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ABSTRACT In Natural Language Processing, creating training data for question answering (QA) systems
typically requires significant effort and expertise. This challenge is amplified in few-shot scenarios where
only a limited number of training samples are available. This paper proposes a novel pretraining framework
to enhance few-shot question answering (FSQA) capabilities. It begins with the selection of the Discrete
Reasoning Over the Content of Paragraphs (DROP) dataset, designed for English reading comprehension
tasks involving various reasoning types. Data preprocessing converts question-answer pairs into a predefined
template, consisting of a concatenated sequence of the question, a mask token with a prefix, and the context,
forming the input sequence, while the target sequence includes the question and answer. The Question-
Answer Replacement and Removal (QARR) technique augments the dataset by integrating the answer into
the question and selectively removing words. Various templates for question-answer pairs are introduced.
Models like BART, T5, and LED are then used to evaluate the framework’s performance, undergoing further
pretraining on the augmented dataset with their respective architectures and optimization objectives. The
study also investigates the impact of different templates on model performance in few-shot QA tasks.
Evaluated on three datasets in few-shot scenarios, the QARR-T5 method outperforms state-of-the-art FSQA
techniques, achieving the highest F1 scores of 81.7% in 16-shot and 32-shot, 82.7% in 64-shot, and 84.5%
in 128-shot on the SQuAD dataset. This demonstrates the framework’s effectiveness in improving models’
generalization and performance on new datasets with limited samples, advancing few-shot QA.

INDEX TERMS Natural language processing, few-shot question answering, pretraining framework,
generative question answering models.

I. INTRODUCTION
The task of Question Answering (QA) has been a prominent
focus in the field of Natural Language Processing (NLP),
where substantial progress has been made in leveraging large
datasets to train sophisticated models. These models, when
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provided with ample training data, often exhibit impressive
performance in generating accurate answers based on given
questions and context. However, the practical application
of QA systems encounters a significant challenge when the
available dataset is limited to only a few samples.

Traditional QA models, which excel in scenarios with
abundant training data, struggle to maintain their effective-
ness in situations where only a handful of examples are
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available. This issue has prompted research into Few-Shot
Question Answering (FSQA), a specialized subset of Few-
Shot Learning. FSQA specifically addresses the challenges
associated with QA tasks when confronted with a scarcity of
training data. Existing work in the broader domain of QA
has primarily focused on optimizing models for scenarios
with abundant data, often overlooking the unique challenges
presented by situations with limited samples. Studies have
illustrated a notable drop in the performance of models such
as SpanBERT when transitioning from a large dataset to a
few-shot setting.

In response to these challenges, this paper delves into
the domain of FSQA, recognizing the need for models that
can effectively answer questions even when provided with
only a limited number of samples for training. This research
introduces the Question-Answer Replacement and Removal
(QARR) method, a novel technique designed to increase the
number of effective training datasets. The proposed technique
enhances the model’s performance by inferring missing
information and completing the questions using contextual
information, thereby addressing gaps in the datasets and
improving the quality of the training process. Additionally,
this paper explores the impact of using different templates
for the target and input data. By experimenting with various
template structures, this study shows how different templates
can influence themodel’s performance on the task of few-shot
question answering.

The contributions of this research are as follows:
• Introduction of a pretraining framework that generalizes
well and achieves good performance on new datasets
with limited samples.

• Proposal of the QARR technique to improve model
performance by inferring missing information and com-
pleting question sentences using contextual information.

• Investigation of the impact of different templates for the
target and input data to enhance model understanding in
few-shot question answering.

• Evaluation of the proposed method on three different
generative models and datasets, showing superior per-
formance in few-shot scenarios (16-shot to 128-shot).

II. RELATED WORKS
In the pursuit of advancing the field of QA, researchers
have explored a myriad of approaches, methodologies,
and frameworks. This section provides a literature review
in QA, encompassing diverse techniques ranging from
bidirectional language models to knowledge-driven question
answering. The exploration covers various aspects, including
semi-supervised learning, generative prompting, knowledge
enhancement, and few-shot learning strategies. Each method
is examined in terms of its underlying principles, experimen-
tal setups, datasets used, and the achieved results.

Patel et al. [1] introduced a technique known as Sequential
Autoregressive Prompting (SAP) that utilizes a bidirectional
model for prompting. The bidirectional model employed
is mT5, a variant of the T5 model pretrained on multiple

languages. To address mT5’s tendency to generate partial
sentence outputs, SAP implements a generation stop when
a stop token </s> is encountered. For enabling longer
generations, the first word generated is concatenated with
the last line, and this concatenated line is utilized in the
subsequent step. In the context of question answering,
the authors conducted a comparative study with XGLM
using a multilingual dataset called XQuAD. The proposed
method achieved a notable 14.6% exact match (EM) and
a 37.3% F1 score in the zero-shot setting on the XQuAD
dataset. Furthermore, a comparison was made with T5+LM
using the English-only SQuAD v1.1 dataset. In the zero-
shot setting, the proposed method outperformed T5+LM,
recording results of 30.2% EM and 54.0% F1 score. In the
16-shot setting, it demonstrated a 60.0% F1 score and a
35.4% EM. These results underscore the effectiveness of
the proposed method in generating short span answers,
showcasing adaptability beyond its original design for
producing long generations in machine translation tasks.

Dhingra et al. [2] proposed an extractive question answer-
ing model that requires input in the form of base documents
and a few labeled examples. The base documents themselves
do not have any labels. The initial step involves constructing
cloze-style questions from the base documents, which are
then used to pretrain a neural network model. The labeled
examples are used for fine-tuning the pretrained model. For
the generation of cloze-style questions, the first 20% of
the text is defined as the introduction, while the remaining
portion is considered the summary. An exact string match
between the introduction and summary is selected as an
answer span if the sequence fulfills specific requirements,
such as being a verb phrase, noun phrase, named entity,
or adjective phrase. Experiments were conducted using three
datasets: the SQuAD dataset, the TriviaQA dataset, and
the BioASQ 5b dataset. In these experiments, 10% of the
questions were reserved for the testing set. The proposed
method achieved a 50.42% F1 score on the SQuAD dataset
and a 55.21% F1 score on the TriviaQA dataset by using
only 1% of the training set for both datasets. Additionally,
the method achieved a 23.0% F1 score on list questions
of the BioASQ 5b dataset using a 5-fold cross-validation
setting.

