
Received 25 September 2024, accepted 25 October 2024, date of publication 29 October 2024, date of current version 18 November 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3487852

TySA: Enforcing Security Policies for
Safeguarding Against Permission-Induced
Attacks in Android Applications
XINWEN HU
Hunan Normal University, Changsha, Hunan 410081, China

e-mail: huxinwen@hunnu.edu.cn

This work was supported in part by the Young Scientists Fund of the National Natural Science Foundation of China under Grant 62402179,
in part by the Natural Science Foundation of Hunan Province of China under Grant 2024JJ6321, and in part by Hunan Normal University
Talent Special Project under Grant 2023053003.

ABSTRACT Android applications (apps) are ubiquitous in complex environments. Although permission-
based access control mechanism in Android apps can ensure the proper access of information to a certain
extent, it cannot enforce security policies on information propagation, which may cause permission-induced
attacks. Our work is motivated by the problem of enforcing security policies on explicit and implicit
information flows under the premise of the permission checks/requests at runtime in the Inter-Component
Communication (ICC). To this end, we design a formal calculus for reasoning operations (e.g., permission
checks and permission requests at runtime) and interactions (e.g., ICC) in Android apps. In addition,
we introduce a novel type system based on the proposed formal calculus for checking secure information
flow to prevent permission-induced attacks in Android apps. A soundness theorem of this type system is also
proved with respect to non-interference property in Android apps.Finally, we realize a prototype Tysa based
on the K-framework (K) and illustrate its effectiveness.

INDEX TERMS Android apps, permission-induced attacks, type systems, soundness proofs, K-framework.

I. INTRODUCTION
Android apps, managing personal data, interacting on-line
to share information and accessing sensitive services [1],
have become ubiquitous and exponentially increased in
number recently [2]. According to the latest statistics [3],
[4], the number of Android apps in the Android Google
Play Store so far has exceeded 3 million and is growing
at an average rate of more than 30,000 apps per month.
As apps become more and more sophisticated in function,
ensuring their security has become a pressing concern [5],
[6], [7]. Although permission/based access control is one of
the major Android security mechanisms to prevent apps from
privacy data leakage or trusted data tampering to a certain
extent [8], it is intriguing that a large proportion of apps are
still extremely vulnerable to adversarial attacks, especially

The associate editor coordinating the review of this manuscript and

approving it for publication was Leandros Maglaras .

permission/induced attacks involving multiple apps [9], [10],
[11], [12], [13], [14], [15], [16], [17], [18].

To tackle this problem, many dynamic and static analysis
techniques of program analysis have been proposed for
Android apps [19]. In the dynamic analysis methods,
the dynamic behaviors (system calls, API calls, etc.) and
responses of the apps are analyzed via inputting a set of
required test cases during the execution of the apps [5], [19],
[20], [21], [22], [23], [24], [25]. In the static analysismethods,
apps can be extracted for some patterns (e.g., permissions,
intents, data flow, control flow), without being executed [5],
[16], [19], [20], [26], [27], [28], [29], [30]. Bothmethods have
their own strengths and weaknesses. But in terms of program
analysis, as the number of Android apps being analyzed
increases, the costs of program analysis methods increase
exponentially [5], [20].

As a formal method to verify the type constrains of
the program, type checking can not only complement
program analysis to tackle the scalability issue, but also

165026

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0001-9566-5424
https://orcid.org/0000-0001-5360-9782

X. Hu: TySA: Enforcing Security Policies for Safeguarding Against Permission-Induced Attacks

enforce information flow policy on information propagation
to develop Android apps in security critical scenarios [5],
[9], [30], [31], [32], [33], [34], [35]. However, with the
development of the Android system, the existing type
checker cannot automatically enforce security policies on the
information flows (explicit or implicit) under the premise of
the permission checks/requests at runtime in the ICC, so as to
prevent permission/induced attacks among multiple apps [9],
[31], [32], [33], [34], [35].

The aforementioned challenges underline the importance
of developing a sound and automatic type checker for
Android apps. To summarize, we made the following
contributions:

• We design a formal language including syntax and
semantics for Android apps that can particularly reason
about ICC commands and permission checks/requests at
runtime.

• We present a lightweight type system for Android apps
based on the formal language and prove soundness of the
type systemwith respect to the non/interference property
in apps.

• We implement a prototype of TySA based on the K [36],
[37] (which has inherent advantages for defining the
type system) and demonstrate the effectiveness of our
methodology.

The next section motivates our approach by four
permission/induced attacks. In Sect. III, we present a core
language as a simplified abstract programming model for
security-critical Android apps. Sect. IV introduces a sound
security type system for Android apps. In Sect. V, we present
implementation details of the prototype Tysa. In Sect. VI, the
related work and some discussions are given. We present the
conclusion in Sect. VII.

II. MOTIVATING EXAMPLES
Permission/based access control, including permission check
and permission request, is the key security mechanism in
Android apps [2], [9], [31], [38]. The permission check,
enforced by the API checkPermission, controls which calling
apps/components can invoke the called app/component where
the permission check is located, and the permission request,
enforced by the API requestPermission, controls which
called apps/components can be invoked by the calling
app/component where the permission request is located [38],
[39]. In this paper, we use caller to refer to the calling
component in the calling app, and use callee to refer to the
called component in the called app.

Consider the pseudo/code shown in Figure 1. It con-
sists of a component getContactNo_Activity, which
can get contact number if the requested permission
(READ_CONTACT) is granted successfully at runtime
(line 6). In addition, as a callee, this component
also checks whether caller is granted with permission
READ_CONTACT successfully at runtime to access the

FIGURE 1. Sample code for getting contact number with permission
check and permission request at runtime.

protected data in callee (line 4). That is, this component
is currently guarded and granted by READ_CONTACT.
To some extent, permission/based access control can

prevent leakage of sensitive information or tampering with
trusted information on a single Android app, but it has
no restriction on information propagation. In other words,
permission/based access control does not involve the enforce-
ment of secure information flow policies [1]. However, its
combination with typing techniques may avoid information
leakage and tampering due to the collusion of multiple
Android apps. Starting from Android 6.0 (API level 23),
Android apps need to request dangerous permissions at
runtime, and allow users to grant/revoke dangerous permis-
sions at any time [40]. This change results in the traditional
type system not being applicable to the permission/based
commands.

This section describes four kinds of permission/induced
attacks caused by the collusion of multi-Android apps, which
are identified in prior research [2], to motivate the problem.
In this paper, we introduce these attacks based on two
Android apps: app1 and app2, and we name the component
comp declared in the app in the form of app.comp. The
declaration of app.comp includes the following parts: the
type1 of the component, the commands of the component,
the input parameters and the return variable of the component.
e.g., we declare app.comp of Activity type with command
c, input parameter parin and return variable parout as
follows:

activity app.comp (parin)

{letvar parout := 0 in{c return parout; }}

Based on the assumption-guarantee heuristic in the litera-
ture [41], we also introduce four annotations for expressing
permission checks and permission requests at runtime
in Android apps. e.g., (chk(p,t)) represents ‘‘check
permission p at runtime successfully’’ and (chk(p,f))
represents ‘‘fail to check permission p at runtime’’. Similarly,
(req(p,t)) represents ‘‘request permission p at runtime
successfully’’ and (req(p,f)) represents ‘‘fail to request
permission p at runtime’’. In our examples, we use xH

1We use activity, service, receiver and provider to repre-
sentActivity, Service,BroadCastReceiver andContentProvider, respectively.

VOLUME 12, 2024 165027

X. Hu: TySA: Enforcing Security Policies for Safeguarding Against Permission-Induced Attacks

to denote a sensitive variable and use xU to represent an
untrusted variable. We also assume that xH ̸= 1 and xU ̸= 1.

FIGURE 2. Sample code for privilege escalation attack.

A. PRIVILEGE ESCALATION ATTACK
Privilege escalation attack, resulting in malicious component
granted with low-level permission set can directly or
indirectly execute the high-level operation, always occurs in
the following scenario: A caller granted with low-level
permission set is not restricted to invoke an exposed
component (i.e., a component is guarded without any permis-
sions) to indirectly invoke operations of callee guarded
with high-level permission set in a different app, without
requesting for corresponding permissions successfully at
runtime [2], [11], [12], [13], [14], [18], [38].

Sample code for privilege escalation attack, con-
sisting of 3 components app1.comp1, app2.comp1
and app2.comp2, is shown as Figure 2. In subfig-
ure 2b, app2.comp1 receives parameter x2 and sends it
to app2.comp2, which depends on the content of x2 to
decide whether to send out the variable xH with high
security level or not. Here we use out(x) command to
represent an output operation that sends the value of x out
of apps. And in order to express the ICC [16], we introduce
different invocation forms for different component types.
e.g., if the caller invokes the callee of the service
type in the invocation, the ICC command in caller
adopts the form of bind (callee, x), where x is the
variable that is sent to callee. Similarly, for the callee
of activity or receiver type, call (callee,
x) or send (callee, x) form is used, respectively.
provider-type components are slightly different from

the other three types of components. They are kind of
component that can encapsulate data to help an app manage
access to data stored by itself [42]. We use query
(callee, x) and update (callee, x) to represent
reading from and writing to the provider-type component,
respectively.

