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ABSTRACT Automated detection of epileptic seizures from scalp Electroencephalogram (EEG) is crucial
for improving epilepsy diagnosis and management. This paper presents an automated inter-patient epileptic
seizure detection method using multichannel EEG signals. The proposed method uses a scale mixture-based
stochastic EEGmodel for feature extraction and a recurrent neural network for seizure detection. Specifically,
the stochastic model, which accounts for uncertainties in EEG amplitude, is fitted to a specific frequency
band to extract relevant seizure features. Then, a recurrent neural network-based recognition architecture
learns the temporal evolution of these features. We evaluated our method using EEG data from 20 patients
with focal epilepsy and conducted comprehensive assessments, including ablation studies on classifiers and
features. Our results demonstrate that our approach outperforms static classifiers and existing feature sets,
achieving high sensitivity while maintaining acceptable specificity. Furthermore, our feature set showed
efficacy both independently and as a complement to existing features, indicating its robustness in seizure
detection tasks. These findings reveal that learning the temporal evolution of the stochastic fluctuation and
amplitude information of EEG extracted using a stochastic model enables highly accurate seizure detection,
potentially advancing automated epilepsy diagnosis in clinical settings.

INDEX TERMS Electroencephalogram (EEG), stochastic model, scale mixture model, epileptic seizure
detection, non-Gaussianity, recurrent neural network.

I. INTRODUCTION
Epilepsy is a common neurological disease that affects
approximately 50 million people worldwide [1], [2]. This
disease is diagnosed after the occurrence of at least one
unprovoked, transient, abnormal neuronal activity in the
brain, called an epileptic seizure [3]. Electroencephalogram
(EEG) is one of the most important tools in the diagnosis
of epileptic seizures because it is non-invasive and relatively
easy to record. EEG records electrical activity generated by
groups of neurons from the scalp surface and can extract and
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observe various features related to brain activity. In particular,
during epileptic seizures, EEG signals exhibit abnormal
waveforms, such as rhythmic activities and repetitive spikes
with spatial and temporal evolution.

Despite the importance of EEG in epilepsy diagnosis, the
current method of detecting epileptic seizures through visual
inspection by doctors has several limitations. It requires long
observation periods and expertise, and diagnoses may differ
across specialists due to the subjectivity of EEG interpre-
tation. Moreover, it is time-consuming and labor-intensive,
especially for long-term EEG recordings. These limitations
highlight the need for an automated and quantitative method
for epileptic seizure detection. Accurate and automated
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seizure detection is important both for recording seizure
history and alerting medical workers, and for developing
vagus nerve stimulators and drug-release devices with the
potential to reduce the severity of epileptic seizures [4].

Two main approaches have been developed for epileptic
seizure detection: patient-specific classification [4], [5],
[6], [7], [8] and inter-patient classification [9], [10], [11],
[12]. While the patient-specific approach can achieve
high accuracy by accounting for individual characteristics,
it requires generating individual classification models for
each patient, which may not be feasible in clinical and
emergency settings [13], [14]. On the other hand, the
inter-patient approach aims to detect seizures in any patient,
making it more suitable for clinical use [10]. However, this
approach faces challenges in accounting for features common
to different individuals while maintaining high generalization
performance.

Recent efforts in inter-patient seizure detection have
focused on feature extraction from EEG signals. Vari-
ous techniques have shown effectiveness, including time-
domain features [15], [16], [17], [18] and frequency domain
features [19], [20], [21]. However, while these methods
have shown success in capturing various aspects of EEG
signals, there remains a challenge in fully representing the
complex, non-Gaussian nature of EEG signals [22], [23], [24]
during seizures. This presents an opportunity to explore new
approaches that may provide additional insights into these
signal characteristics.

To contribute to this ongoing research and address the chal-
lenge of capturing non-Gaussian properties, we previously
introduced an approach to feature extraction for seizure detec-
tion based on a Scale Mixture Model (SMM) of EEG [23].
This model assumes that the non-Gaussianity of EEG signals
arises from the stochastic fluctuations of their variance, which
manifests as subtle amplitude variations leading to heavier
tails in the signal distribution. By formulating this structure in
a stochastic model with variable Gaussianity, we can compute
non-Gaussianity features that reflect amplitude fluctuations.
Our statistical analysis demonstrated that the parameters
derived from the SMM showed a stronger correlation
with epileptic seizures compared to conventional features,
suggesting their potential effectiveness in seizure detection.
However, the effectiveness of this approach in detecting
seizures for unseen patients had not yet been demonstrated
in a practical setting.