Chen et al. [3] introduced a new framework called Gener-
ative Prompt-Based Data Augmentation (GOTTA) to harness
the power of prompt-tuning. This framework augments the
training data with cloze-style questions, allowing the model
to better understand the original questions. The augmentation
process involves three steps. First, tokens to be masked are
identified by extracting text spans recognized as Wikidata
entities. Prompt data is then constructed using a designed
template and the masked tokens. Next, the created prompt
data is fed into a pre-trained BART model alongside the
original QA training samples. Experiments were conducted
as part of the Machine Reading for Question Answering
(MRQA) 2019 shared task. The results demonstrated F1
scores of 57.8% on the SQuAD dataset, 40.8% on the
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TriviaQA dataset, 47.1% on the NaturalQuestions dataset,
36.2% on the NewsQA dataset, 41.8% on the SearchQA
dataset, 45.9% on the HotpotQA dataset, 55.2% on the
BioASQ dataset, and 20.5% on the TextbookQA dataset.

Wang et al. [4] presented a novel framework known as
Knowledge Enhanced Contrastive Prompt-Tuning (KECP).
This framework transforms the task of predicting the start
and end positions of answer spans into a non-autoregressive
Masked Language Modeling (MLM) generation problem
using a specifically designed template mapping. To aggregate
knowledge from multiple resources and incorporate it into
the input embeddings of the query prompt, the authors
introduced a Knowledge-aware Prompt Encoder (KPE).
This step enhances the model’s understanding of the query.
Additionally, the model filters out negative spans that bear
a similarity in semantics to the correct answer, effectively
discarding potentially confusing or misleading negative
predictions. In their experiments, the authors achieved an
impressive F1 score of 75.45% on the SQuAD2.0 dataset
using only 16 training samples.

Chada and Natarajan [5] devised a framework that aligns
fine-tuning with the same objective as pre-training. This
approach aims to bridge the gap between the pre-training
and fine-tuning phases that often leads to performance degra-
dation. By aligning the fine-tuning phase, the knowledge
acquired during pre-training can be optimally utilized. The
authors designed a template for input and output. They
conducted experiments as part of the MRQA shared task,
and the proposed framework achieved notable F1-score
performances: 55.5% on the SQuAD dataset, 50.5% on the
TriviaQA dataset, 46.7% on the Natural Questions dataset,
38.9% on the NewsQA dataset, 39.8% on the SearchQA
dataset, 45.1% on the HotpotQA dataset, 49.4% on the
BioASQ dataset, and 19.9% on the TextbookQA dataset, all
in a 16-shot setting.

Castel et al. [6] proposed a decoding method called exact-
extract to optimize greedy decoding. This new decoding
method predicts the probability of a span along with its
prefixes, whereas greedy decoding predicts the probability
of a span individually. This approach improves space
complexity. T5-v1.1 was used as the model to conduct
experiments with the exact-extract decoding method. The
model’s goal is to generate multiple randomly-masked spans.
These experiments were carried out as part of the MRQA
shared task, and the proposed decoding method achieved
the following F1-score performances: 54.9% on the SQuAD
dataset, 50.9% on the TriviaQA dataset, 42.1% on the
Natural Questions dataset, 28.9% on the NewsQA dataset,
37.4% on the SearchQA dataset, 40.9% on the HotpotQA
dataset, 42.3% on the BioASQ dataset, and 17.2% on the
TextbookQA dataset, all in a 16-shot setting.

Ram et al. [7] introduced a pre-training framework for
question answering known as ‘Recurring Span Selection’.
They recognized that the objective of fine-tuning in question
answering differs from pre-training, and to address this, they

developed a model called ‘Span-level Pointer’ (Splinter).
The Splinter model begins by replacing spans that appear
repeatedly in the text with a [QUESTION] token, with
the model’s task being to predict the original text of the
[QUESTION] token. This approach allows the knowledge
acquired during pre-training to be reused effectively in
the fine-tuning process, aligning the training objectives
between pre-training and fine-tuning. During fine-tuning, a
[QUESTION] token is added after the question, enabling
the fine-tuning knowledge used to predict the span of the
[QUESTION] token to be reused. Experiments conducted
as part of the MRQA shared task demonstrated that the
proposed method achieved F1-scores of 54.6% on the
SQuAD dataset, 18.9% on the TriviaQA dataset, 27.4% on
the Natural Questions dataset, 20.8% on the NewsQA dataset,
26.3% on the SearchQA dataset, 24.0% on the HotpotQA
dataset, 28.2% on the BioASQ dataset, and 19.4% on the
TextbookQA dataset with a 16-shot setting

Li et al. [8] presented a refined question-answering
dataset named REFQA, created to address the issue of
lexical overlaps between context paragraphs and generated
questions. This dataset comprises question and answer pairs
collected from Wikipedia using an unsupervised method.
The data collection process involves taking a statement
from a paragraph and extracting the corresponding context
from the cited document of that statement. The answer
is then extracted from the context of the cited document.
Subsequently, the context is transformed into a natural
question, creating a pair with the answer. To filter out noisy
samples from the REFQA dataset, a QAmodel with BERT as
its backbone was employed. The proposed model achieved an
F1-score of 79.4% with only 100 labeled samples.

Zaratiana et al. [9] proposed a modified method, DyREx,
derived from the vanilla approach [10]. The vanilla approach
involves concatenating the passage and question as input
and computing the probability of the start and end positions
of the answer spans. Identifying the suboptimal nature of
the vanilla approach, Zaratiana et al. noted that the query
vectors used are static and independent of the input sequence.
Therefore, they proposed employing an L-layers transformer
decoder to obtain dynamic representations. The transformer
layer incorporates a bi-directional self-attention module to
aggregate information, enhancing the model’s understanding
of the context. Utilizing SpanBERT for token representations,
DyREx achieved a performance of a 70.75% F1 score on
the SQuAD dataset in a 256-sample setting, surpassing
the vanilla approach by 5.01% F1 score. This experiment
highlights the importance of contextual queries in few-shot
question answering

Banerjee and Baral [11] implemented Knowledge Triplet
Learning (KTL) to leverage knowledge graphs for zero-shot
multiple-choice question-answering. In KTL, a triplet com-
prises a head, tail, and relation. During training, the model
is tasked with producing the third component of the triplet
when given the other two components as input. When applied

159282 VOLUME 12, 2024



S. W. Tan et al.: QARR-FSQA: Question-Answer Replacement and Removal Pretraining Framework

to multiple-choice question-answering, the components of
the triplet correspond to the context, question, and answer
options. Knowledge representation learning is employed to
achieve the goal of generating the third component, with the
scoring function based on the distance between the generated
output and the ground truth. The Common Concept Graph
and Directed Story Graph were utilized to construct the
knowledge graph. The Common Concept Graph involves
extracting verb-chunks and noun-chunks from the text corpus
using the Spacy Part-of-Speech tagger [12]. The Directed
Story Graph consists of independent story graphs extracted
from the Story Cloze Test dataset and RoCStories. This
proposed framework demonstrated a 48.5% accuracy on
SocIQA datasets.

