish a setting that emulates

FIGURE 2. Ping test: Network accessible.

real-world networking scenarios while enabling controlled
experimentation. In this research work, we design a compre-
hensive testbed configuration that comprises a) four personal
computers (PCs) and b) twelve PCs to be used as bots,
along with a Fast Ethernet Switch, a Raspberry Pi module,
and a mobile workstation functioning as a Command &
Control (C&C) server. The PCs are strategically connected
to the Ethernet Switch via Cat 6 Ethernet cables to ensure
seamless communication and dependable data transmission.
This connection configuration ensures that all bots are within
the same local network connectivity, facilitating network
traffic flow as validated by Figure 2. For the performance
evaluation of the proposed schemewe have opted for a testbed
implementation, which better demonstrates the amenability
for real deployment and in addition offers to the research
community a new data set for further exploitation.

However, it is important to acknowledge that practical
scenarios might involve bots located in different net-
work environments or distributed geographically, potentially
encountering network congestion. The testbed operations
are largely dependent on the C&C server, which plays a
pivotal role in orchestrating network attacks. To address
concerns regarding high availability and potential single
points of failure, we have implemented failover clustering
and data replication mechanisms in the C&C server’s
configuration. Failover clustering allows us to maintain a
standby C&C server that is continuously synchronized with
the primary server. In the event of a failure, the standby server
can quickly take over operations with minimal downtime.
Additionally, data replication ensures that all operational data
is continuously updated between the primary and secondary
servers, minimizing the risk of data loss during a failover.
This enhancement not only improves the resilience of the
system but also ensures continuous operation in real-world
scenarios.

Furthermore, the integration of the Raspberry Pi device
with the central switch provides the advantage of real-time
capture of network traffic data, further enhancing the
effectiveness of our testbed in simulating various network
conditions.

B. MALICIOUS TRAFFIC GENERATION AND CAPTURE
Once the testbed is configured, the next stage is to generate
and capture malicious network traffic. We designed a
systematic scheme to launch network attacks from the C&C
server and subsequently capture the generated malicious
traffic using Wireshark, installed on the Pi module. A set of
nine distinct attacks, namely: Ping of Death, ARP Spoofing,
SYNFlood, UDP Flood, HTTP Flood, Rudy, TCP SYNScan,
TCP Connect Scan, UDP Scan, are employed to simulate
various forms of network intrusions.

It is important to note that we simulated each attack
in bursts of 12 packets without presetting the inter-arrival
time between requests to create a manageable yet impactful
test scenario, except for the Rudy attack, which featured
headers sent with an inter-arrival time of 5 seconds between
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Algorithm 1 Flow-to-Image Conversion
Input: PCAP files
Output: IDX format images
1: Step 1: Get flows of 24 packets each
2: for each PCAP do
3: Initizalize lists: pkts = [ ], flows = [ ]
4: Read Ethernet packets
5: for each packet do
6: Packet Sanitization:Mask src & dst IP and MAC address
7: Hex-to-Byte: Convert hexadecimal packet information into byte sequence
8: if packet size < 384 bytes then
9: Zero-pad the packet to adjust length

10: else if packet size > 384 bytes then
11: Truncate the packet to adjust length
12: end if
13: pkts← packet
14: end for
15: for i from 0 to len(pkts)− 1 with step size 24 do
16: flows← packets in pkts from index i to i+ 24
17: end for
18: for each flow in flows do
19: if flow size < 24 then
20: Pad flow with [bytes([0])× 384] repeated (24−flow size) times
21: end if
22: Vectorize: Reshape flow to 384× 24-dimensional array
23: end for
24: end for
25: Step 2: Transform each flow into IDX image
26: for each flow in flows do
27: Write IDX header
28: Write 9, 216-dimensional flow to IDX data field
29: end for

slow HTTP requests. The choice to send 12 × 4 packets or
12 × 12 packets in quick succession from both the four-bot
and twelve-bot configurations, with no intentional delay,
aimed to overwhelm the target and quickly saturate the traffic
levels typically observed in real botnet attacks. This approach
allows us to evaluate how rapidly and effectively our intrusion
detection system can respond to resource exhaustion tactics,
providing insights into its performance under stress.