Building upon these findings, in this paper, we propose
an automatic epileptic seizure detection method based on
a Recurrent Neural Network (RNN) with temporal features
derived from the SMM of EEG. We utilize the SMM param-
eters as features, capturing the non-Gaussian characteristics
and amplitude information of EEG signals in a unified
framework, and employ an RNN to model the temporal
dynamics of these features.

The main contributions of this study are as follows:
• Comprehensive feature extraction using a scale
mixture-based stochastic model that captures both

non-Gaussianity and amplitude information of EEG
signals during seizures.

• Temporal dynamics modeling through an RNN for
seizure detection, enabling the analysis of time-series
changes in the extracted features.

• Extensive ablation studies to validate the contribution of
our proposed features and classification models, com-
paring them with existing feature extraction methods
and classifier architectures.

By focusing on the unique non-Gaussian nature of EEG
signals during seizures, our approach has the potential to
detect subtle changes in EEG patterns. Additionally, we aim
to contribute to ongoing efforts to improve the accuracy and
generalizability of epileptic seizure detection among patients
by integrating SMM-based features specific to non-Gaussian
characteristics with conventional features and by leveraging
the temporal modeling capabilities of RNNs.

The remainder of this paper is organized as follows:
Section II reviews related work; Section III outlines the
proposed epileptic seizure detection method; Section IV
details the experimental setup; Section V presents the results;
Section VI discusses the findings; and Section VII concludes
the paper.

II. RELATED WORK
A. EEG-BASED EPILEPTIC SEIZURE DETECTION
1) EEG FEATURE EXTRACTION
Feature extraction plays an important role in epileptic seizure
detection from EEG signals. Various approaches have been
proposed to address this challenge. Time-domain features,
such as amplitude-based measures, entropy, and higher-order
statistics, have been widely used due to their simplicity
and interpretability [15], [16], [17], [18]. Frequency-domain
features, including band-specific power, spectral character-
istics, and wavelet features, have also shown effectiveness
in capturing the rhythmic nature of seizure activity [19],
[20], [21]. A promising approach that balances computa-
tional cost and accuracy involves extracting time-domain
features from specific frequency bands of interest in the
EEG signal [15], [25]. This method allows for a focused
analysis of the most relevant spectral components of the
seizure activity while retaining the temporal dynamics of the
signal.

However, the complex nature of EEG signals during
seizures suggests that a more comprehensive approach to
feature extraction might be beneficial. Model-based features,
which attempt to capture the underlying stochastic properties
of the EEG, have shown promise in this regard. Our previous
work introduced an SMM for EEG analysis, which aims to
capture both the non-Gaussian characteristics and amplitude
information of EEG signals during seizures in a unified
framework [23].

2) CLASSIFICATION MODELS
The choice of classifier is crucial in modeling the relationship
between extracted features and seizure activity. Classifiers for
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seizure detection can be broadly categorized into static and
dynamic approaches.

Static classifiers, such as Support Vector Machines
(SVM) [16], [26] and Multilayer Perceptron (MLP) [26],
[27], have been widely used due to their computational effi-
ciency and good performance on a variety of features. These
methods treat each time point or window independently,
which can be effective for many types of features. However,
they may not fully capture the temporal dynamics of EEG
signals during seizures, which can be critical for accurate
detection.

Dynamic classifiers, on the other hand, explicitly model
the temporal dependencies in the EEG signal. HiddenMarkov
models [28], [29] and RNNs [12], [30] are examples of such
approaches. These methods can capture the evolving patterns
of seizure activity over time, potentially leading to improved
detection accuracy. In particular, the recent advancements in
deep learning have led to thewidespread use of RNNvariants,
such as Long Short-Term Memory (LSTM) and gated
recurrent unit (GRU), in epileptic seizure detection tasks.

One particular dynamic classifier that has shown promise
in biomedical signal analysis is the Recurrent Log-linearized
Gaussian Mixture Network (R-LLGMN) [31]. This classifier
is a time-series discriminative model that extends the
Gaussian mixture model and hidden Markov model to an
RNN framework. Its simple structure and effectiveness in
scenarios with limited training data make it an interesting
candidate for seizure detection tasks.

3) PROPOSED APPROACH
Building upon these existing methods, our work aims to
combine the strengths of model-based feature extraction and
dynamic classification. We propose to use features derived
from the stochastic model, the SMM, of EEG, which captures
both non-Gaussian characteristics and amplitude informa-
tion, as inputs to an R-LLGMN classifier. This approach
seeks to leverage the comprehensive signal representation
provided by the SMM features while exploiting the temporal
modeling capabilities of the R-LLGMN.