Ma et al. [13] designed a novel framework for the zero-
shot commonsense question-answering task, which involves
selecting the most likely single answer from a set of options,
with the remaining choices acting as distractors. Five knowl-
edge graphs were employed to construct three question-
answer datasets. The first dataset was built using ATOMIC,
the second utilized CMWV, incorporating the other four
knowledge graphs, and the third, CSKG, amalgamated all the
knowledge graphs. If a triple could not directly construct a
question and answer set, the tail of the sentence generated
using a pre-defined template was removed and selected as
the answer. Distractors were random samples using the same
relation triple as the correct answer, adhering to specific rules
to ensure fairness. Various distractor sampling techniques
were introduced to enhance the framework’s performance.
Experimental results indicated that RoBERTa outperformed
GPT2 under the proposed framework. Specifically, the
framework using RoBERTa achieved accuracies of 70.5% for
the aNLI dataset, 67.4% for the CSQA dataset, 72.4% for the
PIQA dataset, 63.2% for the SIQA dataset, and 60.9% for the
WG dataset in a zero-shot setting using the CSKG dataset.

Lyu et al. [14] utilized question generation (QG) to
generate question and answer pairs for a question-answering
task. The proposed method leverages article summaries to
generate answers. The process involves Dependency Parsing
(DP) to identify the root verb of the summary, followed
by Named Entity Recognition (NER) to tag entities, and
Semantic Role Labeling (SRL) to obtain semantic frames.
The arguments extracted from SRL are utilized to identify
the wh-words for question generation. The proposed method
is evaluated on a question-answering task, achieving a notable
43.0% F1 score on the TriviaQA dataset.

Izacard et al. [15] introduced Atlas, a retrieval-augmented
language model designed for knowledge-intensive tasks with
minimal training samples. This framework utilizes a text-
to-text architecture, where the input is a text query, and
the output is also in text format. Atlas consists of two
main components: the retriever and the language model.
The retriever module, employing a dual-encoder architecture,
retrieves relevant documents from a large text corpus. The
language model, based on T5, generates the output using
information obtained from the retrieval module. Tests were

conducted on various benchmarks across different tasks. The
proposed model achieved an impressive 74.5% accuracy in a
64-shot setting on TriviaQA filtered.

Lewis et al. [16] implemented an unsupervised method for
generating data for question answering tasks. In the genera-
tive data model, the process begins by sampling a paragraph
from available documents. Answer spans are then generated
based on the selected paragraph using two distinct variants.
Noun phrases within the paragraph are extracted using a
chunking algorithm, and named entities are identified through
a Named Entity Recognition (NER) system. These noun
phrases and named entities are chosen as answer candidates.
For question generation, the approach involves two stages:
cloze generation and cloze translation. Cloze generation
shortens the sentence and masks the answer to create a cloze
question. Subsequently, cloze translation translates the cloze
question into a proper question-answering format, employing
four distinct approaches for cloze translation. The authors
demonstrated the effectiveness of the method by achieving a
notable 56.4% F1 score on the SQuAD dataset in a zero-shot
setting.

Fabbri et al. [17] proposed a method for unsupervised
generation of training data for question answering by
integrating sentence retrieval and template-based question
generation. The process begins with sentence retrieval, which
aims to acquire sentences similar to the one containing the
answer. ElasticSearch is employed to index the sentences, and
named entities are extracted. The retrieved sentences passing
specific filtering rules proceed to the question generation
stage. Various question style templates are proposed to
transform the retrieved sentence into a question. One template
involves replacing the answer with a mask token, while
another template replaces wh-words in the question sentence.
The proposed method demonstrates effectiveness, achieving
a notable 64.04% F1 score on the SQuAD dataset, contingent
on the answer being a named entity. Table 1 provides a
summary of related work in QA.

III. QUESTION-ANSWER REPLACEMENT AND REMOVAL
PRETRAINING FRAMEWORK FOR FEW SHOT QUESTION
ANSWERING (QARR-FSQA)
This research involves two phases: the pretraining phase
and the fine-tuning phase. The pretraining phase is crucial
for helping the model learn general question-answering
patterns, including how questions are structured, how to
extract information from the context, and how to generate
appropriate answers. It establishes a foundation for the
model, enabling it to understand questions within context and
generate accurate responses. This phase uses a large dataset
to pretrain the model.

The fine-tuning phase focuses on adapting the pretrained
model to the specific task of question answering. In this
research, the emphasis is on question answering with limited
training samples, making the knowledge gained during
pretraining particularly valuable. Fine-tuning adjusts the
model’s abilities to perform better on the specific dataset.
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TABLE 1. Summary of related work in question answering.

The input and target templates play a crucial role in
connecting these two processes, serving as a bridge between
the pretraining and fine-tuning phases. The templates ensure
that the knowledge acquired during pretraining is effectively
transferred and utilized during fine-tuning, allowing the
model to excel in the few-shot question-answering task.

A. PRETRAINING FRAMEWORK
This paper presents a pretraining framework to address the
task of few-shot question answering. The pretraining process
involves several key components, including the selection
of a suitable pretraining dataset, preprocessing of the data,

adaptation of the QARR technique to augment the dataset,
and further pretraining of the generative models.

The pretraining dataset chosen for this study is the
Discrete Reasoning Over the Content of Paragraphs (DROP)
dataset [18], specifically designed for English language
reading comprehension tasks. This dataset offers a diverse
range of reasoning scenarios, covering various types of rea-
soning such as answer selection, span comparison, arithmetic
operations, counting, sorting, and logical reasoning. Each
instance in the DROP dataset comprises contexts containing
multiple question-answer pairs, providing a rich source of
training data for pretraining the models.

Before the models undergo pretraining, the dataset under-
goes preprocessing to ensure its structural integrity and
compatibility with the few-shot question answering task.
Each question-answer pair is transformed into a predefined
template, aligning with the pattern of the few-shot question
answering task. This template consists of a concatenated
sequence of the question, a mask token with a prefix, and
the context, which serves as the input sequence for the
model. Simultaneously, the target sequence is formed by
concatenating the question and its corresponding answer,
guiding the model towards generating precise answers given
specific questions and contexts.

The QARR technique plays a crucial role in augment-
ing the pretraining dataset, enhancing the coherence and
relevance of question-answer pairs. This technique involves
integrating the answer directly into the question, followed
by selective removal of a predetermined ratio of words from
the sentence. Through this iterative process, new question-
answer pairs are generated while maintaining coherence
and relevance to the context. To adapt the QARR tech-
nique, modifications are made to the template structure to
accommodate the integration of the answer into the question
effectively.