C. DATA PREPROCESSING
Preprocessing is an essential aspect in the preparation of
network traffic data for subsequent analysis and classifica-
tion. The preprocessing stage involves multiple steps that
aim to transform the raw network traffic data into IDX
format image representation. Unlike conventional methods
that use feature engineering, our approach preserves all the
inherent feature information present in each packet. This
eliminates the need for filtering or manual extraction of
specific traffic features. Our preprocessing pipeline, outlined
in Algorithm 1, begins with packet sanitization wherein
we anonymize the sensitive information fields (such as,

the source and destination MAC and IP addresses) in the
Data Link and Internet Protocol Layers. Upon examining
the network traffic packets in Wireshark (as shown by
the sample in Figure 1a), it could be observed that the
information is reserved in hexadecimal codes. We convert
these hexadecimal streams into bytes sequences. Next,
we adjust the packet size and extract 384 bytes including
the Application Layer (i.e., payload information) from each
packet to ensure uniformity and maintain a balance between
performance and computational efficiency. After certain
trails, we have come to the conclusion that this selection
allows us to capture essential features of the traffic while
minimizing the processing load on our system. To achieve
this, we zero-pad the packets less than 384 bytes and truncate
those longer than 384 bytes, thereby standardizing the input.
Finally, we combine a set of 24 packets as one flow and
vectorize the bytes sequences into a 384 × 24 = 9,
216-dimensional feature vector. This approach facilitates
efficient processing and classification while still capturing
significant data characteristics. The next step is to generate
2D IDX images from bytes-type feature vectors. The IDX
file format has the capacity to represent multidimensional
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numerical arrays, thus rendering it suitable for storing image
data. Finally, we generate IDX header and pack the traffic
data in IDX format to be used for training. It is important to
mention that prior to training, the feature vectors are reshaped
into 96× 96 8-bit unsigned integer arrays.

D. INTRUSION DETECTION PIPELINE
We develop a nested classification scheme integrating
Convolutional Neural Network (CNN) and Recurrent Neural
Network (RNN). The convolution operation of CNNs stands
out in spatial perception and image recognition tasks.
In network environments, traffic packets often fragment
during transmission, whereby these fragments look like IP
packets. The IP field of each packet carries significant spatial
characteristics related to the flow. Therefore, recognizing
the importance of spatial attributes, the first block of our
nested classifier employs the CNN architecture to extract
spatial features. Further, the second layer of our classifier is
based on the RNN architecture to extract temporal features
of the flow. The recurrent connections of RNN are notable
in capturing temporal dependencies in sequential data. In the
context of network traffic, the flow of traffic packets adheres
to a particular chronological order, while their arrival at
the receiving end is influenced by delays, giving rise to a
distinct sequence. At the same time, the number of traffic
packets transmitted within a specified timeframe displays
variation, and these attributes together indicate the existence
of temporal characteristics. The details of our convolution and
recurrence stacks are summarized below.

FIGURE 3. VGG19 Architecture.

1) CNN MODEL
We utilize a pretrained VGG19 model as our CNN-based
spatial feature extractor. The VGG19 model, illustrated in
Figure 3, is composed of a series of convolutional layers, fol-
lowed by max-pooling layers. This architecture is renowned
for its depth, consisting of 19 weight layers, hence the name
VGG19. The convolutional layers use small receptive fields
(3× 3) with a stride of 1, and padding is applied to maintain
spatial resolution. This design choice enables the model to
learn complex spatial features while keeping the number of
parameters manageable. After each convolutional layer in
VGG19, a rectified linear unit (ReLU) activation function is
applied. This activation function, defined in Eq. 1, introduces

non-linearity into the network, enhancing its ability to capture
complex patterns. The convolution operation itself involves
sliding 3 × 3 filters, ω, over the input feature map, denoted
as x, and performing element-wise multiplication. The bias
term, b, is then added, and the resulting values are passed
through the activation function, which yields the output of
the convolutional layer, as given in Eq. 2.