By integrating these components, we aim to address
some of the challenges in inter-patient seizure detection,
particularly in capturing the complex, non-Gaussian nature
of EEG signals during seizures and modeling their temporal
evolution.

B. SCALE MIXTURE MODEL OF EEG
The Scale Mixture Model [23] (SMM) describes the
stochastic relationship between the recorded EEG signal
x ∈ RD (D is the number of electrodes) and its covariance
matrix. Although there are several variations of the SMM
formulation, we follow the form used in our previous study,
which uses a latent weight variable u ∈ R+ [32], [33].
In the model, the conditional distribution of the EEG

signal x, given u, is expressed via the multivariate Gaussian
distribution with a mean vector of zero and a covariance

matrix of u9 as follows:

p(x|u) = N (x|0, u9)

=
1

(2π )D/2|u9|1/2
exp

[
−

1
2u
1

]
, (1)

where 9 ∈ RD×D is the scale matrix of the EEG, and the
covariance matrix u9 is represented by weighting 9 with u.
1 is the Mahalanobis distance, defined as:

1 = x⊤9−1x. (2)

For the distribution of the latent variable u, we set an inverse
gamma distribution:
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where ν ∈ R+ is the degrees of freedom parameter.
Considering the marginal distribution of x, the latent

variable u can be integrated out as follows:
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From (4), the EEG signal distribution p(x) is modeled by
summing an infinite number of Gaussian distributions with
different covariance matrices, which enables the consider-
ation of the amplitude uncertainty of EEG signals. In this
representation, the SMM is parameterized by ν and 9.

While previous work has demonstrated the effectiveness of
SMM-derived features in distinguishing between seizure and
non-seizure EEG segments [23], their potential in a practical
seizure detection framework, particularly when combined
with advanced classification techniques, remains to be fully
explored. In this paper, we address this gap by integrating
SMM-derived features with an RNN classifier.

III. METHODS
Fig. 1 shows an overview of the proposed epileptic seizure
detection method. The proposed method consists of signal
preprocessing, feature extraction based on the stochastic EEG
model, and an epileptic seizure classifier. First, preprocess-
ing removes muscle artifacts superimposed on EEG and
extracts the bands that contain epileptic seizure features in
the EEG signals. Second, the feature extraction provides
non-Gaussianity and amplitude information of EEG signals
based on the SMM. Finally, the epileptic seizure classifier
uses a recurrent neural network, R-LLGMN, to calculate the
posterior probability of the occurrence of an epileptic seizure
by using features extracted from the EEG signals and to detect
epileptic seizures.
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FIGURE 1. Overview of the proposed method. In the preprocessing stage,
the γ band signal (25–79 Hz) is extracted using a bandpass filter after
applying blind source separation based on canonical correlation analysis
(BSS-CCA) for artifact removal from the measured EEG. Next, parameter
estimation and feature extraction based on the stochastic EEG model are
performed. The extracted features are then input into a recurrent
log-linearized gaussian mixture network (R-LLGMN), which calculates the
posterior probability for seizure/non-seizure by considering the temporal
evolution of these features.

A. PREPROCESSING
Preprocessing aims to reduce artifacts in EEG signals and
extract frequency band components that enable effective
epileptic seizure detection. We apply a Blind Source
Separation based on Canonical Correlation Analysis (BSS-
CCA) [34], [35] to the EEG to reduce muscle artifacts in
the signals. Let Xraw

= {xrawt ∈ RD
}
T
t=1 be the T points

of raw EEG signals, where D is the number of channels.
We assume that the EEG signals are obtained from a mixture
of unknown signal sources st ∈ RD. BSS aims to decompose
the signal sources st from the observed signals by introducing
a de-mixing matrixW ∈ RD×D as follows:

st =Wxrawt . (6)

In the BSS-CCA method, CCA is used to estimate signal
sources. Let yrawt = xrawt−1 be the temporally delayed
signals of the original EEG. We perform CCA for xrawt
and yrawt . Consequently, components are extracted such
that the correlation coefficient between the EEG signal
and its delayed version is maximized and regarded as the
signal sources. Therefore, the obtained D signal sources are
uncorrelated with each other, havemaximum autocorrelation,
and are ordered by decreasing autocorrelation index.

Muscle artifacts tend to have properties of temporal white
noise rather than brain activity and, thus, present a low
autocorrelation. Therefore, we set the columns that represent
the activations of the components with low autocorrelation to
zero in the mixing matrix A = W−1 and reconstruct EEG
from the sources.

xcleant = Acleanst , (7)

where Aclean is a mixing matrix in which the columns
corresponding to muscle artifacts are set to zero. The above
procedure reduces the influence of muscle artifacts in EEG.