After preprocessing and augmentation with QARR, the
pretrained BART, T5, and LED models undergo further
pretraining on the augmented DROP dataset. This pretraining
process involves training the models on the augmented data
using their respective architectures and optimization objec-
tives. For BART, this entails corrupting documents using
various methods such as token masking, deletion, infilling,
sentence permutation, and document rotation, followed by
optimization using cross-entropy loss. Similarly, T5 and
LED undergo pretraining using their respective training
objectives and architectures, with T5 translating all text-
based language problems into a text-to-text format, and LED
efficiently processing extensive sequences of documents
using its innovative attention mechanisms.

Overall, the pretrained BART, T5, and LED models
are pretrained on the QARR augmented DROP dataset,
incorporating the QARR technique to enhance the coherence
and relevance of the dataset. This preprocessing and aug-
mentation strategy aims to improve the models’ performance
in few-shot question answering tasks by providing a more
diverse and contextually relevant training dataset.
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FIGURE 1. The framework of the proposed QARR-FSQA method.

B. PRETRAINING DATASET
This study leverages theDiscrete ReasoningOver the Content
of Paragraphs (DROP) dataset [18] as the cornerstone
for pretraining. Specifically designed for English language
reading comprehension tasks, the DROP dataset offers a rich
tapestry of reasoning scenarios. These scenarios encompass
a wide spectrum of reasoning types, including answer
selection, span comparison, arithmetic operations such as
addition or subtraction, counting, sorting, and other intricate
forms of logical reasoning. The diversity in reasoning types
encapsulated within the dataset mirrors the expansive range
of question types encountered in various question answering
tasks.

For instance, the dataset encompasses questions involving
counting reasoning, such as ‘‘How many ways can. . . ,’’
necessitating inference-making based on counting principles.
Moreover, the dataset’s answers manifest in various formats,
including answer spans within passages, dates, and numerical
values, thereby providing a holistic evaluation of comprehen-
sion and reasoning abilities. Table 2 illustrates examples of
three answer types from the DROP dataset.

TABLE 2. Types of answer in the DROP dataset.

C. PREDEFINED TEMPLATE ASSIGNMENT
Prior to model training, preprocessing of the dataset is
imperative to ensure its structural integrity and compatibility
for effective learning. This preprocessing commences with
data extraction from the pretraining dataset, specifically the
DROP dataset. Each instance within this dataset comprises
contexts, each housing multiple question-answer pairs.

To streamline the input data and optimize learning, each
question-answer pair undergoes a sequence of transforma-
tions. These transformations entail mapping the question,
answer, and context of every pair to a predefined template [5],
thus aligning with the pattern of the few-shot question
answering task. The input sequence is crafted by concatenat-
ing the question, a mask token with a prefix, and the context.
This fusion empowers the model to harness contextual cues
effectively, thereby enhancing response accuracy.

Concurrently, the target sequence is formed by concate-
nating the question and its corresponding answer. This
concatenated sequence serves as the target output of the
model, guiding it towards generating precise answers given
specific questions and contexts. Let q denotes the question
sentence, <mask> represents the mask token, c signifies the
context sentence, and a signifies the answer. The template for
input and target sequences is structured as follows.

D. QUESTION-ANSWER REPLACEMENT AND REMOVAL
(QARR)
The process of Question-Answer Replacement and Removal
(QARR) represents a crucial step in data augmentation,
enhancing the coherence and relevance of question-answer
pairs within a dataset. After an initial processing stage, this
augmentation technique involves replacing the question word
in each question with the corresponding answer, thereby
creating a complete sentence. This integration of the answer
directly into the question enhances the contextual rele-
vance of the resulting sentence. Following this integration,
a predetermined ratio of words, typically the last ones in
the sentence, is removed. This selective removal is vital
for generating new question sentences while maintaining
coherence and relevance to the context. The removed portion
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FIGURE 2. Example of question-answer replacement and removal
technique.

of the sentence becomes the new answer, while the remaining
portion transforms into the new question sentence. Through
this iterative process, QARR ensures the coherence and
relevance of the generated question-answer pairs, while also
aiding in the extraction of pertinent information from the
context.

Figure 2 provides a visual representation of the QARR
technique, illustrating how it transforms a question-answer
pair by integrating the answer into the question and
subsequently removing a portion of the sentence to generate
a new question.

E. MODIFIED TEMPLATES
To effectively adapt to the QARR technique, modifications
to the template used for generating question-answer pairs are
necessary. Two modified templates are proposed to replace
the predefined template. These modifications involve the
introduction of a mask token within the template structure,
serving as a guide for the generation process to indicate where
the answer should be inserted within the question. The first
modified template adds a mask token both at the input and
target levels, while the secondmodified template incorporates
the mask token solely at the input level.

The integration of the QARR technique significantly
expands the dataset, increasing the number of training
samples from 29,195 to 57,150. This augmentation leads to a

more robust dataset for training models, ultimately enhancing
their performance in question-answering tasks. Table 3
presents the number of samples in the DROP dataset before
and after QARR augmentation. Some examples of the DROP
dataset before and after QARR with different templates are
provided in Table 4, demonstrating the effectiveness of these
techniques in generating diverse and contextually relevant
question-answer pairs.

TABLE 3. Number of samples in the DROP dataset before and after QARR
with different templates.

TABLE 4. Examples from the DROP dataset and QARR-Augmented DROP
dataset with different templates.

F. PRETRAINING MODELS
This section describes three pivotal pretraining models
utilized in this study: Bidirectional and Auto-Regressive
Transformers (BART), Text-to-Text Transfer Transformer
(T5), and Longformer-Encoder-Decoder (LED). These mod-
els stand as pillars in the realm of natural language
processing, each contributing uniquely to various generative
tasks.
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1) BIDIRECTIONAL AND AUTO-REGRESSIVE
TRANSFORMERS (BART)
The Bidirectional and Auto-Regressive Transformers
(BART) model is a sequence-to-sequence transformer
architecture utilized in generative processes, where the
model generates answers rather than selecting them from
the input context. The BART model, as described by
Lewis et al. [19], is built upon the foundational Transformer
architecture introduced by Vaswani et al. [20]. Unlike
traditional transformer models, BART lacks a feed-forward
network before word prediction, distinguishing it in its
approach to sequence generation.

During the pre-training phase, the BART model undergoes
training by corrupting documents through various methods,
including token masking, deletion, infilling, sentence per-
mutation, and document rotation. These techniques aim to
simulate scenarios where information is severely distorted
or lost. The model is optimized using cross-entropy loss,
expressed by the following equation:

Loss = −

T∑
i

yi · log(f (x)i)

Here, T represents the length of the sequence, yi denotes
the true probability distribution, and f (x)i represents the
predicted probability distribution for the i-th token.
The architecture of the BART model consists of both an

encoder and a decoder. The encoder utilizes a bidirectional
model to encode the corrupted document, enabling it to
capture contextual information from both forward and
backward directions. On the other hand, the decoder employs
an autoregressive approach to compute the likelihood of the
original document, predicting the next token in the sequence
based on the tokens generated thus far. The base version
of the BART model comprises six encoder and decoder
layers, totaling approximately 140 million parameters. This
architecture, depicted in Figure 3, illustrates the flow of
information within the model and highlights its bidirectional
encoding and autoregressive decoding mechanisms. This
combination of bidirectional encoding and autoregressive
decoding allows the BART model to effectively generate
coherent and contextually relevant sequences, making it well-
suited for a variety of generative tasks in natural language
processing.