From the perspective of permission checks and requests,
because app2.comp1 requests permission p1 successfully,
there is no information leakage when app2.comp1 invokes
operation out(xH) of app2.comp2 guarded by p1.
Privilege escalation will not occur if there only has app2.
However, as shown in subfigure 2a, app1.comp1 fails to
request p1 and still invokes app2.comp1 guarded without
p1 to indirectly invoke out(xH), which leads to leakage of
high-level operation.

B. PARAMETER LAUNDERING ATTACK
Parameter laundering attack, laundering the high-level data
with less privileged protection and further causing data
leakage, has a common attack scenario: A caller granted
with high-level permission set is not restricted to send
high-level data to an exposed callee and retrieve this data
without any protections [2], [9].

FIGURE 3. Sample code for parameter laundering attack.

Sample code for parameter laundering attack, consisting
of app1.comp2 and app2.comp3, is shown as Figure 3.
In subfigure 3b, app2.comp3 receives parameter x2 and
returns it.

From the perspective of permission checks and requests,
app2.comp3 is not guarded or granted by p2 and does not
handle any high-level data or operations, so app2.comp3
does not result in information disclosure. As shown in
subfigure 3a, app1.comp2 is guarded and granted with
p2, which enables it to handle high-level xH . However,
app1.comp2 sends xH to app2.comp3 and retrieves it
without p2 protection, resulting in xH can be accessible
to any component that has been granted with arbitrary
permissions.

165028 VOLUME 12, 2024

X. Hu: TySA: Enforcing Security Policies for Safeguarding Against Permission-Induced Attacks

C. PASSIVE CONTENT LEAKAGE ATTACK
Passive content leakage attack results in information leakage
mainly due to the unprotectedprovider-type component in
the vulnerable app [15]. It has a common attack scenario as
follows: A caller granted with high-level permission set
is not restricted to update high-level data to a provider-
type component guarded without any permissions, which
may passively leaks various types of sensitive in-app data [2].

FIGURE 4. Sample code for passive content leakage attack.

Sample code in Figure 4, consisting of three components,
shows an example of passive content leakage. In subfigure 4a,
as a provider-type component, app1.comp4 can store
input parameterx2 in database (i.e.,DB) or fetch data fromDB
based on the value of x2. Here we use get(DB) to specify a
get operation that a provider-type component fetches data
from DB, and use put(x,DB) to specify a put operation
that a provider-type component stores x in DB. Thus,
app1.comp3 updates xH to app1.comp4, which stores xH
in DB.
From the perspective of permission checks and requests,

app1.comp4 is not guarded or granted by p3 and does
not handle any high-level data/operations, so app1.comp4
does not result in information disclosure. However, the
following collusion of two apps can lead to information
leakage: app1.comp3 updates xH to app1.comp4, and
app2.comp4 queries data from app1.comp4 (as shown in
subfigure 4b), which results in xH can be accessible to any
component that has been granted with arbitrary permissions.

D. PASSIVE CONTENT POLLUTION ATTACK
The main reason for information pollution caused by passive
content pollution attack is the unprotected provider in
the vulnerable app [15]. There is a common attack scenario:
A caller granted with low-level permission set is not

restricted to query data from a provider-type component
guarded without any permissions, which may inadvertently
manipulates certain trusted in-app settings or configurations
and subsequently causes serious system-wide side effects [2].

In Figure 5, sample code of passive content pollution is
given. It consists of three components app1.comp5, app1.
comp6 and app2.comp5. In subfigure 5a, app1.comp5
queries data from app1.comp6, which fetches data from DB.

From the perspective of permission checks and requests,
app1.comp6 is not guarded or granted by p4 and does
not handle any untrusted (high-level)2 data or operations,
so app1 does not result in information tampering. However,
the following collusion of two apps can lead to information
tampering: app2.comp5 updates xU to app1.comp6 (as
shown in subfigure 5b) and app1.comp5 queries data from
app1.comp6, which results in xU tampering with trusted
in-app settings or configurations in app1.comp5.

FIGURE 5. Sample code for passive content pollution attack.

In order to prevent these permission/induced attacks in
Android apps, we not only need to avoid information
disclosure and tampering in the process of information
release with the aid of permission/based access control, but
also need to utilize type system to enforce the security
information flow policies on the information propagations.
Therefore, we propose a sound type system TySA for
permission/based Android apps. The rest of this paper
focuses on the examples in this subsection to illustrate the
effectiveness of TySA.

2With reference to the integrity property settings in literature [2] and [43],
the security level of untrusted information in this paper is higher than that of
trusted information.

VOLUME 12, 2024 165029

X. Hu: TySA: Enforcing Security Policies for Safeguarding Against Permission-Induced Attacks

III. CORE LANGUAGE
In the Android model, an app is always composed of a finite
set of components, which can be instantiated and invoked
by other apps/components [44]. Since the communications
between components aremostly done byBinder Inter-Process
Communications (IPC) [45] and shared states between apps
are mostly absent [2], [9], we only consider sequential
execution of apps in this paper. For the ICC within and
across apps, permission checks restrict the ability to access
callee, and permission requests restrict the ability of
the caller to access certain high-level data/operations
in the callee [38]. Therefore, we not only need to
model permission checks to describe which permissions
a component is currently guarded with, but also need to
model permission requests to denote which permissions a
component is currently granted with.

In literature [9], authors use a conditional command with
a conditional branching induced by permission testing to
indicate permission check. But they have not yet considered
the permission-based access control at runtime. Inspired
by the assumption/guarantee heuristic of the literature [41],
we introduce permission/based annotations to model permis-
sion checks and permission requests at runtime to specify
their modification of the set of permissions used to guard
the component and the set of permissions used to grant
the component, respectively. This approach can not only
improve the treatment of ICC (i.e., method calls) [41], but
also improve the reasoning about how permission checks
and permission requests at runtime affect the security of
information in the apps when ICC occurs within or across
apps, leading for instance to the possibility of a precise
and security type system for permission-based Android
apps.

A. A SIMPLE SYNTAX OF ANDROID APPS
We now proceed to design a core formal language to describe
Android apps, which havemany language features and library
dependencies [44]. To narrow our focus, as shown in our
examples in Section II, we mainly extend the core syntax
of the language considered in literature [35] with the ICC
commands and the annotations for permission checks and
permission requests at runtime in this paper.

In our language, a system, denoted by S, consists of a
finite set of apps. We use appi to represent the i-th app
in S. A component compj defined in appi is denoted
by appi.compj, which has one of the following cTypes
(component types): activity, service, receiver and provider.
We denote with C the finite set consisting of all components in
S, and denote with P the finite set containing all permissions
in S. Each component is guarded with a dynamic set of
permissions (denoted as Pgu) drawn from P due to the
permission check at runtime. Similarly, each component is
granted with a dynamic set of permissions (denoted as Pgr)
drawn from P due to the permission request at runtime. The
power set of P is written as P .

The phrases in our language are either expressions e or
commands c:

(Phrases) ph := e | c

The syntax of the expressions is given below:

(Expressions) e := v | x | e1 op e2

where v denotes an integer value,3 x denotes a variable
and e1 op e2 denotes an arithmetic expression that join
subexpressions through binary operator op (e.g., ‘‘==’’ or
‘‘<=’’).

The commands are given in the following syntax:

(Commands) c := simpleCmd; | blockCmd | c1 c2

simpleCmd := x := e | skip | ICC | out(e)

| x1 := get(x2) | put(x1,x2)

ICC := Invoke (appi.compj, e)

| x := Invoke (appi.compj, e)

Invoke := call | bind | send | query | update

blockCmd := letvar x := e in c

| if (e) c1 else c2
| while (e) do c

annc :=ann c

ann := (chk (p, t)) | (chk (p, f))

| (req (p, t)) | (req (p, f))

| ann1 ann2

where p ∈ P. simpleCmd stands for the simple command.
The first two constructs of simpleCmd are the x := e
assignment and the skip command, where skip is also used
as a symbol to define formal semantics of our language. The
command ICC is a inter-component communication com-
mand, which has two different constructs: 1) the Invoke
(appi.compj, e) command denotes an invocation from
call er to callee, where appi.compj is the callee
and e represents the parameters passed to the callee.
2) the x := Invoke (appi.compj, e) command denotes
an assignment, where x receives the value returned by an
invocation. The command out(e) denotes an out operation,
where e is the value sent out of the Android apps (e.g.,
via the Internet). The command x1 := get(x2) denotes an
assignment, where get(x2) represents a get operation that
the component (of provider type) fetches data from its
database named x2 and x1 represents a variable that receives
the value returned by the get operation. The command
put(x1,x2) denotes a put operation that the component
(of provider type) stores the value of x1 to its database
namedx2.blockCmd represents the block command, which
has three common constructs: local variable definition, if-
conditional and while-loop commands. ‘‘c1 c2’’ represents
the sequential composition.

3This paper only considers integers, because boolean values can be
encoded as 0 to represent false and non-zero values to represent true.