f (x) = max(0, x) (1)

y = f (ω ∗ x + b) (2)

Subsequently, max-pooling layers are inserted periodi-
cally within the VGG19 architecture to reduce the spatial
dimensions of the feature maps while preserving impor-
tant information. Max-pooling involves dividing the input
feature map into non-overlapping regions and selecting the
maximum value within each region. This downsampling
operation aids in capturing translation invariance and reduces
the computational load. In summary, the model’s output
functions as a feature map, which encodes the high-level
spatial information obtained from the NetFlow images.

FIGURE 4. GRU Architecture.

2) RNN MODEL
We utilize the Gated Recurrent Unit (GRU) architecture
as the RNN-based temporal feature extractor due to its
inherent computational efficiency compared to other RNN
configurations like LSTMs. This is crucial for our applica-
tion, as accelerated processing of network traffic is essential
for effective intrusion detection. The GRU cell, depicted
in Figure 4, consists of multiple recurrent layers, each
comprising a series of recurrent neurons. The primary
concept underlying the GRU architecture is the integration
of gating mechanisms, which enable selective retention or
updating of information within the hidden state. This would
allow our model to dynamically adapt to evolving network
traffic patterns, making it more robust and resilient to novel
attacks in the long term. The gating mechanisms in the GRU
control the flow of information within the recurrent layers by
utilizing an update gate and a reset gate, as given by Eq. 3
and 4, respectively.

zt = σ (Wz ⊙ [ht−1, xt ]+ bz) (3)

rt = σ (Wr ⊙ [ht−1, xt ]+ br ) (4)

Here, xt represents the input at time step t , ht−1 denotes
the previous hidden state, W denotes the weight matrices,
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and b denotes the bias vectors. The sigmoid function (σ )
is used to evaluate the gates, and ⊙ signifies element-
wise multiplication. The hidden state, as defined in Eq. 5,
is updated at each iteration based on the outputs of the
gates and the input. The inclusion of the hyperbolic tangent
function (tanh) introduces non-linearity, enabling the GRU
model to capture complex relationships within the data.

ht = (1− zt )⊙ ht−1 + zt ⊙ tanh(Wh · [rt ⊙ ht−1, xt ]+ bh)

(5)

In the context of our nested classifier, the GRU model
receives feature maps extracted by the VGG19 network.
By sequentially processing these feature maps through
the recurrent layers, the GRU model effectively captures
temporal patterns in the network traffic data. This capability
allows the model to detect abnormalities and make informed
decisions based on the temporal characteristics of the traffic.

E. INTRUSION PREVENTION FRAMEWORK
Intrusion prevention is a critical aspect of network security,
aiming to mitigate potential threats before they compromise
a system or network. It extends the implementation of an
IDS without sanitizing the packets so as to actively prevent
unauthorized access, attacks, and malicious activities that
could jeopardize the confidentiality, integrity, and availability
(CIA) of network resources. Our proposed solution for
real-time intrusion prevention, highlighting key components
and effective safeguarding strategies, is presented next.

1) ADAPTIVE SLIDING WINDOWS APPROACH
We propose an adaptive sliding window approach that
accommodates two types of windows: content-based and
time-based. Content-based windows are utilized when the
traffic volume exceeds a predefined threshold and focus on
smaller subsets of traffic data, facilitating real-time analysis
and prevention of attacks based on packet content. Time-
based windows capture a larger time span of network
traffic data, enabling identification of anomalies or malicious
patterns over a defined period. The decision to employ a
content-based or time-based window is dynamically taken
based on the rate of incoming traffic and the volume of
data. If the traffic rate exceeds a threshold, the system
automatically transitions to content-based windows, ensuring
timely analysis. Conversely, if the traffic rate falls below the
threshold, time-based windows are employed, providing a
broader context for packet inspection. This dynamic window
selection optimizes resource utilization and enhances the
effectiveness of the Intrusion Prevention System (IPS).