2) TEXT-TO-TEXT TRANSFER TRANSFORMER (T5)
The Text-to-Text Transfer Transformer (T5) model, as intro-
duced by Raffel et al. [21], revolutionizes natural language
processing (NLP) by presenting a unified framework that
translates all text-based language problems into a text-to-
text format. This innovative approach simplifies the treatment
of various NLP tasks, making them amenable to a common
model architecture and training objective. The development
of the T5model beginswith the construction of a foundational
dataset named Colossal Clean Crawled Corpus (C4), sourced
from Common Crawl. This dataset serves as the basis for

FIGURE 3. Architecture of the base version of the BART model.

training the T5 model and provides a diverse range of text
data for various NLP tasks.

The evolution of the T5 model involves a series of
experiments aimed at optimizing its architecture and training
process. These experiments explore different aspects such as
architecture configurations, input-output formats, corruption
rates, and more. Each experiment builds upon the insights
gained from the previous ones, progressively refining the
model’s performance. For instance, one crucial experiment
investigates various input and target formats, including prefix
language modeling templates, BERT-style templates, and
deshuffling templates. Among these, the BERT-style template
emerges as the most effective, consistently outperforming the
others in subsequent experiments. As a result, it becomes the
standard input and target format for the T5 model.

Architecturally, the T5 model follows the encoder-decoder
Transformer architecture proposed by Vaswani et al. [20].
The default version of T5, denoted as ‘‘base’’, consists of
12 encoder and decoder layers. The encoder comprises self-
attention layers, feed-forward networks, and layer normal-
ization [22], while the decoder shares a similar architecture
but includes a dense layer with a softmax output at the
decoder’s final layer. Figure 4 illustrates the architecture
of the base version of the T5 model, showcasing the flow
of information within the model’s encoder and decoder
components. Additionally, the version of the T5 model used
in the study, denoted as version 1.1, is trained exclusively on
the C4 dataset without any supervised training, highlighting
the model’s capability to learn from large-scale, unsupervised
data sources.

3) LONGFORMER-ENCODER-DECODER (LED)
The Longformer architecture, introduced by
Beltagy et al. [23], represents a significant advancement
in natural language processing (NLP), specifically tailored
for efficiently processing extensive sequences of documents.
Unlike the original Transformer model, which suffers from
memory complexity proportional to the square of the input
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FIGURE 4. Architecture of the base version of the T5 model.

sequence length, Longformer introduces innovative attention
mechanisms that scale linearly with the input sequence
length.

The key innovation of Longformer lies in its attention
patterns, which seamlessly integrate global and local infor-
mation while managing memory complexity. To achieve this,
Longformer employs fixed-size window attention, where
each token attends to both sides of the tokens within
half of the fixed window size. This approach enables
Longformer to efficiently capture long-range dependencies
in the input sequence without sacrificing computational
efficiency. Longformer further optimizes performance by
utilizing sliding windows with a ‘‘dilated’’ approach, inspired
by dilated convolutional neural networks (CNNs) [24]. This
technique introduces gaps between the windows, allowing
the model to efficiently process even longer sequences by
selectively attending to relevant portions of the input.

In addition to local attention, Longformer incorporates
global attention at pre-selected input locations, enabling
tokens to attend to and be attended to by all other tokens
in the sequence. This global attention mechanism enhances
the model’s ability to capture contextual information from
the entire document while still maintaining computational
efficiency. Figure 5 provides a visual representation of the
difference in attention patterns between Longformer and
traditional Transformer models, highlighting the model’s
ability to effectively handle long sequences with both local
and global attention mechanisms. Following the architecture
of BART, the Longformer-Encoder-Decoder (LED) model
comprises six layers of encoder and decoder layers, enabling
it to effectively process and generate text for various
sequence-to-sequence tasks in NLP.

G. ENHANCED PRETRAINING STRATEGY
Following initial preprocessing and augmentation with
QARR, BART, T5, and LED models undergo an additional
round of pretraining on the QARR-augmented DROP dataset

FIGURE 5. (a) Full attention considers all tokens. (b) Sliding window
attention considers tokens on each side of specific tokens. (c) Dilated
attention increases the gaps between windows. (d) Global attention is
added to pre-selected input locations to increase flexibility.

with predefined template, modified template 1, and modified
template 2, separately. This phase is pivotal for fine-tuning
the models to grasp the intricacies introduced by the QARR
technique and optimize their parameters to adeptly handle the
augmented data. Each model employs its unique architecture
and optimization objectives to refine its comprehension of the
augmented dataset and bolster its performance on few-shot
question answering tasks.

During BART’s pretraining, the model is exposed to the
augmented data. These methods simulate scenarios where
information is distorted or partially absent, fostering the
learning of robust representations resilient to noise and data
variations. BART’s optimization objective during pretraining
is to minimize cross-entropy loss, aligning the predicted
probability distribution with the true distribution of tokens
in the input sequence. The resulting model after the second
round of pretraining on QARR-augmented DROP dataset is
denoted as QARR-BART.

Similarly, T5 and LED undergo further pretraining utiliz-
ing their respective architectures and objectives. T5 adheres
to its text-to-text format, translating all text-based language
problems into this format for uniform treatment of various
NLP tasks, effectively leveraging the augmented dataset for
learning. The resulting model after the second round of
pretraining on QARR-augmented DROP dataset is denoted
as QARR-T5.

LED, with its advanced attention mechanisms tailored
for processing extensive document sequences efficiently,
refines its understanding of the augmented data during
pretraining. Leveraging fixed-size window attention and
global attention mechanisms, LED captures both local and
global dependencies within the augmented dataset, enhancing
its performance on few-shot question answering tasks. The
resulting model after the second round of pretraining on
QARR-augmented DROP dataset is known as QARR-LED.

Overall, the pretraining phase on the QARR augmented
DROP dataset serves to consolidate the models’ understand-
ing of the augmented data and refine their parameters to better
capture the underlying patterns and structures introduced
by the QARR technique. By incorporating QARR into the
pretraining process, the models are exposed to a more
diverse and contextually relevant training dataset, leading to
improved performance in few-shot question answering tasks.
This preprocessing and augmentation strategy plays a crucial
role in enhancing the coherence and relevance of the dataset,
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ultimately contributing to the models’ ability to generalize
and perform effectively in real-world question answering
scenarios.