165030 VOLUME 12, 2024

X. Hu: TySA: Enforcing Security Policies for Safeguarding Against Permission-Induced Attacks

The syntax also supports annotations to specify which
permissions are checked to guard the component and which
permissions are granted to the component by the user at
runtime. Annotations ann are enclosed in brackets ‘‘(. . .)’’,
which affect the permission context of the component and
do not contribute to the runtime behavior of the Android
app. For instance, the annotation chk (p, t) indicates that the
component is currently guarded with permission p, and the
annotation chk (p, f) indicates that the component is currently
guarded without p. Similarly, the two annotations req (p, t)
and req (p, f) indicate that the component is currently granted
with and without p, respectively. The command c, annotated
with (multiple of) these annotations, is denoted by annc.
A component declaration has the following syntax:

COMP :=cType appi.compj (parin)

{letvar parout :=0 in {annc return parout; }}

cType :=activity | service | receiver | provider

where cType is the type of the component, parin are the
parameters for starting the component, annc is the command
with annotations and parout is the return variable of the
component. Notice that when a component does not return
a value, we simply omit its return variable in this declaration.
In this paper, we assume that all variables in COMP are
introduced by letvar or {parin,parout}.

B. EXECUTION MODEL
As shown in the component declaration, we declare com-
mands with annotations for each component to describe the
permission context (state) at runtime. This approach borrows
from the idea of assumption-guarantee modes in concurrent
programs, where a variable is assigned modes representing
how it may be accessed [41]. Similar to a thread assigning
multiple modes to a variable, we allow multiple annotations
to be assigned to each component, which forms dynamic Pgu
and Pgr for each component.
In this paper, we only consider sequential execution of

the Android apps in the permission state , which consists
of two parts: the permission state gu and the permission
state gr. The permission state gu models a snapshot of Pgu
for each component during the execution of Android apps,
while the permission state gr models a snapshot of Pgr for
each component during the execution of Android apps. The
definition of the permission state is as follows:
Definition 1: A permission state is a two-tuple

⟨ gu, gr⟩, where permission state gu and permission state
gr both are finite mappings from C to P . We use the

notation [comp1 7→ Pgu1 , . . . ,compn 7→ Pgun] to denote
a permission state gu mapping each compi ∈ C to its
own gu[compi] = Pgui ∈ P . Similarly, we use the
notation [comp1 7→ Pgr1 , . . . ,compn 7→ Pgrn] to denote
a permission state gr mapping each compi ∈ C to its own
gr[compi] = Pgri ∈ P .
We assume that no annotation is assigned to components

at the beginning of the Android app’s execution, but that all

annotations are assigned dynamically at runtime. Thus, the
initial permission state gu0 is defined by gu [comp] = {}

for all comp ∈ C, and so does the inital gr0 .
Except the permission state, the execution of Android apps

will also affect the value of each variable. The definition of
memory state is given as follows:
Definition 2: A memory state m is a finite mapping from

variables to values. We use the notation [x1 7→ v1, . . .xn 7→

vn] to denote an memory state mapping xi to its value vi,
where 1 ≤ i ≤ n.
Based on the above definitions, a configuration of the

execution model in system S is given as a unique four-tuple

⟨c, gu, gr,m⟩

that models a snapshot during the execution of the S, where
c ∈ Commands is the command that remains to be executed
in S, ⟨ gu, gr⟩(i.e.,) is the permission state modeling the
current permission context of theS , andm is thememory state
modeling the current memory of S.

C. OPERATIONAL SEMANTICS
The soundness of a type system is established with respect to
a formal semantics of the language [43]. We now present a
formal operational semantics for our language based on the
following assumptions: 1) Component definitions are stored
in a tableCD indexed by component names. 2) If a provider-
type component has a database named DB, then there is a
variable denoted as JDBK, indicating an element that can be
fetched or written in a first-in-first-out order in the database.
Notice that this variable can only be manipulated via the
provider-type component.

There are two evaluation judgements for our language.
1) The evaluation judgement of the expressions is given in

the form of ⟨e,m⟩ ⇓ v, where expression e evaluates
to value v in the memory state m.

2) The operational semantics for the commands is defined
by a transition relation on configurations of the execu-
tion model, denoted⇝. i.e., the evaluation judgement
of the commands takes the form

caller ⊢ ⟨c, gu, gr,m⟩⇝ ⟨skip, ′
gu,

′
gr,m

′
⟩,

where ⟨ gu, gr⟩ and m are the permission state and
the memory state before the execution of the command
c, and ⟨

′
gu,

′
gr⟩ and m′ are the permission state

and the memory state after the execution of c. skip,
representing the end of a command execution, cannot
make a transition in any configuration. Here caller
refers to the component where the command c is
located. When caller has no ambiguity, we omit the
caller in the operational semantics to save space.

As shown in Figure 6, the operational semantics for
expressions such as rules (E-Val), (E-Var), and (E-Arith) are
given. Intuitively, the operational semantics of expressions
does not cause any side effects.

The operational semantics for commands is given in
Figure 6, most of which are straightforward. We mainly

VOLUME 12, 2024 165031

X. Hu: TySA: Enforcing Security Policies for Safeguarding Against Permission-Induced Attacks

FIGURE 6. Formal operational semantics of the core language in Android apps.

explain the operational semantics of the ann, ICC, x1 :=

get(x2), put(x1,x2) and out(e) constructs. Rule (E-AnCT)
captures the semantics of (chk (p, t)): p is successfully
checked at runtime. Thus, this rule adds permission p to
Pgu of caller. Rule (E-AnCF) captures the semantics of
(chk (p, f)): checking p at runtime fails. Thus, this rule
deletes permission p from Pgu of the caller. Similarly,
rule (E-AnRT) captures the semantics of (req (p, t)): p
is successfully requested at runtime. Thus, this rule adds
permission p to Pgr of the caller. Rule (E-AnRF) captures
the semantics of (req (p, f)): requesting p at runtime fails.
Thus, this rule deletes permissionp fromPgr of thecaller.
These four rules, analyzing in which permission context the
command c in the caller should be executed, only affect
the permission state and neither the memory state nor the
runtime behavior of the Android apps.
Invoke (appi.compj, e) has five different evaluation

rules depending on the type of callee being invoked: such
as rules (E-IccC), (E-IccB), (E-IccS), (E-IccQ) and (E-IccU)
(The subscript of these rules indicates the first letter of the
Invoke type in uppercase). e.g., rule (E-IccC) shows the
semantics of call (appi.compj, e), and the appi.compj
(i.e. callee) is of type activity. This rule says that if
the callee has annc, then an updated permission state
obtained by annc in the context of the callee is also the

updated permission state for the invocation. Notice that we
need to make sure that both the permissions callee was
granted and guarded are contained in the set of permissions
granted to caller, otherwise this will result in privilege
escalation. Moreover, intuitively, since this invocation does
not change any variable’s value in caller, it may only
affect . Similarly,x := Invoke (appi.compj, e) also has
five different evaluation rules: (E-=-IccC), (E-=-IccB), (E-=
-IccS), (E-=-IccQ) and (E-=-IccU). Take rule (E-=-IccQ) as
an example: It specifies the operational semantics of x :=

query (callee, e), and the callee is of type provider.
The primary difference between x := query (callee, e)
and query (callee, e) is that the former changes the
value of x in the caller. Thus, in addition to updating the
permission state like the rule (E-IccQ), x is also updated with
the return variable of the callee.
Rule (E-Get) captures the operational semantics of x1 :=

get(x2), indicating that if the variable Jx2K has the value
v in the memory of the database x2, then x1 is assigned
with v. Rule (E-Put) shows the operational semantics of
put(x1,x2), specifying that if the variable x1 has the value
v in the memory, then the variable Jx2K in the database x2
is assigned with v. Rule (E-Out) indicates the operational
semantics of out(e), showing that e is sent out of the Android
apps.