Within each sliding window, the proposed intrusion pre-
vention solution, placed right after the firewall, incorporates
the intrusion detection system previously trained on a large
database of benign andmalicious traffic, and makes decisions
in real-time as illustrated in Figure 5.

However, in a real-world implementation of an IPS using
adaptive sliding windows, network bandwidth limitations,

FIGURE 5. IPS workflow.

computational resource availability, and latency concerns
need to be addressed. For this purpose, we employ quality
of service (QoS) mechanisms to prioritize traffic and
allocate sufficient bandwidth to the IPS. The underlying
detection algorithms and processing workflows are ensured
to be flexible, minimizing latency and ensuring real-
time analysis. Computational resources, including CPU,
memory, and buffer storage, are allocated adequately based
on the expected traffic volume. By implementing these
strategies, our proposed IPS solution operates optimally
within our testbed environment, providing robust intrusion
prevention.

2) CONTINUOUS TRAFFIC MONITORING & ALERTING
The proposed solution incorporates a comprehensive continu-
ousmonitoring and alerting feature, which plays a crucial role
in facilitating real-time threat detection and ensuring timely
response to potential security breaches. Initially, all incoming
traffic is processed by our pretrained intrusion detection
system. When the IDS detects any malicious activity,
it promptly triggers an alert by initiating a notification
process. We define an altering function that establishes a
connection to the Windows Event Log and creates a custom
event entry. Upon detecting abnormality in the incoming
traffic profile, it generates an alert with the specified event
type, event ID, message, and source. The alert is meticulously
crafted to deliver precise and detailed information about the
detected intrusion, including the source IP, destination IP, and
attack type.

Furthermore, all alerts are logged for future reference,
providing a historical record that can be reviewed dur-
ing incident investigations or for compliance purposes.
In the future, we plan to leverage this logged data to
develop a reinforcement learning framework aimed at
enhancing our current intrusion detection and prevention
pipeline.

IV. EXPERIMENTATION AND EVALUATION
The section presents experimental results of our proposed
intrusion detection solution using machine learning-based,
(i) binary classification, and (ii) multi-class classification of
the network traffic.
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A. IMPLEMENTATION DETAILS
We train our classifiers on a compute engine consisting of
an Intel Xeon CPU operating at 2.20 GHz and equipped
with 2 vCPUs and 13 GB of RAM, alongside an NVIDIA
T4 GPU with 16 GB of VRAM. We begin by simulating
botnet traffic using the testbed described in section III-A and
then transform the traffic flows into images as per the pre-
processing pipeline described in section III-C. These images
are then fed into the nested classifier, which seamlessly
integrates the robustness of a pretrained VGG19 model with
the dynamic adaptability of a GRU architecture. Detailed
analysis regarding the classifier’s training performance is
presented below.

1) MULTI-CLASS CLASSIFICATION
For multiclass classification, we use our live captured traffic
dataset comprising nine distinct network attacks and one
normal traffic profile, resulting in a total of 10 classes. The
training parameters include the Mean Squared Error (MSE)
as the loss function, the Root Mean Squared Propagation
(RMSprop) as the optimization algorithm, and a learning
rate of 0.001 at a momentum of 0.5. The training is
conducted on a total of 0.175M images, organized into
batches of 64, and iterated over 30 epochs. With each epoch
consisting of 2734 iterations, the training phase continues
for 28.57 hours and concludes with an impressive training
accuracy of 99.8276% and a minimal MSE loss of 0.0841.
The learning curves, depicted in Figure 6, illustrate the steady
convergence of the training process. Notably, the validation
process closely aligns with the training curve, reaching a
peak accuracy of 99.6324%. With the highest validation loss
of 5.9893 during the first epoch, the classifier manages to
minimize it up to 0.0324 at the end of 30th epoch. These
findings suggest the absence of overfitting and highlight the
classifier’s generalizability. It is worth mentioning that these
results are achieved by resizing the input images from their
original dimensions of 96 × 96 × 3 to conform to the input
size requirement of the VGG19 model i.e., 224× 224× 3.