Removing the muscle artifact component may cause the
covariance matrix of Xclean

t to not be full rank. Hence,

FIGURE 2. Graphical representation of the scale mixture model (SMM),
which describes the stochastic relationship between an EEG signal {xt }
and its covariance matrix. The covariance matrix ut 9k is determined by
the random latent variable ut and the scale matrix 9k . The white nodes
are random variables, and the black nodes are parameters to be
estimated.

the parameter estimation of the stochastic model becomes
inaccurate. We prevent the rank deficiency of the covariance
matrix by adding a small amount of white noise, which
follows a Gaussian distribution, N (0, sd ), to each dimension
ofXclean

t independently. Here, sd controls the noise amplitude
and is set to sd = εσd , where σd is the standard deviation of
the EEG signals in channel d and ε ≪ 1 is a sufficiently small
constant.

We then extract the components in a specific frequency
band from EEG signals by using a third-order Butterworth
band-pass filter. The filter passband was set to the γ

band (25–79 Hz), a high-frequency band that well-reflects
epileptic seizures, based on previous findings [23], [25],
[36], [37]. Using this frequency band also has the advantage
that low-frequency noise caused by cable oscillations can
be ignored. The applied preprocessing allows for both the
reduction of the influence of artifacts and extraction of
representative EEG signals in a frequency band that suitably
reflects epileptic seizure characteristics.

B. FEATURE EXTRACTION WITH SLIDING WINDOW
In this subsection, we describe the feature extraction of EEG
signals using the SMM. For the preprocessed γ band signal
X = {xt }Tt=1, we apply a moving window of length W and
a slide width S. The signals within the k-th window are
denoted as Xk = {xt | t ∈ [tk , tk + W − 1]}, where
tk = (k − 1)S + 1 represents the start time of the k-th
window. Here, the window index k ranges from 1 toK , where
K = ⌊(T − W )/S⌋ + 1 is the total number of windows.
We estimate the parameters of the SMM for the signals
within each window and extract features from the estimated
parameters (see Fig. 2).
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1) PARAMETER ESTIMATION OF THE SCALE MIXTURE
MODEL
Let us consider the estimation of the parameters of the SMM,
νk and 9k , given the k-th window signals Xk . The model
parameters can be estimated by maximizing the marginal
likelihood

p(Xk ) =
tk+W−1∏
t=tk

p(xt ). (8)

We conduct this optimization for νk and 9k based on the
Expectation-Maximization (EM) algorithm [38]. The EM
algorithm iterates via the application of an expectation step
(E-step) and a maximization step (M-step).

The estimation procedures are as follows:
(i) Initialize each parameter by selecting arbitrary starting

values.
(ii) E-step. Calculate the expectation of the complete-data

log-likelihood, denoted as Q(νk ,9k ).

Q(νk ,9k )

= E

ln
tk+W−1∏
t=tk

IG(ut | νk/2, νk/2)N (xt |0, ut9k )


=

tk+W−1∑
t=tk

[
−
D
2
ln (2π)−

D
2

E [ln ut ]−
1
2
ln |9k |

−
1
2

E
[
u−1t

]
1t +

νk

2
ln
νk

2
− ln0

(νk
2

)
−

(νk
2
+ 1

)
E [ln ut ]−

νk

2
E

[
u−1t

]]
, (9)

where E
[
u−1t

]
and E [ln ut ] are derived by calculating

the posterior distribution p(ut |xt ) of the latent variable
ut as follows:

E
[
u−1t

]
=
νk + D
νk +1t

, (10)

E [ln ut ] = − lnE
[
u−1t

]
+ ln

(
νk + D

2

)
− φ

(
νk + D

2

)
, (11)

where φ(·) is the digamma function.
(iii) M-step. Update the parameters by maximizing

Q(νk ,9k ). By setting the derivative of Q(νk ,9k ) with
respect to 9k equal to zero, the new scale matrix is
obtained as

new9k =
1

tk +W − 1

tk+W−1∑
t=tk

E
[
u−1t

]
xtx⊤t . (12)

Because a closed-form expression for the degrees of
freedom parameter νk does not exist, we estimate νk by
iteratively maximizing Q(νk ,9k ) using the bisection
method.

newνk = arg max
νk

Q(νk , new9k ). (13)