165032 VOLUME 12, 2024

X. Hu: TySA: Enforcing Security Policies for Safeguarding Against Permission-Induced Attacks

IV. A SOUND SECURITY TYPE SYSTEM
In the information flow type system, it is very common
to use the lattice model [46] to encode security levels [9],
[43]. According to different security properties, different
lattice models can be used to design corresponding secu-
rity information flow policies [43]. For instance, security
information flow policies can be defined by a lattice
structure (SL, ≤), where SL is a finite set of security
levels partially ordered by ≤. SL may include L (Low), H
(High) for secrecy property, or may include T (Trusted),
U (Untrusted) for integrity property, where L ≤ H and
T ≤ U [43].
The lattice model makes it possible and intuitive to enforce

security information flow policies on explicit/implicit flows
via simple attribute grammars [43]. For example, we can
use simply attribute constraints: ‘‘y’s security level is less
than or equal to x’s’’ to enforce security information flow
policy: ‘‘No high-level information can interference low-level
information’’ on explicit information flows, such as x := y,
or implicit information flows, like if (y == 0) then x :=

0 else x := 1. In this paper, we simply use the security
levels to set the security types to construct security type
system. The security types of our phrases are defined as
follows:
Definition 3: A base security type τ is a security level and

forms a security lattice, with the partial order ≤. We denote
with T the set of base types, where the highest base type is
labeled as ⊤ and the lowest base type is labeled as ⊥. Given
two base types τ1, τ2 ∈ T , τ1 ≤ τ2 means that τ1 is lower
than or equal to τ2, τ1 ≰ τ2 means that τ1 is higher than τ2,
τ1 = τ2 means that the two types are equal, τ1⊔τ2 is the least
upper bound of τ1 and τ2, and τ1 ⊓ τ2 is the greatest lower
bound of τ1 and τ2.
Since the security type system is a logical system

consisting of a set of security inference rules and axioms
that derive security typing judgements for various con-
structs of a program (e.g., expressions, commands and
components in this paper) based on the security types
of subprograms (e.g., variables in this paper) [43], [47],
we not only define the security typing environment for
mapping variables to security types, but also define the
security type of the component in the Android apps, as
follows:
Definition 4: A typing environment 0 is a finite

mapping from variables to T . We use the notation
[x1 : τ1, . . . ,xn : τn] to enumerate a typing environment
mapping xi to its security type τi, where 1 ≤ i ≤ n.
Definition 5: A component type has the form (τin, τgu,

τgr, τout), where τin = (τin1 ,. . . ,τinm) (1 ≤ j ≤ m), and
τgu,τgr, τout, τinj ∈ T . τin is the security type tuple of
the input parameters of the component, τgu is the security
type that guards the component, τgr is the security type that
grants the component, and τout is the security type of the
return variable of the component. For the components without
return variable, the type of the return variable can be omitted,
i.e., (τin, τgu, τgr, ()).

A. SECURITY TYPING RULES
We now present a type system for our language based
on the following assumptions: 1) The security levels are
stored in a table PL indexed by the set of permissions.
In particular, we assume that the security level corresponding
to the set without permission is the lowest, i.e., PL() = ⊥.
2) The component types are stored in a table CT indexed by
component names.

In TySA, security types of expressions (commands, com-
ponents, resp.) may be altered depending on the permission
context. For instance, when an expression is used in the
execution context where a permission request has been
performed, its typemay be adjusted depending onwhether the
permission p is requested successfully. For another example,
when the component is used in the execution context of
checking permissions, its type may be adjusted according
to whether the permission p is checked successfully. Such
an adjustment, called a promotion or a demotion, can be
used with respect to not only a base type, but also a typing
environment. The corresponding definitions are as follows.
Definition 6: Given a permission p, the promotion and

demotion of a base type τ with respect to p are:

τ ⊕ p = τ ⊔ PL(p) (promotion)

τ ⊖ p = τ ⊓ PL(p) (demotion)

Definition 7: Given a typing environment0, its promotion
and demotion along a permission p are typing environments
0⊕p and0⊖p, such that (0⊕p)(x) = 0(x)⊕p, (0⊖p)(x) =

0(x) ⊖ p for every x ∈ dom(0).
There are three typing judgements in our type system

explained below.
1) Expression typing has the form: 0 ⊢ e : τ , which

denotes that the e has a type at most τ in 0.
2) Command typing has the form: 0; (τcallergu , τcallergr)

⊢ c : τ , which denotes that the command c can write to
variables with type at least τ in0.Moreover, it specifies
that c is currently executed in caller, which has
types τcallergu and τcallergr representing the security
type that guards the grants the caller, respectively.

3) Component typing has the form: ⊢ COMP : (τin,
τgu, τgr, τout). Intuitively, this denotes the input
parameters and return variable of the component have
a type at most τin and τout in 0, respectively.
Meanwhile, it means that the component can be
invoked from other components that are granted at
least τgu, and that the component can invoke other
components that are guarded up to τgr.

The typing rules are shown in Figure 7, most of which are
straightforward [9], [43], [48]. We explain the typing rules
for the ann, ICC, x1 := get(x2), put(x1,x2), out(e) and
COMP constructs.

We first give the typing rules for ann as follows: Rule
(T-AnCT) types c in 0 for a successful permission check on
p, and promotes τcallergu with respect to p for the caller.
On the contrary, rule (T-AnCF) types c in 0 for a failed

VOLUME 12, 2024 165033

X. Hu: TySA: Enforcing Security Policies for Safeguarding Against Permission-Induced Attacks

FIGURE 7. Security typing rules of the core language in Android apps.

permission check on p, and demotes τcallergu with respect
to p for the caller. Different from the permission check,
when the permission request modifies the permissions in Pgr
of the caller, it will essentially change the security type of
the information in the entire system observed by thecaller.
Therefore, rule (T-AnRT) types c in a promoted 0 for a
successful permission request on p, and promotes τcallergr
with respect to p for the caller. On the contrary, rule
(T-AnRF) types c in a demoted 0 for a failed permission
request on p, and demotes τcallergr with respect to p for the
caller.
Invoke (appi.compj, e) has different typing rules

depending on the type of component being invoked: such
as rules (T-IccC), (T-IccB), (T-IccS), (T-IccQ) and (T-IccU)
(The subscript of these rules indicates the first letter of
the Invoke type in uppercase). For instance, rule (T-IccC)
shows the typing rule of call (callee, e), and the callee
is of type activity. Since call (callee, e) does not
modify variables in the caller, rule (T-IccC) types it as
⊤. Here we assume that the security type of the callee is
checked beforehand and stored in the CT table. Since only
the arguments e are passed between caller and callee,
e should be typed as τin. To avoid privilege escalation, it is
worth noting that both τgu and τgr in the security type of
callee should be dominated by τcallergu . Similarly, x :=

Invoke (appi.compj, e) also has five different typing
rules: (T-=-IccC), (T-=-IccB), (T-=-IccS), (T-=-IccQ) and
(T-=-IccU). Take rule (T-=-IccQ) as an example to illustrate:
It specifies the typing rule of x := query (callee, e), and
thecallee is of type provider. Since the primary difference
between x := query (callee, e) and query (callee, e)
is that the former changes the value of x in the caller,
the rule (T-=-IccQ) types it as 0(x). In addition, the return
variable of callee is also passed back to caller, so τout
should be dominated by 0(x).

In both x1 := get(x2) and put(x1,x2), the essence
is still an assignment command. Therefore, rules (T-Get)

and (T-Put) are similar to the rule (T-Assign). Rule
(T-Out) types the out(e) as ⊤ because it does not change
any variables in caller. It is worth noting that in order to
prevent the caller from sending data that it cannot access
to the outside world, the e should be typed as τgr. Rule
(T-Comp) is obtained naturally based on component defini-
tion and component type.

To avoid the label creeping [49], we also introduce
subtyping rules (T-SubE) and (T-SubC) [9], [41], [43]
for expressions and commands, respectively. In our rules,
(τcallergu , τcallergr) is omitted in command typings when
caller has no ambiguity, such as rules (T-Seq), (T-Assign),
etc.

In TySA, to facilitate typing derivation, we define the
well-typed property of Android apps as follows:
Definition 8: Suppose S is a system consists of finite

Android apps, and let CD, CT and PL be the component
declaration table, component type table and permission level
table of S, respectively. Then S is well-typed iff every
component appi.compj in S has component type, i.e., ⊢

CD(appi .compj) : CT(appi.compj) is derivable.
In order to prevent a potential implicit flow via the privilege

escalation attack, it is essential that both τgu and τgr of the
callee are constrained to be less than or equal to τcallergr in
typing rules for the ICC construct. To illustrate the necessity
of this constraint, consider the following alternative rule
(T-Icc′

C). If only τgu of the callee is constrained to be less
than or equal to τcallergr , then the typing rule (T-Icc′

C) for
Invoke (callee, e) construct, where the callee is of
type activity, is as follows:

CT(callee) = (τin, τgu, τgr, τout)
0 ⊢ e : τin τgu ≤ τcallergr

0; (τcallergu , τcallergr) ⊢ call (callee, e) : ⊤
(T-Icc′

C)

Let us consider the example in Figure 2. Let P = {p1}, and
we assume thatPL(p1) = H andPL() = L, where H and L are

165034 VOLUME 12, 2024

X. Hu: TySA: Enforcing Security Policies for Safeguarding Against Permission-Induced Attacks

the top and bottom type respectively. If we use rule (T-Icc′
C)

instead of (T-IccC), sample code in Figure 2 is well-typed and
we can get the following component types:

CT :=


app1.comp1 7→ (L,L,L, ())
app2.comp1 7→ (H,L,H, ())
app2.comp2 7→ (H,H,H, ())

The error in this type derivation is that the rule (T-Icc′
C) does

not consider that thecallee can still be granted permissions
at runtimewithout permission protection, so that thecaller
can access data or operations that it has no permission to
access through the exposed callee, which is also the main
cause of privilege escalation attacks. In the rule (T-IccC),
τgu ⊔ τgr ≤ τcallergr can ensure that the permissions granted
to the callee are not passed to the caller, which can
avoid privilege escalation attacks.