FIGURE 6. Learning curves for multiclass classification.

2) BINARY CLASSIFICATION
We also investigate the performance of our proposed
detection model from a simpler perspective by reducing
the problem into a binary decision, distinguishing between

FIGURE 7. Learning curves for binary classification.

network attacks and normal traffic. We partition our live
captured dataset into two distinct classes: one representing
network attacks and the other representing normal traffic. The
parameters defined for the binary training process include
the Binary Cross Entropy (BCE) as the loss function, the
Adam optimization algorithm, and a learning rate of 0.003.
A total of 70k images undergo training, organized into
batches of 48, and iterated over 75 epochs. Each epoch
comprises 1459 iterations, allowing the classifier to learn
effectively from the dataset and generate accurate predictions.
The training phase extends over a duration of 21.86 hours,
yielding a remarkable training accuracy of 99.3750% and
a negligible binary cross entropy (BCE) of 0.1369. The
learning curves showing the model’s performance in terms
of accuracy and loss, illustrated in Figure 7, demonstrate
the consistent convergence of the training process similar to
the multiclass classifier. Additionally, the validation curves
closely parallel the trajectory of the training curve, achieving
a peak accuracy of 99.0623% and a minimal entropy loss of
0.1357. These insights indicate the absence of overfitting and
emphasize the classifier’s ability to generalize effectively to
unseen data.

B. TESTING AND EVALUATION
We evaluate the multi-class classifier on 37.5k unseen images
with each class in the test set consisting of a total of
3750 images. The model exhibits very good performance,
with an evaluation time as low as 0.17ms per image and
an accuracy of 99.5982%. Similarly, we evaluate the binary
classifier on 15k unseen images with each class in the
test set consisting of a total of 7500 images. The binary
classification model also exhibits very good performance,
with an evaluation time as low as 0.041ms per image and an
accuracy of 99.6145%.

Additionally, we evaluate the performance of both classi-
fiers on the basis of four key indicators: True Positives (TP)
representing correctly identified traffic flows belonging to
the specific class, True Negatives (TN) indicating correctly
identified traffic flows that do not belong to the class, False
Positives (FP) corresponding to the traffic flows incorrectly
classified as belonging to a class, and False Negatives (FN)
representing the traffic flows incorrectly classified as not
belonging to the class. Based on these indicators, we leverage
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TABLE 1. Performance metrics for multiclass classification.

TABLE 2. Performance metrics for binary classification.

the measures of False Positive Rate, False Negatives Rate (or
Specificity), Precision, Recall (or Sensitivity), and F1-score
(calculated using Eq. 6–10, respectively) to comprehensively
benchmark our IDS. We aim to minimize FPs and FNs to
achieve accurate intrusion detection while reducing false
alarms and missed intrusions. The performance evaluation
metrics, summarized in Table 1 and 2, provide an inclusive
and quantitative assessment of the model’s generalizability
across multi-class and binary classification scenarios.

FPR =
FP

FP+ TN
(6)

FNR =
FN

FN+ TP
(7)

Precision =
TP

TP+ FP
(8)

Recall =
TP

TP+ FN
(9)

F1-score = 2×
Precision× Recall
Precision+ Recall

(10)

1) PERFORMANCE BENCHMARKING AGAINST
STATE-OF-THE-ART
Further, we compare our model’s performance by bench-
marking it against some state-of-the-art methods for NIDSs
that use machine learning or deep learning, such as CNN +
ResNet18 [23], MLP [26], CNN [32], SVM [33], ViT [34],
DBN [35], DBN + KELM [35], LeNet-5 + LSTM [36],
and SAE + SVM [37]. Each classifier is trained on the
raw net-flow data for multi-class classification and evaluated
in terms of accuracy, precision, recall, false positives rate,
and evaluation time per packet. The results are listed in
Table 3. It can be observed that our method using VGG19
and GRU architecture for two-fold spatial and temporal

feature extraction outperforms all the other methods across
all metrics examined.