Algorithm 1 Proposed EEG Feature Extraction
Procedure
Input: Raw EEG signal Xraw

= {xrawt }
T
t=1, window

lengthW , window stride S
Output: Feature vector {zk}Kk=1
Xclean

= BSS-CCA(Xraw) ; // Clean signals
X = Bandpass(Xclean) ; // Extract γ band
K = ⌊(T −W )/S⌋ + 1
for k ← 1 to K do

tk = (k − 1)S + 1;
Xk = {xt | t ∈ [tk , tk +W − 1]};
zk = ComputeFeature(Xk );

return {zk}Kk=1;
Function ComputeFeature(Xk ):

Initialize νk and 9k ;
while ln p(Xk ) have not converged do

Calculate E[u−1t ] and E[ln ut ] using (10) and
(11) ;
Update νk and 9k using (13) and (12);

return zk = [1/νk , ψcz
k ]⊤;

(iv) Evaluate the log-likelihood ln p(Xk ) and repeat steps
(ii)–(iv) until the calculation converges.

This optimization step promotes convergence towards a
local optimum by exploiting the monotonic increase in
likelihood guaranteed by the EM algorithm [39]. While the
computational cost depends on the input dimensionality and
window length, convergence is achieved in approximately
0.2 s under our experimental conditions. We have examined
the computational cost in detail in our previous work [23].

In the SMM framework, the non-Gaussianity of EEG
signals is modeled through the stochastic fluctuation of
the covariance matrix, which is controlled by the latent
variable ut . This statistical representation corresponds to
subtle variations in the EEG amplitude in the observed data.
Therefore, by estimating νk and9k from the EEG signals, the
stochastic fluctuation and magnitude of the EEG amplitude
can be evaluated.

2) FEATURE EXTRACTION
We extract temporal features to detect epileptic seizures
based on the estimated model parameters, νk and 9k , for
the k-th window. Here, we focus on the non-Gaussianity of
EEG signals and amplitude information that are generally
considered effective for epileptic seizure detection [9].

Based on our previous study [23], we calculate 1/νk , the
reciprocal of νk , as a non-Gaussianity feature characterizing
a stochastic fluctuation in EEG amplitude. In the preliminary
evaluation, the network training became very unstable when
all dimensions of 9k were used as inputs. Therefore, a single
element ψcz

k corresponding to the electrode Cz is extracted
from 9k and used as a feature value. The Cz channel is
located at the center of the scalp and is expected to be able
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FIGURE 3. Splitting of the training and test data for R-LLGMN. For the
training data, features of length TL are extracted from the beginning of
the seizure segment without overlapping, and are used as the training
data for the seizure class. An equal number of features are randomly
extracted from the non-seizure segment and used as the training data for
the non-seizure class. For the test data, features are extracted in a sliding
window of length TL, and the test data are obtained by moving the sliding
window by TS .

to detect seizures occurring in both hemispheres in a stable
manner [40], [41].

Based on the above, we extract the feature vector
zk = [1/νk , ψcz

k ]⊤ for each window. Algorithm 1 shows
the procedure for extracting the feature vector. By using the
time series of this feature vector {zk}Kk=1 as input to the
classifier, we can detect seizures by considering the stochastic
fluctuation (i.e., non-Gaussianity) and magnitude of EEG
amplitude. Hereafter, we omit the subscript k for the window
index when it is not necessary.

C. AUTOMATIC SEIZURE DETECTION
We segment the extracted features {zk}Kk=1 for both training
and testing purposes, as illustrated in Fig. 3 for seizure
detection. To address the common imbalance between seizure
and non-seizure data points, we balance the training data
by extracting an equal number of points for each class. For
the seizure class, we extract features from the beginning of
seizure segments for a time length TL without overlapping.
For the non-seizure class, we randomly extract the same num-
ber of features, also of length TL , from non-seizure segments.
For testing, we apply a sliding window of length TL to the cal-
culated features, moving it by TS over the test data. After seg-
mentation, we normalize both training and test data according
to the mean and standard deviation of the training data.

An RNN is used as a detection model for seizure detection,
taking into account temporal changes in the extracted fea-
tures. As a specific architecture, we use the R-LLGMN [31],
which has a simple structure but shows excellent performance

FIGURE 4. International 10–20 electrode montage. The 19-channel
surface electrodes are placed on the scalp according to the international
10–20 electrode placement system, with reference electrodes on both
earlobes: A1 and A2.

in biological signal recognition. The R-LLGMN incorporates
a hidden Markov model with Gaussian mixture models as
the output probability distributions in its network structure,
enabling pattern classification that considers the time-series
characteristics of the input data. The R-LLGMN allows
for seizure detection, considering the temporal variation of
feature vectors within a time length of TL .
The R-LLGMN is trained by minimizing the cross-entropy

loss for seizure and non-seizure training data based on the
backpropagation through time method [42]. The test data
are then input into the trained R-LLGMN, and the posterior
probabilities for each class are calculated. If the posterior
probability of the seizure class exceeds a threshold value θth,
then the corresponding data are determined to represent a
seizure; otherwise, they are classified as non-seizure.