With the correct typing rule for ICC, typing derivations
for the sample code in Figure 2 are shown in Figure 8,
where the red part indicates that the typing judgement does
not follow the rule (T-IccC), meaning that the type of
component app1.comp1 cannot be obtained and the sample
code is not well-typed. The typing derivations for examples
in Figure 3, 4, and 5 can be found in Appendix.

B. NON-INTERFERENCE AND SOUNDNESS
Proving the soundness of a security type system is essentially
proving that the system enforcing non/interference property,
which can be defined informally as ‘‘the value of the
high-level variable do not interfere with (affect) the value of
the low-level variable’’ [43], [47], [50].

Based on the semantics in Section III-C, the non/
interference property of the command (Definition 9), the non/
interference property of the component (Definition 10) and
the non/interference property of the system (Definition 11)
are defined as follows.
Definition 9: A command or an annotated command

(ann) c executed in caller is non/interference iff for all
m1, m2, gu, gr,0, τ , suppose that0; (τcallergu , τcallergr) ⊢

(ann) c : τc, caller ⊢ ⟨(ann) c, gu, gr,m1⟩ ⇝
⟨skip, ′

gu,
′
gr,m1

′
⟩,caller ⊢ ⟨(ann) c, gu, gr,m2⟩⇝

⟨skip, ′
gu,

′
gr,m2

′
⟩, dom (m1) = dom(m2) = dom(0),

and m1(ep) = m2(ep) for all ep such that 0(ep) ≤ τ , then
m1′(eq) = m2′(eq) for all eq such that 0(eq) ≤ τ .
Definition 10: A component caller defined as follows:

cType caller (parin)

{letvar parout := 0 in {annc return parout; }}

with component type (τin, τgu, τgr, τout) is non/interference
if for all m1, m2, gu, gr, τ , suppose that 0 = [parin :

τin, parout : τout], caller ⊢ ⟨annc, gu, gr,m1⟩ ⇝

⟨skip, ′
gu,

′
gr,m1

′
⟩, caller ⊢ ⟨annc, gu, gr,m2⟩ ⇝

⟨skip, ′
gu,

′
gr, m2

′
⟩, and m1(ep) = m2(ep) for all ep such

that 0(ep) ≤ τ , then m1′(parout) = m2′(parout).
Definition 11: A system S is non/interference iff all

components in S are non/interference.

Based on these definitions, we establish the following
lemmas and theorem for proving that the TySA is sound.
Lemma 1 and Lemma 2 are two properties of the type system
based on the semantics of Android apps in Section III-C.
Lemma 1 applies to expressions, and it indicates that no
expression has a type higher than τ in e can be read when
e has a type at most τ in 0. Lemma 2 applies to commands,
and it specifies that no expression has a type lower than
τ in (ann) c can be written when (ann) c has a type at
least τ in 0. Lemma 1 and Lemma 2 can be used for the
proof of the Lemma 3, where soundness is formulated as
the non/interference property of command. Finally, based on
these lemmas, Theorem 1 is given to show that the well-typed
program satisfies the non/interference property of the system.
Lemma 1 (No Read Up): If 0 ⊢ e : τ , then for every ei

in e (1 ≤ i ≤ n), 0(ei) ≤ τ .
Due to the limited space, we hereby give the proof of

lemma 1 for rule (T-Arith).
Proof of Lemma 1: By induction on the structure of e.

Suppose 0 ⊢ e1 op e2 : τ by rule (T-Arith). Then we have
0 ⊢ e1 : τ and 0 ⊢ e2 : τ . By induction on e1 and e2,
we have 0 ⊢ e1i′ : τ for every e1i′ (1 ≤ i′

≤ n1) in e1
and 0 ⊢ e2i′′ : τ for every e2i′′ (1 ≤ i′′

≤ n2) in e2. So
0(ei) ≤ τ for every ei(1 ≤ i ≤ 2) in e1 op e2.
Lemma 2 (No Write Down): If 0; (τcallergu , τcallergr) ⊢

(ann) c : τ , then for every ei that is assigned in (ann) c
(1 ≤ i ≤ n), τ ≤ 0(ei).
Due to the limited space, We hereby give the proof of

lemma 2 for rule (T-=-IccQ).
Proof of Lemma 2: By induction on the structure of

c. Suppose that 0; (τcallergu , τcallergr)⊢ x := query
(appi.compj,e) : 0(x) = τ by rule (T-=-IccQ). Then we
have τ ≤ 0(x). So for every ei(1 ≤ i ≤ n) that is assigned
in x := query (appi.compj ,e), we have τ ≤ 0(ei).
Lemma 3 (Soundness of Command): Suppose that

1) 0; (τcallergu , τcallergr) ⊢ (ann) c : τc,
2) caller ⊢ ⟨(ann) c, gu, gr,m1⟩⇝

⟨skip, ′
gu,

′
gr,m1

′
⟩,

3) caller ⊢ ⟨(ann) c, gu, gr,m2⟩⇝
⟨skip, ′

gu,
′
gr,m2

′
⟩,

4) dom(m1) = dom(m2) = dom(0), and
5) m1(ep) = m2(ep) for all ep such that 0(ep) ≤ τ .

Then m1′(eq) = m2′(eq) for all eq such that 0(eq) ≤ τ .
Due to the limited space, we hereby give the proof of

lemma 3 for rule (T-=-IccQ).
Proof of Lemma 3: By induction on the structure

of the derivation of caller ⊢ ⟨c, gu, gr,m⟩ ⇝

⟨skip, ′
gu,

′
gr,m

′
⟩, suppose that 0; (τcallergu , τcallergr)⊢

x := query (appi .compj, e) : 0(x) = τc by rule
(T-=-IccQ).

1) If τc ≰ τ , by lemma 2, for x that is assigned in x :=

query (appi.compj ,e), we have τc ≤ 0(x). Then
we have 0(x) ≰ τ . Then by hypothesis e), we have
m1′(eq) = m2′(eq) for all eq such that 0(eq) ≤ τ .

2) If τc ≤ τ , we prove it by the following steps:

VOLUME 12, 2024 165035

X. Hu: TySA: Enforcing Security Policies for Safeguarding Against Permission-Induced Attacks

FIGURE 8. Typing derivation for privilege escalation.

a) Since we have ⟨e,m1⟩ ⇓ v1, callee ⊢

⟨c, ′
gu,

′
gr, [parin 7→ v1,parout 7→ 0]⟩ ⇝

⟨skip, ′
gu,

′
gr,m

′′
1⟩ and ⟨e,m2⟩ ⇓ v2, callee

⊢ ⟨c, ′
gu,

′
gr, [parin 7→ v2,parout 7→ 0]⟩

⇝ ⟨skip, ′
gu , ′

gr,m
′′
2⟩ by rule (E-=-IccQ),

we only need to check [parin 7→ v1,parout
7→ 0](ek) = [parin 7→ v2,parout 7→ 0](ek)
for all ek such that 0(ek) ≤ τ . Let ρ1 =

[parin 7→ v1,parout 7→ 0] and ρ2 = [parin
7→ v2,parout 7→ 0], supposeparu is a variable
in parin and 0(paru) ≤ τ , and suppose
ρ1(paru) = vu and ρ2(paru) = v′

u.
By lemma 1 and hypothesis e), we have vu = v′

u.
Therefore, we have ρ1(ek) = ρ2(ek) for all ek
such that 0(ek) ≤ τ .

b) By applying the outer induction hypothesis,
we have m′′

1(ek) = m′′
2(ek) for all ek such that

0(ek) ≤ τ .
c) Since τout ≤0(x) = τc ≤ τ , by lemma 1,

we have [x 7→ m′′
1 (parout)] (ek) = [x 7→ m′′

2
(parout)](ek) for all ek such that 0(ek) ≤ τ .

By hypothesis e), it is deducible that m′
1(eq) = m1

[x 7→ m′′
1(parout)](eq) = m2[x 7→ m′′

2(parout)]
(eq) = m′

2(eq) for all eq such that 0(eq) ≤ τ .
Theorem 1 (Soundness of System): If a system S is well-

typed, then it is non/interference.
Proof of Theorem 1: The non/interference property of

well-typed systems follows from Lemma 3.

V. IMPLEMENTATION
Since the K [36] is a rewrite-based executable semantic
framework, which is suitable for defining type systems
via configurations, computations and rules [37], we have
implemented the prototype (Tysa)4 of the TySA based on
K. Tysa consists of three parts: 1) Configurations, which
organize the program state of Android apps in units called
cells, which are denoted by ‘‘

〈 〉
’’ and can be nested.

2) Computations, which sequentialize the abstract syntax

4The Tysa can be found in https://sites.google.com/view/the-type-
checker-for-apps

trees of Android apps into a list of computation tasks, with
the list connector ‘‘↷’’ and the empty computation ‘‘.’’.
3) Rules, which are essentially a set of rewriting rules used
to trigger transitions on configurations.

In our actual implementation, the prototype has approx-
imately 2000 lines of K code. For illustrative purposes,
we demonstrate the three parts of Tysa for the command

x := query(app1.comp1,y);

in Android apps as follows.
Configurations. For each cell in the configuration, the

right subscript of the
〈 〉

indicates the name of the cell,
and the content of the

〈 〉
is the current value of the cell.