IV. FINE-TUNING FOR FEW-SHOT QUESTION
ANSWERING
Fine-tuning is a pivotal process in optimizing model per-
formance for few-shot question-answering tasks, where the
availability of training data varies. This method involves
adapting pretrained models across different ‘‘shot’’ settings,
which represent the number of samples in the training set: 16-
shot, 32-shot, 64-shot, and 128-shot. The fine-tuning process
involves refining each pretrained generative model using
three experimental datasets. For each dataset, the process is
conducted across four different shot settings and repeated five
times for each shot.

Exploring this spectrum of shot settings provides valuable
insights into how the model performs under diverse training
data conditions. From minimal 16-shot scenarios to more
data-rich 128-shot settings, researchers gain a comprehensive
perspective on the model’s robustness. This exploration not
only elucidates the model’s capacity to leverage limited
training data effectively but also informs its performance in
real-world scenarios with varying data availability.

V. ANSWER GENERATION AND EXTRACTION
Following fine-tuning, the fine-tunedmodels are deployed for
answer generation and extraction, as illustrated in Figure 6.
Initially, the fine-tuned model receives input comprising the
question, a mask token prefixed with ‘‘Answer’’, and context.
Leveraging its learned knowledge, the model generates both
questions and answers based on a predefined template. This
template, structured around the question followed by the
generated answer, serves as a scaffolding mechanism, ensur-
ing that the model produces responses that are contextually
relevant and coherent.

Once text generation is complete, the model undergoes an
extraction process to isolate the generated answers. Specific
words or phrases following the designated prefix ‘‘Answer’’
within the generated text are identified and extracted. These
extracted answers serve as representations of the model’s
responses for evaluation purposes. Subsequently, they are
compared against ground truth or expected answers to gauge
the overall performance of the Question Answering system,
providing valuable insights into its efficacy and accuracy.

VI. EXPERIMENTAL DATASETS
Three publicly available question answering datasets are
employed in this research: the Stanford Question Answer-
ing Dataset (SQuAD) version 1.1 [25], the HotpotQA
dataset [26], and the Natural Questions dataset [27].

A. STANFORD QUESTION ANSWERING DATASET (SQUAD)
The SQuAD dataset [25] is a widely used reading com-
prehension dataset where each question’s answer is located
within the corresponding passage. Questions and answers

FIGURE 6. Answer generation and extraction process.

are generated by crowdworkers based on a collection of
Wikipedia articles. The dataset creation involves three stages:
curating passages, collecting questions and answers, and
obtaining additional answers. Passage curation includes
retrieving articles from English Wikipedia and eliminating
low-quality sections. Questions and answers are generated
by providing five pairs of questions and answers for every
context, with the answer highlighted within the paragraph.
For the development and test sets, each question is provided
with at least two additional answers to enhance evaluation
robustness. SQuAD dataset comprises 10,507 testing ques-
tions. Each context in the SQuAD dataset contains multiple
questions and answers derived from that context. Table 5
presents examples of different questions and answers derived
from a single context.

TABLE 5. Examples of different questions and answers based on one
context.

B. HotpotQA
The HotpotQA dataset [26] consists of question and answer
pairs requiring multi-hop reasoning. Unlike popular datasets
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focusing on single-hop reasoning and existing multi-hop
reasoning datasets built on knowledge bases, HotpotQA
addresses this gap by necessitating reasoning over multiple
documents.

The data collection process begins with constructing a
directed graph using hyperlinks as the relationships between
two entities. Hyperlinks are extracted from the first paragraph
of the articles, as it contains more information compared to
the remaining paragraphs. To generate multi-hop reasoning
questions, the bridge entity is utilized to identify the
relevant paragraph for extracting the question. Additionally,
a comparison between two entities under the same category
is employed to generate the question. HOTPOTQA dataset
comprises 5,901 testing questions. Examples of multi-hop
reasoning are illustrated in Table 6.

TABLE 6. Examples of multi-hop reasoning in HotpotQA dataset.

C. NATURAL QUESTIONS (NQ)
The Natural Questions dataset [27] provides a substantial
collection of real-world questions. All questions in the dataset
consist of sentences with eight or more words and are submit-
ted to the Google search engine by various users. NQ dataset
comprises 12,836 testing questions. These questions undergo
the Google search process, and the top five search results
containing Wikipedia pages are retained. Wikipedia serves
as the factual information source for generating the answers.
Each annotation undergoes a thorough process involving
question identification, long answer identification, and short
answer identification, ensuring that the question is fact-
seeking and includes both a long and a short answer.
Examples of Natural Questions are presented in Table 7.

VII. EVALUATION METRIC
The F1 score serves as a pivotal evaluation metric in this
research, balancing precision and recall to provide a holistic
assessment of model performance. It is calculated using the
formula:

F1 Score =
2 × Precision × Recall
Precision + Recall

(1)

TABLE 7. Examples of natural questions dataset.

The F1 score encapsulates both precision and recall metrics,
offering a single numerical value reflecting the model’s
accuracy in identifying relevant information. Recall is
calculated as:

Recall =
Common Tokens
Gold Answer

(2)

Precision is determined by:

Precision =
Common Tokens
Predicted Answer

(3)

Here, ‘‘Common Tokens’’ represents the overlap between
Predicted Answer and Gold Answer tokens, indicating true
positives. Recall measures the model’s capability to retrieve
relevant words from the gold answer, with higher values
indicating successful retrieval of correct answers. Precision
assesses the proportion of correct words among the predicted
answers, indicating the model’s ability to provide accurate
responses.

Unlike the F1 score, Exact Match (EM) is a binary
evaluation metric. EM assesses the correctness of the
predicted answer by determining whether it exactly matches
the gold answer or not. Exact Match only has two possible
scores: 0 or 1. The Exact Match score is 1 if the predicted
answer is exactly the same as the gold answer; otherwise, the
score is 0. Exact Match is an evaluation metric in question
answering that is particularly suitable for datasets with short
answers.

Furthermore, standard deviation is utilized to gauge the
performance consistency across repetitions. A lower standard
deviation implies tighter clustering of the scores around the
average, indicating more stable results. This is crucial in
few-shot question answering scenarios where understanding
performance variability is essential. The standard deviation
formula is:

σ =

√∑
(xi − x̄)2

N
(4)

Here, σ represents the standard deviation, xi denotes the
score for each experiment, x̄ is the average score,

∑
denotes

summation, and N is the number of experiments.
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VIII. EXPERIMENTAL RESULTS AND ANALYSIS
Initially, the baseline BART, T5, and LED models are
pretrained on the original DROP dataset for 5 epochs with a
batch size of 4. The models then undergo further pretraining
on the QARR-augmented DROP dataset for up to 25 epochs,
with early stopping activated after 3 consecutive epochs
without improvement in the validation set’s F1 score. This
process yields the QARR-BART, QARR-T5, and QARR-
LED models. These models are then evaluated using the
SQuADdataset, a widely recognized benchmark for Question
Answering tasks.