IV. EXPERIMENTS
A. DATASET
To verify the classification performance of the proposed
method, we conducted an experiment to detect epileptic
seizures. In this experiment, we used a dataset of 20 patients
with focal epilepsy presented in [23]. The patients’ infor-
mation is summarized in Table 1. Each patient had one
seizure recording. The EEG signals were recorded at a digital
sampling frequency of fs = 500 Hz using an EEG system
(Neurofax EEG-1218, Nihon Kohden, Tokyo, Japan), while
the patients were lying in the supine position. Nineteen-
channel surface electrodes (D = 19) were placed on the
scalp of each patient according to the international 10–20
electrode placement system, with reference electrodes on
both earlobes: A1 and A2 (see Fig. 4).

The onset and offset of a focal seizure in each EEG record-
ing were marked by a board-certified epileptologist (T.A.).
Written informed consent was obtained from all patients.
The experiments were approved by the Okayama University
Ethics Committee (approval No: 1706–019). For the analysis,
each EEG recordingwas clipped to approximately 240–420 s,
including the pre- and post-seizure segments.

B. EXPERIMENTAL CONDITIONS
During EEG signal preprocessing, components with an
autocorrelation coefficient of CCA ρ < 0.99 were removed
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TABLE 1. Patient conditions.

asmuscle artifacts. For feature extraction of 1/νk andψcz
k , the

length of the sliding windowW and slide width S were set to
7,500 (i.e., 15 s) and 500 (i.e., 1 s), respectively; these settings
were the same as those used by Furui et al. [23]. With this
setup, the features were calculated every second.We searched
for the optimal value of time length TL when selecting data
segments for epileptic seizure classification. In the dataset,
the shortest epileptic seizure duration was 16 s; therefore,
we evaluated the classification performance by setting the
time length to TL = 500, 1500, 2500, . . . , 7500. Given the
sampling frequency fs = 500 Hz, this corresponds to a time
window of T ′L = TL/fs = 1, 3, 5, . . . , 15 s. We set TS = S.

To evaluate the classification performance, leave-one-
patient-out cross-validation was applied to the dataset. This
validation used data extracted from 19 patients for training
and data from the remaining patient for testing. For the
20 cross-validation experiments, we calculated the mean
and standard error of the following evaluation metrics:
accuracy, precision, sensitivity, specificity, Matthews Cor-
relation Coefficient (MCC), the Area Under the Receiver
Operating Characteristic Curve (AUC-ROC), and the Area
Under the Precision-Recall Curve (AUC-PR). This multi-
metric approach provides a balanced perspective, particularly
in detecting infrequent yet critically important seizure events.
It allows us to capture aspects of performance that might be
obscured by accuracy metrics alone in imbalanced datasets.

The training of the R-LLGMN employed stochastic
gradient descent with a batch size of 32 and a learning
rate of 0.001. The number of epochs was set to 100.
The hyperparameters of the R-LLGMN were set to state
K = 2 and component Mc = 1. The threshold of the
posterior probability, θth, was set to the value that gave
the maximum F1 score on the precision-recall curve. This
threshold calculation was performed for the training data, and
the same value was applied to the test data.

FIGURE 5. Averaged performance metrics for the proposed method
according to time length T ′

L = TL/fs over patients. The results were
calculated based on the leave-one-patient-out cross-validation.

C. ABLATION STUDY
We conducted two ablation studies to investigate the
effectiveness of the proposed method over existing method-
ologies. In this evaluation, we fixed the time length to
T ′L = TL/fs = 15 s.
First, we evaluated the performancewhen the classification

model in the proposed method was replaced with other
models. We used three static models—MLP, SVM, and
Log-linearized Gaussian Mixture Network (LLGMN) [43]—
and one dynamic model, LSTM, as comparison models. The
MLP had one hidden layer with 64 units and used the ReLU
activation function. The SVM used the radial basis function
kernel with the kernel coefficient set to 0.5. The LLGMN
was equivalent to the R-LLGMN with the dynamic structure
removed (i.e., TL = 1, K = 1,Mc = 1).