In K, a dot followed by any type indicates an empty set of
that type [36], [51], [52]. For instance, .List represents an
empty list, .Map represents an empty map. In particular, .K
represents an empty set of any specific type defined in K.

The initial configuration (state) of Android apps shown in
Figure 9 has three main cells in the whole configuration cell
T and they are k , callstate and Apps. Each cell is initialized
with the value wrapped in

〈 〉
. For instance, the cell k is

initialized with the source program of Android apps, denoted
by Pgm. The function of this cell is to record the remaining
source code that needs to be analyzed. If all the code is
analyzed, only a dot is left in the cell to indicate that the cell is
empty. Since the source code of the Android apps in the initial
state has not yet been analyzed, we initialize the remaining
cells with empty sets.

The cell callstate records the callerApp, callerComp,
callerGuard , callerGrant , calleeApp, calleeComp, callee
Guard , calleeGrant , currentCmd and secTypeOfCmd . To be
specific, currentCmd records the command currently being
analyzed and secTypeOfCmd stores its security type.
callerApp, callerComp, callerGuard and callerGrant keep
track of the app, component, Pgu and Pgr of the caller to
which currentCmd belongs, respectively. The remaining cells
in callstate record the related properties of the callee.
In the cell Apps, a set of app definitions is stored. Each

cell App represents a app definition. In App, nameOfApp
records the app name and secTypeOfApp stores whether
the app is non/interference (distinguish by Untype and

165036 VOLUME 12, 2024

X. Hu: TySA: Enforcing Security Policies for Safeguarding Against Permission-Induced Attacks

Type). Similarly, the cell Comps stores a set of component
definitions. Each cell Comp represents a component defini-
tion. For each Comp definition, nameOfComp records the
component name, typeOfComp records the type of the com-
ponent, and secTypeOfComp stores whether the component is
non/interference. guardOfComp (grantOfComp) keeps track
of the list of permissions in Pgu (Pgr), and guard Level
(grantLevel) records the security level corresponding to Pgu
(Pgr). In addition, component parameters, including input
parameters and return parameter, are recorded in the cell
paraOfComp. We also store the security typing environment
in the cell secEnvOfVar .

Computations. First, we give the following simple syntax
for type checking command x := query(app1.comp1,y);
based on the K definition. In K Definition, everything
inside double quotes is fixed, and if the code currently
being analyzed does not conform to this syntax, the K tool
embedded in the K stops. The main difference bewteen our
syntax in Section III-A and these K definitions is that these
definitions add the KResult definition and the strictness
attribute, which is annotated by the keyword strict.

syntax Cmd ::= SimpleCmd′′
;
′′

| #cmd(SimpleCmd) [strict]

syntax SimpleCmd ::= InvokeCmd

| AssignCmd

syntax InvokeCmd ::=

Invoke′′(‘‘Id′′.′′Id′′,′′ Id′′)′′[strict(4)]

syntax Invoke ::=
′′ call′′

|
′′ query′′

| ‘‘listem′′
| ‘‘send′′

|
′′ update′′

syntax AssignCmd ::= Exp′′
:=

′′ Exp [strict]

syntax Exp ::= Id | InvokeCmd

syntax SecType ::=
′′ High′′

|
′′ Low′′

| ‘‘Untype′′
|
′′ Type′′

syntax KResult ::= SecType

In K, it is convenient to use KResult to distinguish
syntactically between unfinished computations and finished
computations [36]. That is, the KResult definition can
tell the K tool which expressions are meant to be results
of computations, so that the K tool will not attempt to
evaluate them anymore. In our computations, we only focus
on the security type, so we define KResult as SecType.
The strictness attribute can state the evaluation strategy of
some language constructs, which means that all specified
arguments must be evaluated before evaluating the construct
itself [36]. For instance, InvokeCmd [strict(4)] means that
the fourth argumentId5 ofInvokeCmd need to be evaluated
on its security type before evaluating the whole InvokeCmd
construct. AssignCmd [strict] means that all the arguments
of AssignCmd need to be evaluated on its security type
before evaluating the whole AssignCmd construct.

5Id term is the built-in identifier in K.

Based on the K definitions that contain these evalua-
tion policies, the command x := query(app1.comp1,y);
can be sequentialized in 3 tasks as follows. It means
that in order to compute x := query(app1.comp1,y);,
we need to: (1) compute the security type of y, (2)
compute the security type of x, and use the security
type of y to compute the security type of query
(app1.comp1,secType(y)), (3) compute the security
type of secType(x) := secType(query(app1.comp1,
secType(y))).

y

↷ x,query(app1.comp1,secType(y))

↷ secType(x) := secType(query

(app1.comp1,secType(y)))

Rules. K rules usually have the rewrite part, and some
also have the matching part. The rewriting part divides the
cell of the configuration into two parts by a horizontal line,
the upper part is rewritten to the lower part when triggered.
The matching part is composed of cells, which are the
conditions that trigger the rewriting part. In the K rules, . . .
represents the content that is not concerned in the cell, and _
stands for anything in the cell but we don’t care what it is
specifically.
In order to realize the concrete computation of the

command x := query(app1.comp1,y);, we present some
assumptions here: 1) The security type of both x and y
is High. 2) The Pgr of the caller to which command
x := query(app1. comp1,y); belongs corresponds to a
High security level. 3) The app1.comp1 component is well-
typed. 4) The Pgr and Pgu of the app1.comp1 component
both correspond to a Low security level. On the basis of these
assumptions, we introduce the following five rules for the
command x := query (app1.comp1,y);.
From the syntax in Computations, InvokeCmd can

be either a SimpleCmd or an Exp. To make the
distinction easier, we add #cmd(SimpleCmd) to the
syntax. The rule SimpleCmd simply rewrites command
x := query(app1.comp1 ,y); to #cmd(x := query
(app1.comp1,y)).

RULE SimpleCmd〈
SC:SimpleCmd;

#cmd(SC)
. . .

〉
k

In the rule Var, we find the security type of the variable in
the corresponding component in the Apps cell according to
the properties of the caller recorded by the callstate cell.
Then, we get the security types of x and y.

RULE Var〈
I:Id

ST:SecType
. . .

〉
k〈 〈

A
〉
callerApp

〈
C

〉
callerComp . . .

〉
callstate〈 〈

A
〉
nameOfApp . . .〈 〈

C
〉
nameOfComp . . .〈

. . . I |-> ST . . .
〉
secEnvOfVar

〉
Comp

〉
App

VOLUME 12, 2024 165037

X. Hu: TySA: Enforcing Security Policies for Safeguarding Against Permission-Induced Attacks

FIGURE 9. Initial Configuration of Android Apps.

According to rule Untype_InvokeCmd, we can calculate
the security type of query(app1.comp1,secType(y)).
Because the security type of y is higher than τin of the
callee, query(app1.comp1,secType(y)) is rewritten
with Untype.

RULE Untype_InvokeCmd〈
I:Invoke(I1:Id.I2:Id, High)

Untype
. . .

〉
k

〈 〈
A

〉
callerApp

〈
C

〉
callerComp〈

High
〉
callerGrant . . .〈

_
I1

〉
calleeApp

〈
_
I2

〉
calleeComp

〉
callstate

〈
〈
I1

〉
nameOfApp

〈
Type

〉
secTypeOfApp

〈
〈
I2

〉
nameOfComp〈

provider
〉
typeOfComp〈

Type
〉
secTypeOfComp〈

Low
〉
guardLevel〈

Low
〉
grantLevel . . .

〉
Comp . . .

〉
App

the rule Untype_Assign gives one of the rules for an
assignment command. When the right side of an assignment
command is known as Untype, the command is rewritten
as Untype regardless of the security type on the left.
Therefore, the security type of the assignment command
secType(x) := secType(query(app1.comp1,
secType(y))) is Untype.

RULE Untype_Assign〈
_ := Untype

Untype
. . .

〉
k

For all SimpleCmd with security type Untype,
we rewrite it as empty computation, as shown in the
rule Untype_#cmd. Moreover, we record Untype in
the cell Apps for the corresponding app and component
to indicate that neither of them met non/interference
property. Therefore, the caller to which commmand
x := query(app1.comp1,y); belongs is not well-typed.

RULE Untype_#cmd〈
#cmd(Untype)

.
. . .

〉
k〈 〈

A
〉
callerApp

〈
C

〉
callerComp〈

_
Untype

〉
secTypeOfCmd . . .

〉
callstate

〈 〈
A

〉
nameOfApp

〈
_

Untype

〉
secTypeOfApp〈 〈

C
〉
nameOfComp . . .〈

_
Untype

〉
secTypeOfComp

〉
Comp . . .

〉
App

FIGURE 10. Typing derivation for parameter laundering.