Moreover, to validate the generalizability of our detection
model, we conduct additional evaluations using one of the
widely popular open-source datasets, CIC-IDS2018 [38].
The results obtained from this evaluation further reinforce
the efficacy of our approach, demonstrating promising
performance on a diverse set of network attacks. On top
of that, we also compare our results with state-of-the-art
methods, documented in Table 3. It could be observed that
our classifier demonstrates superior performance over all the
other methods in terms of precision, recall, false positives
rate, and evaluation time per packet, except for the accuracy
which falls short by 0.00312% compared to SVM’s accuracy.

2) PACKET VOLUME VS. PERFORMANCE TRADE-OFFs
After conducting various preliminary experiments, we iden-
tified that both packet size and flow size significantly affect
computational efficiency and the detection rates of our
hybrid classification. We determined an optimal packet size
of 384 bytes and a count of 24 packets per flow based
on empirical trials, which demonstrated that this volume
effectively captures essential traffic features while balanc-
ing computational efficiency and detection performance.
We observed that smaller packet sizes tend to miss critical
contextual information needed for accurate detection, while
excessively large packet or flow sizes can lead to increased
processing times without substantial gains in performance.
Table 4 and 5 provide a comprehensive overview of the
trade-offs associated with different packet sizes and flow
sizes, highlighting how these parameters influence the size
of feature vector, accuracy, precisiom, recall, and runtime.
These insights not only contribute to the understanding of
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TABLE 3. Performance analysis of state-of-the-art ML algorithms.

TABLE 4. Trade-offs in flow size and performance with a fixed packet size of 384 bytes.

TABLE 5. Trade-offs in packet size and performance with a fixed flow size of 24 pkts.

impact of packet volume on performance but also guide future
designs of intrusion detection systems.

C. LIVE INTRUSION PREVENTION EVALUATION
Once we have the trained model, we evalute it in real-time
as an intrusion prevention system. First, we optimize
various network properties to enhance the effectiveness and
efficiency of the system. We allocate a substantial buffer
capacity within the network infrastructure, enabling efficient
handling and processing of incoming packets. This larger
buffer size allow us to minimize packet loss and ensure
comprehensive analysis for intrusion detection purposes.
Additionally, we ensure sufficient bandwidth availability,

enabling the timely transmission of packets to the intrusion
detection system. This facilitates real-time analysis, allowing
for quick decisions. We conducted extensive performance
evaluations under varying conditions:

1) ATTACK LOAD VARIATIONS
To assess the robustness of our intrusion prevention system,
we tested it under different attack loads categorized as low,
medium, and high intensities, with low intensity defined as a
sustained rate of 12–24 packets per second (pps) simulating
light network traffic, medium intensity involving an increase
to 24–64 pps representing a more aggressive attack environ-
ment, and high intensity simulating extreme conditions with

VOLUME 12, 2024 160663



R. Saeed et al.: Proactive Model for Intrusion Detection Using Image Representation of Network Flows

FIGURE 8. Detection rates under different attack loads.

rates exceeding 100 pps. The results, presented in Figure 8,
illustrate the detection rates (DR) achieved by our model
under these varying attack intensities for both the four-bot
and twelve-bot scenarios. While some fluctuations in DRs
can be observed, the rates remained consistently high across
all attack types. Notably, the lowest DR is recorded at 97.5%
in case of medium intensity UDP flood attack from 12-
bot configuration, indicating that even under minimal attack
conditions, our proposed system effectively identified the
intrusion.