Next, we compared the performance when the input fea-
tures of the proposed method were replaced. As existing fea-
tures, we used the variance (Var) [17], the third-order cumu-
lant (ToC) [18], and the approximate entropy (ApEn) [15] of
the EEG signals. Additionally, we evaluated the performance
when the proposed feature set was combined with these
existing features.

D. PATIENT-SPECIFIC ANALYSIS
We performed a patient-specific analysis to evaluate the
sensitivity and specificity of the proposed method. We com-
pared the performance of the proposed method with that of
Persyst P13 (Persyst Development, San Diego, CA, USA),
a commercially available EEG classification program with
automatic seizure detection. For Persyst, the raw recorded
EEG signals were used as an input, and its seizure detection
outputs were evaluated. It should be noted that Persyst was
not trained using our dataset because it uses a built-in pre-
trained model.

V. RESULTS
Fig. 5 shows the averaged accuracy, precision, sensitivity,
and specificity obtained from the proposed method according
to time length T ′L = TL/fs. All metrics increased
as T ′L increased, and the highest values were obtained when
T ′L = 15 s. Fig. 6 shows examples of seizure detection
results for Patients C, M, and Q. In the figure, the raw EEG
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FIGURE 6. Examples of seizure detection results for (a) Patient C, (b) Patient M, and (c) Patient Q. The shaded area represents the epileptic
seizure occurrence annotated by an epileptologist. The dashed lines in the posterior probability plots are the seizure detection thresholds,
which are adjusted for each validation fold.

TABLE 2. Performance metrics for each classification model (mean ± standard deviation). Best performance is indicated in bold while the second best is
underlined.

waveforms, preprocessed waveforms, features 1/ν and ψcz,
posterior probabilities, and their seizure detection results are
illustrated in order, from the top. The prediction results are
shown for the proposed method using R-LLGMN, its static
version LLGMN, and the commercially available software
Persyst. The gray-shaded areas indicate the epileptic seizure
occurrences as diagnosed by an epileptologist. The EEG
waveforms are shown only for the Cz channel.

The results of the ablation study are shown in Table 2 for
the classification models and in Table 3 for the input features.
Table 2 lists the performance metrics for each classification
model. Overall, the dynamic classifiers (i.e., LSTM and
R-LLGMN) tended to show better performance. In particular,
the proposed method with R-LLGMN outperformed the
comparison models in terms of accuracy, precision, speci-
ficity, and MCC. Table 3 lists the performance metrics for
each input feature. The proposed feature set alone or in
combination with existing features tended to outperform the
existing features. Specifically, the proposed feature set alone
showed better performance in terms of precision and MCC,
while the combination of the proposed feature set and ApEn

showed better performance in terms of accuracy, specificity,
and AUC.

Table 4 summarizes the patient-specific sensitivity and
specificity. We performed the McNemar test (significance
level: 5%) for the sensitivity and specificity of each patient
to compare these metrics between the proposed method
and Persyst. For sensitivity, significantly higher proportions
(p < 0.05) occurred in 10 patients for the proposed method
and in five patients for Persyst. For specificity, significantly
higher proportions occurred in one patient for the proposed
method and in 13 patients for Persyst. Additionally, the
proposed method exhibited non-zero sensitivity for all
patients, which means that the proposed method detected
epileptic seizures in every patient correctly.

VI. DISCUSSION
In this paper, we proposed an epileptic seizure detection
method that utilizes a stochastic EEGmodel with a scale mix-
ture structure. In the proposed method, two features, namely,
the non-Gaussianity and amplitude information of EEG,
are calculated based on the stochastic model. The seizure
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TABLE 3. Performance metrics for each feature set (mean ± standard deviation). The ‘+’ symbol denotes the combination of each feature along the input
dimension. Best performance is indicated in bold while the second best is underlined.

TABLE 4. Sensitivity and specificity for each patient. Superior
performance is indicated in bold.

probability is then calculated by inputting the time-series
changes of the features into a recurrent neural network.
In the experiment, we investigated the performance of seizure
detection on a dataset of 20 epilepsy patients. To evaluate
the effectiveness of the proposed method, we conducted
a comprehensive assessment encompassing several aspects:
performance evaluation across varying time lengths for
segmentation, efficacy of the dynamic structure, effectiveness
of the feature set, and patient-specific performance analysis.

All the evaluation metrics increased as time length T ′L =
TL/fs increased (Fig. 5). Therefore, the proposed method
with a long observation time can properly learn the temporal
changes in the features of epileptic seizures, which typically
last for on the order of tens of seconds. However, for
real-time seizure detection, a longer T ′L setting requires
more data buffer capacity, resulting in an increased time
delay in detection. Depending on the degree of immediacy
required for the detection, the time length setting may require
adjustment.