VI. RELATED WORKS AND DISCUSSIONS
Android apps have been plagued by security threats in a
number of attacks, especially permission/induced attacks [2],
[17]. For instance, privilege escalation attack authorizes
unprivileged users access to privileged information [2], [11],
[12], [13], [14], [17], [18], resulting in Elevation of Privilege
[5] on Android apps. Parameter laundering attack [2], [9] and
passive content leakage attack [2], [15] expose the sensitive
and protected information to untrusted environments, causing
Information Disclosure [5] on Android apps. Passive content
pollution attack [2], [15] causes internal databases in
vulnerable apps to be manipulated by other apps, resulting
in Tampering [5] on Android apps.
To address these issues, a number of program analysis

methods, type of which could be dynamic or static, have
been proposed for Android apps in security domain [5], [5],
[20], [21], [22], [23], [24], [25]. Each approach has its own
strengths and weaknesses. Dynamic analysis executes the
Android apps to observe its actual behaviors at runtime [5],
[20], [21], [22], [23], [24], [25]. For instance, TaintDroid and
TaintART monitor the Android apps at runtime and track
multiple sources of sensitive data so as to detect the privacy
leakage [21], [22]. In addition to taint tracking, testing is
also a commonly used technique in dynamic analysis [23],
[24], [25]. For example, IntentFuzzer detects capability leak
vulnerabilities of Android apps by dynamically sending test
intents to the components [23]. Daze fully-automated extracts
components in apps and fuzzes all interfaces in apps to
identify ICC vulnerabilities [25]. IntentDroid tests 8 kinds
of ICC integrity vulnerabilities caused by unsafe handling
of incoming ICC messages [24]. What these dynamic
approaches have in common is that they all require a set
of input data to execute Android apps. Since the test cases
provided are often unlikely to be complete, they may not
cover certain parts of the app’s code and its behavior. This
may lead to missing vulnerabilities or malicious behaviors,
namely false negatives in security analysis [5].

165038 VOLUME 12, 2024

X. Hu: TySA: Enforcing Security Policies for Safeguarding Against Permission-Induced Attacks

FIGURE 11. Typing derivation for passive content leakage.

FIGURE 12. Typing derivation for passive content pollution.

Dynamic analysis is precise yet unsound, while static
analysis, examining the program structure of Android apps
to reason about its potential behaviors, is considered to
be conservative and sound [5], [16], [20], [26], [27], [28],
[29], [30]. Some fundamental techniques are mainly used
in static analysis methods for Android apps, such as taint
analysis [16], [27], program slicing [28], [29], etc [30]. For
instance, [27] presents FlowDroid, a novel and highly precise
static taint-analysis tool for components in an Android app.
[29] proposes Hopper for performing precise inter-event
analysis of Android apps. However, with the increase in
the number of Android apps, the costs of these program
analysis methods grow exponentially, that is, these program
analysis approaches may suffer from scalability issues
[5], [20].

To tackle the scalability issue, formal analysis techniques
are leveraged to complement program analysis [5], [30]. As a
formal method to verify the type constraints of the program,
type checking is commonly used in program analysis [9],
[30], [31], [32], [33], [34], [35]. For instance, [31], [32]
designs a formal language to describe Android apps and pro-
poses a program analysis tool, SCandroid, to automatically
type communications between apps. But they do not consider
access control and implicit flow security in the type system.
Reference [33] presents Cassandra, a security analysis tool
to type check whether the Android apps comply with
user-specified security requirements even before installing
these apps. However, this method does not consider that
permission checks and permission requests at runtime in ICC
will affect the security level of information. Reference [34]
presents a type system for Android apps, which checks the

information flow type qualifiers and guarantees that apps are
free of malicious information flows. However, this method
not only requires the participation of users (such as software
vendors, app store auditors, etc) and other modifications to
the Android permission model to adapt to its type checker,
but also lacks the soundness proof. Reference [9] introduces
a novel type system for enforcing secure information
flow in Android apps. This literature mainly focuses on
preventing the parameter laundering problem, but it neither
considers the permission-based access control at runtime nor
implements a usable tool. Reference [35] combines static
information flow control with runtime checking to prevent
the collusive information leak in Android apps. However,
this approach mainly focuses on leak-freedom property in
inter/process communication rather than non/interference
property.

VII. CONCLUSION
In this paper, we introduce a formal calculus to reason about
the operations and interactions in Android apps, especially
reason about ICC and permission checks/reqeusts at runtime.
Moreover, we present a sound type system, namely TySA,
for Android apps based on the proposed formal calculus to
prevent permission-induced attacks. Finally, we demonstrate
the effectiveness of TySA by developing a prototype tool
based on the K to implement our analysis.

As part of our future work, we want to consider
flow-sensitive and path-sensitive dependent type system to
further develop the TySA. On the practical side, we will also
extend our tool to detect more types of vulnerabilities in
Android apps.

VOLUME 12, 2024 165039

X. Hu: TySA: Enforcing Security Policies for Safeguarding Against Permission-Induced Attacks

APPENDIX
TYPING DERIVATIONS
The tyipng derivations for examples in Figure 3, 4, and 5
are shown in Figure 10, 11 and 12, respectively. In these
figures, the red parts indicate that the typing judgements does
not follow the TySA, meaning that the sample codes are not
well-typed.

REFERENCES
[1] M. Bugliesi, S. Calzavara, and A. Spanò, ‘‘Lintent: Towards security type-

checking of Android applications,’’ in Formal Techniques for Distributed
Systems, vol. 7892, D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg,
F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz, C. P. Rangan,
B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum,
D. Beyer, and M. Boreale, Eds., Berlin, Germany: Springer, 2013,
pp. 289–304.

[2] X. Hu and Y. Zhuang, ‘‘PHRiMA: A permission-based hybrid risk
management framework for Android apps,’’ Comput. Secur., vol. 94,
Jul. 2020, Art. no. 101791.

[3] A. A. G. P. S. AppBrain. Android and Google Play Statistics, Devel-
opment Resources and Intelligence. [Online]. Available: https://www.
appbrain.com/stats

[4] G. P. S. Statista. Google Play Store: Number of Apps. [Online].
Available: https://www.statista.com/statistics/266210/number-of-
available-applications-in-the-google-play-store/

[5] A. Sadeghi, H. Bagheri, J. Garcia, and S. Malek, ‘‘A taxonomy and
qualitative comparison of program analysis techniques for security
assessment of Android software,’’ IEEE Trans. Softw. Eng., vol. 43, no. 6,
pp. 492–530, Jun. 2017.

[6] B. Rashidi, C. Fung, and E. Bertino, ‘‘Android resource usage risk
assessment using hidden Markov model and online learning,’’ Comput.
Secur., vol. 65, pp. 90–107, Mar. 2017.

[7] P. H. Nguyen, S. Ali, and T. Yue, ‘‘Model-based security engineering for
cyber-physical systems: A systematic mapping study,’’ Inf. Softw. Technol.,
vol. 83, pp. 116–135, Mar. 2017.

[8] W. Wang, X. Wang, D. Feng, J. Liu, Z. Han, and X. Zhang, ‘‘Exploring
permission-induced risk in Android applications for malicious applica-
tion detection,’’ IEEE Trans. Inf. Forensics Security, vol. 9, no. 11,
pp. 1869–1882, Nov. 2014.

[9] H. Chen, A. Tiu, Z. Xu, and Y. Liu, ‘‘A permission-dependent type system
for secure information flow analysis,’’ in Proc. IEEE 31st Comput. Secur.
Found. Symp. (CSF), Jul. 2018, pp. 218–232.

[10] M. A. El-Zawawy, E. Losiouk, and M. Conti, ‘‘Do not let next-intent
vulnerability be your next nightmare: Type system-based approach to
detect it in Android apps,’’ Int. J. Inf. Secur., vol. 20, no. 1, pp. 39–58,
Feb. 2021.

[11] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner, ‘‘Analyzing inter-
application communication in Android,’’ in Proc. 9th Int. Conf. Mobile
Syst., Appl., Services, Jun. 2011, p. 239.

[12] L. Davi, A. Dmitrienko, A.-R. Sadeghi, and M. Winandy, ‘‘Privilege
escalation attacks on Android,’’ in Information Security, vol. 6531,
M. Burmester, G. Tsudik, S. Magliveras, and I. Ilić, Eds., Berlin, Germany:
Springer, 2011, pp. 346–360.

[13] K. O. Elish, H. Cai, D. Barton, D. Yao, and B. G. Ryder, ‘‘Identifying
mobile inter-app communication risks,’’ IEEE Trans. Mobile Comput.,
vol. 19, no. 1, pp. 90–102, Jan. 2020.

[14] Z. Fang, W. Han, and Y. Li, ‘‘Permission based Android security: Issues
and countermeasures,’’ Comput. Secur., vol. 43, pp. 205–218, Jun. 2014.

[15] Y. Zhou and X. Jiang, ‘‘Detecting passive content leaks and pollution in
Android applications,’’ in Proc. NDSS, 2013.

[16] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. Le Traon, S. Arzt,
S. Rasthofer, E. Bodden, D. Octeau, and P. McDaniel, ‘‘IccTA:
Detecting inter-component privacy leaks in Android apps,’’ in Proc.
IEEE/ACM 37th IEEE Int. Conf. Softw. Eng., vol. 1, May 2015,
pp. 280–291.