2) BACKGROUND TRAFFIC CONDITIONS
As another evaluation dimension, we examined our model’s
performance under varying background traffic conditions,
which encompass the legitimate network traffic that occurs
alongside potential botnet activity. To replicate real-world
scenarios, we introduced different volumes and types of
legitimate traffic, including typical user interactions, web
browsing, and application data transfers. This allowed us
to analyze and assess how background noise impacts the
detection capabilities of our system and the timeliness
of alert generation. The results, illustrated in Figure 9,
highlight the effectiveness of our approach across various
background traffic volumes for both the four-bot and twelve-
bot scenarios. Under the four-bot attack and low background
traffic conditions (50-200 pps), our model achieved DRs of
as high as 99.90% for ARP spoofing attack and as low as
96.40% for UDP flood attack. As we increased the traffic
to moderate levels (500 pps), the DR ranged from 86.80%
for rudy attack to 94.90% for SYN flood attack. Even

FIGURE 9. Impact of varying background traffic volume on detection
rates.

under high background traffic conditions (1000 pps), our
system maintained DRs between 84.93% for TCP connect
scan attack and 91.21% for UDP scan attack. These results
demonstrate that while the introduction of legitimate traffic
introduced some challenges, our model consistently managed
to identify threats effectively.

3) REAL-TIME PERFORMANCE AND INCIDENT RESPONSE
We also examined how our adaptive sliding window approach
enhances real-time performance and incident response capa-
bilities within the intrusion prevention system. The dynamic
switching between content-based and time-based windows
is crucial for optimizing detection efficiency. We set a
traffic rate threshold of 250 pps to dictate this transition:
when incoming traffic exceeds this threshold, the system
activates content-based windows for detailed packet analysis.
Conversely, when traffic falls below this threshold, time-
based windows are employed, providing a broader context
for monitoring potential threats. By minimizing background
processes leading to latency, we ensure that packets are
processed into IDX images and analyzed without significant
delays, resulting in near real-time detection of intrusions.
These optimizations, including buffer capacity, bandwidth
allocation, and latency reduction, collectively contribute to
the successful outcomes of our live intrusion prevention.
Figure 10 shows snapshot of the IPS operating in real-
time. To facilitate effective incident response, we further
implement a robust real-time alerting mechanism within
our live intrusion detection system. Whenever potential
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FIGURE 10. Real-time incident response.

intrusions are detected, our system promptly generates alerts
by establishing a connection to the Windows Event Log.

V. CONCLUSION
In this paper, a network intrusion detection and prevention
engine is presented to analyze and classify network traffic
data by transforming raw NetFlows into images. We propose
a deep nested architecture leveraging a pretrained VGG19
and a GRU network to learn spatial and temporal features of
the flow. Our spatial feature extractor, based on the concept
of transfer learning, and the temporal feature extractor,
utilizing the gating mechanism is significantly better in
terms of processing time and resource utilization than other
network intrusion detection models. In this paper, we use
real-world traffic data captured in a controlled environment
employing adaptive sliding windows. The experimental
results demonstrate the superior performance of the proposed
approach in terms of accuracy, precision, recall and F1-score,
accomplished in both binary and multi-class classification
scenarios.

In the future, we plan to expand our testbed to include
a larger number of bots and to incorporate other security
vulnerabilities beyond network intrusions, such as phishing,
spyware, and ransomware. As part of this extension, the
scalability of the proposed scheme in terms of increasing
penetration of IoT devices in real experiments will also be
the topic of near future research activities. We will also
simulate secured environments to evaluate the impacts of
firewalls and data encryption, utilizing current findings as a
baseline to establish a solid reference point for evaluating
our model’s adaptability to these secured environments.
Furthermore, we aim at investigating the application of
various image processing techniques, such as image filtering,
image compression, local binary patterns (LBP), and Fourier
transform, to assess the performance of the model trained on
manipulated flow images.
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