Dynamic classifiers demonstrated superior performance
compared to static classifiers (Table 2). This result can
be attributed to the ability of time-varying structures to
adequately capture the non-stationarity of EEG signals.
Furthermore, observation of the differences in posterior
probabilities between R-LLGMN and its static counterpart,
LLGMN (Fig. 6), suggests that classifiers with dynamic
structures can mitigate abrupt changes in posterior probabil-
ities, thereby reducing false positives. Among the dynamic
classifiers, R-LLGMN slightly outperformed LSTM, likely
due to its simpler structure. While R-LLGMN may not be
capable of learning long-term and complex dependencies
like LSTM, it appears to possess sufficient learning capac-
ity for problems involving relatively short-term temporal
changes, such as the one addressed in this study. These
findings demonstrate that considering the temporal evolution
of the proposed feature set, including non-Gaussianity
and amplitude, enables appropriate detection of epileptic
seizures.

The proposed feature set demonstrated overall superior
performance compared to existing feature sets (Table 3).
Analysis of the examples in Fig. 6 reveals that 1/ν tends
to respond strongly to signal non-stationarity, capturing
characteristics distinct from simple amplitude variations.
This suggests that the combination of 1/ν with ψcz, which
reflects amplitude, effectively contributes to the comprehen-
sive evaluation based on the stochastic model. Furthermore,
integrating the proposed feature set with existing methods
yielded overall performance improvements compared to
the existing methods alone. Interestingly, combining the
proposed features with ApEn [15], which individually
showed notably low precision and specificity, resulted in
the best specificity and AUC-PR scores. This improvement
can be attributed to ApEn capturing signal pattern com-
plexity from a different perspective than the proposed 1/ν
feature, enabling a more comprehensive evaluation when
used in combination. In conclusion, the proposed feature
set demonstrates its efficacy both independently and as a
valuable complement to existing feature sets, offering a
more comprehensive approach to signal analysis in this
context.

The proposed method tends to provide a higher sensitivity
than Persyst (Table 4).Moreover, as illustrated in Fig. 6, while
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Persyst completely missed the detection for some patients,
the proposed method successfully detected seizures across
all patients. However, the specificity of Persyst tends to be
higher than that of the proposed method. To reduce the false
alarm rate in clinical settings, Persyst only indicates the
occurrence of a seizure if the seizure probability exceeds
a certain value for more than 11 s [44]. Therefore, while
seizure detection tends to fail in patients with short seizure
segments, false positives due to noise are suppressed in
Persyst, resulting in higher specificity. This specificity
satisfies clinical requirements tominimize false-positive rates
as much as possible. However, for patients with frequent
epileptic seizures, where detailed seizure detection is crucial,
it is necessary to maximize sensitivity while maintaining a
minimum level of specificity. In this regard, the proposed
method demonstrates superiority by achieving excellent
sensitivity with only a slight compromise in specificity.

VII. CONCLUSION
In this paper, we presented an automatic epileptic seizure
detection method using a recurrent neural network with
input features obtained from a scale mixture-based stochastic
EEG model, the SMM. In the proposed method, after
applying preprocessing to EEG signals, features reflecting the
non-Gaussianity and amplitude of the signals are extracted
based on the stochastic model. Subsequently, epileptic
seizures can be detected using these features as the input to a
classifier with a dynamic structure.

We experimentally evaluated the epileptic seizure classifi-
cation performance using EEG recordings from 20 patients
diagnosed with focal epilepsy. Our ablation study of
classifiers and features demonstrated the effectiveness of
each component in the proposed method. The class of
dynamic classifiers, particularly the R-LLGMN adopted in
our approach, exhibited superior performance in epileptic
seizure detection. Furthermore, our proposed feature set
demonstrated dual efficacy: it outperformed existing feature
sets when used alone and enhanced performance when
combined with them. These findings validate both the
individual and combined strengths of our method’s core
elements. The demonstrated robustness of our proposed
features in epileptic seizure detection tasks highlights the
potential of our approach for advancing automated epileptic
seizure detection.

In this study, seizure detection was conducted on patients
with focal epilepsy. However, as the statistical characteristics
of EEG signals differ depending on the type of seizure [45],
a model created for one type may not be effective for
other types. In future research, we will investigate the
generalization performance of the proposed method by
increasing the number of seizure types and extending analysis
times. We also plan to extend the stochastic EEG model
by including features related to skewness [46], which are
independent of the features used in this study, to further
improve epileptic seizure detection.
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