The pretrained QARR-BART, QARR-T5, and QARR-
LED models are subsequently fine-tuned in few-shot settings
using the SQuAD, HotpotQA, and Natural Questions datasets
for evaluation and comparison with existing works. For
each dataset, the models are fine-tuned across four different
training sample sizes, with five distinct sets of samples
chosen for each size, following the method in [28]. The
average performance across these sets is calculated to
ensure robust results. Fine-tuning is conducted for up
to 25 epochs, with a batch size of 4 and a maximum
input sequence length of 512 tokens, consistent with the
pretraining phase. All experiments in this paper are conducted
on an NVIDIA GeForce RTX 4070 GPU with 12GB
memory.

A. EXPERIMENTAL RESULTS OF BASELINE MODELS
Table 8 presents the experimental results of the baseline
models after pretraining on the original DROP dataset with
different learning rates. In this original DROP dataset, the
predefined template is used. For the BARTmodel, the highest
F1 score is 74.46% attained at a learning rate of 2e−6.
The choice of a learning rate of 2e−6 strikes a balance
between facilitating effective convergence during pretraining
and fine-tuning while preventing overfitting. This moderate
learning rate enables efficient parameter learning, ensuring
good performance without inducing excessive oscillations or
divergence during training.

Moving on to the T5 model, it achieves its highest F1 score
of 76.94% at a learning rate of 2e−5. The relatively higher
learning rate of 2e−5 allows the T5 model to swiftly adapt
to the intricacies of the dataset during both pretraining and
fine-tuning stages. This learning rate aligns well with T5’s
architecture, which involves transforming input sequences
into output sequences using a unified text-to-text approach.
The higher learning rate facilitates faster convergence and
better utilization of the model’s capacity for capturing
complex patterns in the data.

Similarly, for the LED model, the highest F1 score is
74.70% achieved at a learning rate of 2e−6. A learning
rate of 2e−6 enables the LED model to efficiently capture
and integrate information from extended context windows,
which is particularly critical for question answering tasks.
This learning rate strikes a balance between adaptability and
stability, allowing the LED model to leverage its unique

architecture effectively and achieve high performance on the
given dataset.

TABLE 8. Performance of the baseline models at different learning rates.

B. EXPERIMENTAL RESULTS OF PRETRAINED MODELS
WITH QARR-AUGMENTED DROP DATASET (PREDEFINED
TEMPLATE)
The baseline models are further refined through additional
pretraining using the QARR-augmented DROP dataset with
a predefined template. Various ratios are employed to
control the amount of information retained in the generated
questions, representing the proportion of words removed
from sentences and selected as answers. For example,
a removal ratio of 0.25 indicates that a quarter of the words are
removed. This ratio influences the level of detail and content
preserved in the questions, which, in turn, affects the model’s
ability to generate accurate and meaningful answers. Table 9
presents examples of question-answer pairs generated with
different QARR removal ratios. These examples illustrate
how varying ratios affect the structure and complexity of the
questions, providing insights into the amount of content the
models need to retain for optimal performance.

Table 10 shows the models’ performance when the QARR
technique is applied. Three different QARR ratios are
explored: 0.1, 0.25, and 0.5, representing low, medium,
and high levels of removal, respectively. It is observed
that the model’s performance improves as the QARR ratio
increases up to a certain point, after which performance
begins to decline. Ratios of 0.1 and 0.25 enhance the model’s
performance, indicating that a low to moderate QARR
ratio allows for the generation of meaningful questions and
answers. Within this effective range, a higher ratio can yield
more complex and informative questions. However, when
the QARR ratio reaches 0.5, the model’s performance drops.
This decline is likely because a high QARR ratio removes
substantial portions of the question, potentially rendering the
sentences less meaningful. This introduces noise into the
model, which can degrade performance.

Furthermore, the results reveal that while QARR improves
performance in BART and T5 models, it does not have the
same effect on the LED model. This suggests that QARR’s
effectiveness may depend on the model’s architecture and
its sensitivity to input noise. The LED model, which is
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optimized for longer sequences, might struggle with the
increased fragmentation and loss of context caused by higher
QARR ratios, leading to a decrease in performance.

TABLE 9. Samples of question-answer pairs with different QARR ratios.

TABLE 10. Performance of the pretrained models with different QARR
ratios.

C. EXPERIMENTAL RESULTS OF PRETRAINED MODELS
WITH QARR-AUGMENTED DROP DATASET (MODIFIED
TEMPLATES)
After identifying the optimal QARR ratio for each model,
the QARR technique is applied to the DROP dataset using
three distinct templates: predefined, modified template 1,
and modified template 2, to evaluate the effects of template
variations on QARR-augmented datasets.

Table 11 presents the performance results across dif-
ferent input and target templates. The findings show that
template modifications can enhance model performance,
with modified template 2, which incorporates an input
mask, consistently outperforming the others. Specifically, the
BART model achieves an F1 score of 75.24%, the T5 model
80.77%, and the LED model 74.73%. Similar improvements
are seen in EM, with the BART model reaching 63.87%,
the T5 model 70.06%, and the LED model 63.02%. While
there is an increase in training time due to the larger number
of samples in the augmented DROP dataset, modifying the
QARR template has a negligible impact on training time.

It is noteworthy that the experimental results obtained so
far are with the second round of training set to 5 epochs.
To further explore the performance of the models with

TABLE 11. Performance of the pretrained models with different DROP
dataset variants.

the optimal hyperparameter settings, the maximum training
epoch is increased to 25, incorporating an early stopping
mechanism. The early stopping is triggered when the F1
score on the validation set does not improve for 3 epochs
(patience). The experimental results after training with early
stopping enabled are presented in Table 12 alongside the
optimal hyperparameter settings. Notably, the QARR-BART
model did not show improvement after further training with
early stopping. However, the performance of the QARR-T5
model increased from 80.77% to 81.32%, and the QARR-
LED model improved from 74.73% to 76.26%.

TABLE 12. F1 scores (%) of the models with optimal hyperparameter
settings after training with early stopping.