[17] A. Sadeghi, R. Jabbarvand, N. Ghorbani, H. Bagheri, and S. Malek, ‘‘A
temporal permission analysis and enforcement framework for Android,’’
in Proc. IEEE/ACM 40th Int. Conf. Softw. Eng. (ICSE), May 2018,
pp. 846–857.

[18] J. Wu, T. Cui, T. Ban, S. Guo, and L. Cui, ‘‘PaddyFrog: Systematically
detecting confused deputy vulnerability in Android applications: Pad-
dyFrog: Systematically detecting confused deputy vulnerability in Android
applications,’’ Secur. Commun. Netw., vol. 8, no. 13, pp. 2338–2349,
Sep. 2015.

[19] S. K. Sahay and A. Sharma, ‘‘A survey on the detection of Android
malicious apps,’’ in Advances in Intelligent Systems and Computing, S. K.
Bhatia, S. Tiwari, K. K. Mishra, and M. C. Trivedi, Eds. Singapore:
Springer, 2019, pp. 437–446.

[20] Y.-D. Bromberg and L. Gitzinger, ‘‘DroidAutoML: A microservice
architecture to automate the evaluation of Android machine learning detec-
tion systems,’’ in Distributed Applications and Interoperable Systems,
A. Remke and V. Schiavoni, Eds., Cham, Switzerland: Springer, 2020,
pp. 148–165.

[21] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth, ‘‘TaintDroid: An information-flow tracking
system for realtime privacy monitoring on smartphones,’’ ACM Trans.
Comput. Syst., vol. 32, no. 2, pp. 1–29, Jun. 2014.

[22] M. Sun, T. Wei, and J. C. S. Lui, ‘‘TaintART: A practical multi-level
information-flow tracking system for Android RunTime,’’ in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., Vienna, Austria, Oct. 2016,
pp. 331–342.

[23] K. Yang, J. Zhuge, Y. Wang, L. Zhou, and H. Duan, ‘‘IntentFuzzer:
Detecting capability leaks of Android applications,’’ in Proc. 9th ACM
Symp. Inf., Comput. Commun. Secur., vol. 18, Jun. 2014, pp. 531–536.

[24] R. Hay, O. Tripp, and M. Pistoia, ‘‘Dynamic detection of inter-application
communication vulnerabilities in Android,’’ in Proc. Int. Symp. Softw. Test.
Anal., Baltimore, MD, USA, Jul. 2015, pp. 118–128.

[25] R. Johnson, M. Elsabagh, A. Stavrou, and J. Offutt, ‘‘Dazed droids: A
longitudinal study of Android inter-app vulnerabilities,’’ in Proc. Asia
Conf. Comput. Commun. Secur., vol. 30, May 2018, pp. 777–791.

[26] M. D. Ernst, ‘‘Static and dynamic analysis: Synergy and duality,’’ in Proc.
WODA Workshop Dyn. Anal., Portland, OR, USA, May 2003, pp. 24–27.

[27] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon,
D. Octeau, and P. McDaniel, ‘‘FlowDroid: Precise context, flow, field,
object-sensitive and lifecycle-aware taint analysis for Android apps,’’ ACM
SIGPLAN Notices, vol. 49, no. 6, pp. 259–269, 2014.

[28] D. Titze and J. Schütte, ‘‘Apparecium: Revealing data flows in Android
applications,’’ in Proc. IEEE 29th Int. Conf. Adv. Inf. Netw. Appl., South
Korea, Mar. 2015, pp. 579–586.

[29] S. Blackshear, B.-Y.-E. Chang, and M. Sridharan, ‘‘Selective control-flow
abstraction via jumping,’’ in Proc. ACM SIGPLAN Int. Conf. Object-
Oriented Program., Syst., Lang., Appl., vol. 3, Pittsburgh, PA, USA,
Oct. 2015, pp. 163–182.

[30] L. Li, T. F. Bissyandé, M. Papadakis, S. Rasthofer, A. Bartel, D. Octeau,
J. Klein, and L. Traon, ‘‘Static analysis of Android apps: A systematic
literature review,’’ Inf. Softw. Technol., vol. 88, pp. 67–95, Aug. 2017.

[31] A. Chaudhuri, ‘‘Language-based security on Android,’’ in Proc. ACM
SIGPLAN 4th Workshop Program. Lang. Anal. Secur., Jun. 2009, pp. 1–7.

[32] A. P. Fuchs, A. Chaudhuri, and J. S. Foster, ‘‘SCanDroid: Automated
security certification of Android applications,’’ Tech. Rep., 2009.

[33] S. Lortz, H. Mantel, A. Starostin, T. Bähr, D. Schneider, and A. Weber,
‘‘Cassandra: Towards a certifying app store for Android,’’ inProc. 4th ACM
Workshop Secur. Privacy Smartphones Mobile Devices, Scottsdale, AZ,
USA, Nov. 2014, pp. 93–104.

[34] M. D. Ernst, R. Just, S. Millstein, W. Dietl, S. Pernsteiner, F. Roesner,
K. Koscher, P. B. Barros, R. Bhoraskar, S. Han, P. Vines, and E. X. Wu,
‘‘Collaborative verification of information flow for a high-assurance app
store,’’ in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., Scottsdale,
AZ, USA, Nov. 2014, pp. 1092–1104.

[35] Z.-P. Zhang, M. Fu, and X.-Y. Feng, ‘‘A lightweight dynamic enforcement
of privacy protection for Android,’’ J. Comput. Sci. Technol., vol. 34, no. 4,
pp. 901–923, Jul. 2019.

[36] G. Rosu and T. F. Serbănută, ‘‘An overview of the k semantic framework,’’
J. Log. Algebr. Program., vol. 79, no. 6, pp. 397–434, Aug. 2010.

[37] K. F. K Team. K Framework. [Online]. Available:
http://www.kframework.org/index.php

[38] X. Hu, Y. Zhuang, and F. Zhang, ‘‘A security modeling and verification
method of embedded software based on Z and MARTE,’’ Comput. Secur.,
vol. 88, Jan. 2020, Art. no. 101615.

[39] P. O. Android Developers. Permissions Overview. [Online]. Available:
https://developer.android.com/guide/topics/permissions

165040 VOLUME 12, 2024

X. Hu: TySA: Enforcing Security Policies for Safeguarding Against Permission-Induced Attacks

[40] R. A. P. Android Developers. Request App Permissions. [Online].
Available: https://developer.android.com/training/permissions

[41] H. Mantel, D. Sands, and H. Sudbrock, ‘‘Assumptions and guarantees
for compositional noninterference,’’ in Proc. IEEE 24th Comput. Secur.
Found. Symp., Jun. 2011, pp. 218–232.

[42] C. P. Android Developers. Content Providers. [Online]. Available:
https://developer.android.com/guide/topics/providers

[43] D. Volpano, C. Irvine, and G. Smith, ‘‘A sound type system for secure flow
analysis,’’ J. Comput. Secur., vol. 4, nos. 2–3, pp. 167–187, Apr. 1996.

[44] A. F. Android Developers. Application Fundamentals. [Online]. Available:
https://developer.android.com/guide/components

[45] B. Android Developers. Binder. [Online]. Available:
https://developer.android.com/reference

[46] D. E. Denning and P. J. Denning, ‘‘Certification of programs for secure
information flow,’’ Commun. ACM, vol. 20, no. 7, pp. 504–513, Jul. 1977.

[47] A. Sabelfeld and A. C. Myers, ‘‘Language-based information-flow
security,’’ IEEE J. Sel. Areas Commun., vol. 21, no. 1, pp. 5–19, Jan. 2003.

[48] A. Banerjee and D. A. Naumann, ‘‘Stack-based access control and secure
information flow,’’ J. Funct. Program., vol. 15, no. 2, pp. 131–177,
Mar. 2005.

[49] D. E. Denning, ‘‘A lattice model of secure information flow,’’ Commun.
ACM, vol. 19, no. 5, pp. 236–243, May 1976.

[50] J. A. Goguen and J. Meseguer, ‘‘Security policies and security models,’’ in
Proc. IEEE Symp. Secur. Privacy, Oakland, CA, USA, Apr. 1982, p. 11.

[51] S. Kan, Z. Chen, D. Sanan, S.-W. Lin, and Y. Liu, ‘‘An executable
operational semantics for rust with the formalization of ownership and
borrowing,’’ 2018, arXiv:1804.07608.

[52] J. Jiao, S. Kan, S.-W. Lin, D. Sanan, Y. Liu, and J. Sun, ‘‘Semantic
understanding of smart contracts: Executable operational semantics
of solidity,’’ in Proc. IEEE Symp. Secur. Privacy (SP), May 2020,
pp. 1695–1712.

XINWEN HU received the B.E. and Ph.D.
degrees in computer science and technology
from Nanjing University of Aeronautics and
Astronautics, China, in 2016 and 2021, respec-
tively. Since 2021, she has been a Lecturer with the
School of Journalism and Communication, Hunan
Normal University, China. Her research interests
include developing effective methodologies, tech-
niques, and tools to improve software security.

VOLUME 12, 2024 165041