D. COMPARISON RESULTS ON QARR FINE-TUNED MODEL
AND EXISTING WORK
After obtaining the best pretrained models, each model
undergoes a fine-tuning process on the SQuAD, HotpotQA,
and NQ datasets. Each experiment is repeated five times to
ensure robustness and reliability. The F1 score is used as the
evaluation metric to assess the models’ performance, and the
standard deviation of the F1 scores from the five experiments
is calculated to measure consistency. This repetitionmitigates
the fluctuations inherent in few-shot training, as the learning
process can be sensitive to specific samples in the training
set. By repeating the experiments, a more stable estimate of
the models’ performance is obtained, reducing the impact
of random variations in the training data. For each of the
models, the learning rate during the fine-tuning stage follows
the optimal setting determined in the pretraining phase: a
learning rate of 2e−5 for the T5 model and 2e−6 for both the
BART and LED models.

Table 13 presents the comparison of the mean and standard
deviation of F1 scores between the fine-tuned models and
existing works. The results indicate that the QARR-fine-
tuned model exhibits higher performance compared to exist-
ing works. QARR-T5 demonstrates the best performance
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in 11 out of 12 experimental settings, while QARR-LED
achieves the best performance in the 16-shot subset of
the HotpotQA dataset. Specifically, QARR-T5 achieved the
highest F1 scores of 81.7% in 16-shot and 32-shot, 82.7%
in 64-shot, and 84.5% in 128-shot on the SQuAD dataset.
For the HotpotQA dataset, QARR-LED records the highest
F1 score of 59.3% in 16-shot, while QARR-T5 obtains the
highest F1 scores of 60.2%, 61.5%, and 63.6% in the 32-
shot, 64-shot, and 128-shot settings, respectively. QARR-T5
similarly excels on the NQ dataset with the highest F1 scores
of 56.7% in 16-shot, 57.1% in 32-shot, 60.1% in 64-shot, and
63.0% in 128-shot settings.

The proposed QARR framework outshines existing work
due to several key characteristics. Firstly, the Question-
Answer Replacement and Removal (QARR) technique
effectively augments the dataset by integrating answers into
questions and selectively removingwords. This augmentation
helps models generalize better by exposing them to varied
question-answer formats during pretraining. Secondly, dif-
ferent templates for question-answer pairs were introduced,
allowing the models to learn from diverse patterns and
structures, enhancing their adaptability to new data. Thirdly,
models like BART, T5, and LED underwent extensive pre-
training on the augmented dataset with specific architectures
and optimization objectives, resulting in a strong initial
capability to handle few-shot scenarios. Fourthly, the fine-
tuning on few-shot datasets was meticulously repeated to
derive average results, ensuring that the models’ performance
was reliable and consistent. This process highlighted the
models’ ability to transfer learned knowledge effectively.
Lastly, the low standard deviation in F1 scores acrossmultiple
runs indicates that the QARR framework provides stable and
reproducible performance improvements, essential in few-
shot learning scenarios.

Table 14 presents the EM scores and time taken by the pro-
posed fine-tunedmodels. The results show that the QARR-T5
model achieves the highest performance on both the SQuAD
and Natural Questions datasets in terms of EM scores,
indicating its effectiveness in extracting precise information
and generating accurate responses. Additionally, the QARR-
LED model excels on the HotpotQA dataset, particularly
in tasks requiring multi-hop reasoning to generate concise
answers.

In contrast, the QARR-BART model is notable for its time
efficiency. The reported time represents the total duration
for five repeated experiments, each involving training over
25 epochs and inference. The results indicate that QARR-
BART completes these experiments faster than the other
models. This efficiency is likely due to the QARR-BART
model’s fewer parameters, which reduce computational
demands during training and inference, making it an ideal
choice when time and computational resources are limited.

E. CASE STUDY
Table 15 shows a comparison between the answers generated
by the model with and without the implementation of the

TABLE 13. Comparative results of the fine-tuned models and existing
works, measured in F1 scores.

TABLE 14. Exact Match score and time used for fine-tuned models.

QARR technique during the pretraining stage. In this case, the
model without the QARR technique generates the incorrect
answer Super Bowl L. The generated answer is highly
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similar to the ground truth but reflects a misunderstanding
or misinterpretation of the context. This error arises from a
failure to properly link the details in the context.

Conversely, the answer generated with the QARR tech-
nique correctly identifies ‘‘Super Bowl LI’’ as the game
where Roman numerals will be used again. This indicates that
the QARR technique enhances comprehension and retrieval
processes, enabling the correct extraction of relevant details
from the context to answer the question accurately.

TABLE 15. Example with and without QARR technique.

F. ERROR ANALYSIS
This section analyzes the errors observed in the performance
of the QARR model. Table 16 breaks down the errors into
four distinct categories based on one experiment involving
QARR-T5 in a 128-shot setting. Only answers that exactly
match the gold answer are considered correct, with 75.52%
of the generated answers falling into this category.

Of the 24.48% incorrect answers, 5.34% are due to over-
informative responses. Over-informative errors occur when
the model includes more information than required, such as
generating ‘‘17 interceptions’’ instead of the gold answer
‘‘17’’. This type of error is common in datasets requiring
concise answers. Conversely, 5.97% of the errors are under-
informative, arising when the model omits essential details,
like generating ‘‘experience’’ instead of ‘‘more experience
and higher education’’.

Additionally, numeric errors account for just 0.04% of
the total, typically involving discrepancies in format, such
as generating ‘‘2’’ instead of ‘‘two’’. Although semantically
correct, the format mismatch leads to an error. The low
percentage in this category is due to most numeric answers
being either correct or falling into the over-informative
category.

Finally, 13.13% of the errors involve unrelated answers,
where the model generates responses entirely disconnected
from the expected answer. This highlights instances where the

model fails to produce any relevant information in response
to the question.

TABLE 16. Error analysis on one of the experiment result of QARR-T5 in
128-shot setting.

IX. CONCLUSION
This paper presents a novel pretraining framework to
enhance few-shot question answering (FSQA) capabilities.
By employing the Discrete Reasoning Over the Content of
Paragraphs (DROP) dataset and the innovative Question-
Answer Replacement and Removal (QARR) technique, the
framework significantly improves the performance of models
like BART, T5, and LED. Through extensive experiments
and comparisons, the QARR-T5 model consistently outper-
formed state-of-the-art FSQA methods, demonstrating the
highest F1 scores across various few-shot scenarios on the
SQuAD dataset. The findings underscore the framework’s
effectiveness in enhancingmodels’ generalization and perfor-
mance on new datasets with limited samples, advancing the
field of few-shot QA.

Future work can explore the application of this framework
to other QA datasets, broadening its utility across various
domains and question types. While the current approach,
which utilizes a specific QARR ratio, has proven effective,
it may sometimes limit the naturalness of the generated
sentences. To address this, future research could integrate
deep learning methods that dynamically adjust the QARR
ratio based on the question and its type. This adjustment
would allow for more detailed and contextually appropriate
sentence generation, resulting in more natural and coherent
questions that better simulate real-world language.
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