
Received 2 July 2024, accepted 18 October 2024, date of publication 28 October 2024, date of current version 5 November 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3487505

DeepCoAST: Unveiling Split Trace Correlation to
Counter Traffic Splitting Defenses
GOUN KIM , HYEONJEONG KWAK, SUJIN KIM, YOUHEE PARK,
JIHYEUN PARK , AND SE EUN OH , (Member, IEEE)
Ewha Womans University, Seodaemun, Seoul 03760, Republic of Korea

Corresponding author: Se Eun Oh (seoh@ewha.ac.kr)

This work was supported in part by Ewha Womans University Research Grant of 2022; and in part by the Institute of Information and
Communications Technology Planning and Evaluation (IITP) Grant funded by the Korea Government (MSIT) (Artificial Intelligence
Convergence Innovation Human Resources Development, Ewha Womans University) under Grant RS-2022-00155966.

ABSTRACT Despite its widespread adoption, Tor remains vulnerable to traffic analysis attacks, which
enables both ends of the communication to be inferred by network-level adversaries. Notable examples
of such attacks include website fingerprinting and end-to-end flow correlation attacks. Various defense
techniques have been proposed to enhance the security of Tor against these threats, with traffic splitting
defenses standing out as particularly effective. These defenses allow packets to be sent through multiple
circuits without incurring additional bandwidth overhead, thereby limiting the amount of traffic observable
by adversaries. In this paper, the potential of correlating split traces is thoroughly investigated using the
proposed deep learning-based correlator called DeepCoAST. It is shown that properly merged split traces,
upon correlated detection, could enable website fingerprinting attacks to effectively identify websites with
high accuracy. Superior performance is demonstrated by DeepCoAST, achieving an Area Under the Receiver
Operating Characteristic Curve (AUC) of 0.98 against 95 pairs of split traces generated by three traffic
splitting defenses: TrafficSliver, HyWF, and CoMPS. This result highlights the need for further enhancement
of traffic splitting Website Fingerprinting (WF) defense mechanisms against DeepCoAST-style attacks.

INDEX TERMS Anonymity, flow correlation attack, Tor, website fingerprinting.

I. INTRODUCTION
Tor is among the most widely used anonymous networks,
serving millions of daily users [1]. The aim of Tor is to
safeguard connection anonymity by routing communications
through three randomly selected proxies and employing
three-layered encryption. One layer is decrypted by each
proxy, ensuring that both ends of the communication are
concealed, with each destination able to identify only the
preceding location.

However, despite its protections, security challenges are
encountered by Tor, particularly regarding the inference of
online activities through traffic analysis [2], [3], [4], [5],
[6], [7], [8]. This attack, known as Website Fingerprinting
(WF), involves the identification of the destination (typically
a website) based on communication between the client and

The associate editor coordinating the review of this manuscript and
approving it for publication was Jenny Mahoney.

the first Tor proxy (entry guard). New feature engineering
techniques and machine learning algorithms are continuously
developed by WF researchers to enhance fingerprinting
capabilities, thereby accurately linking traffic to websites.

Another notable attack on Tor involves the correlation
of ingress and egress traffic, which compromises user
anonymity. This end-to-end flow correlation attack entails the
matching of communication entering (ingress) and exiting
(egress) the Tor network by the adversary. To combat
this, various correlation functions have been developed,
utilizing statistical methodologies such as Spearman’s rank
correlation [9] and cosine similarity [10].
Recent literature suggests that correlation detection can

be enhanced through carefully designed feature extractors
based on deep learning algorithms. Nasr et al. [11] developed
2-DConvolutional Neural Networks (CNNs) that stack traffic
features extracted from ingress and egress traffic, with
multiple kernels learning their local relationships. A higher

158266

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0009-0008-6967-152X
https://orcid.org/0009-0001-7329-9993
https://orcid.org/0009-0000-7100-4613

G. Kim et al.: DeepCoAST: Unveiling Split Trace Correlation to Counter Traffic Splitting Defenses

FIGURE 1. Traffic splitting defense mitigation scenario using DeepCoAST.

correlation detection rate was achieved by their approach
using only a few hundred packets. Subsequently, Oh et al. [10]
proposed generative deep learning models that generate more
effective feature embedding vectors, demonstrating high
correlation for correlated pairs of traces while exhibiting
low correlation for uncorrelated pairs. Correlation detection
performance was significantly improved by their new feature
extractor model while requiring less computational cost than
previous approaches [9], [11].

The fundamental vulnerability enabling both WF and end-
to-end flow correlation attacks on Tor is the leakage of traffic
metadata, such as packet timing and size information. This
leakage allows the inference of the communication source
and destination based on the correlation between the ingress
and egress traffic of the same Tor connection.

To counter traffic analysis attacks on Tor, various defense
mechanisms have been proposed, particularly targeting WF
attacks, by padding Tor traces to obfuscate traffic pat-
terns from network-level adversaries. However, significant
bandwidth overhead is incurred by periodic padding [12],
[13], which involves sending dummy packets at a constant
rate, albeit effectively thwarting WF attacks. Alternatively,
padding is selectively applied by lighter defense methods
to critical packet locations, such as the front part of
the trace [14], or to larger intervals between consecutive
packets [15]. Despite reducing overhead, WF accuracy may
be slightly increased by such defenses.

More recently, it has been demonstrated that sending
packets through multiple paths is a more effective defense
strategy, as the amount of traffic that can be monitored
by adversaries observing only one path is reduced without
incurring additional bandwidth overhead. Various methods
have been developed to implement this approach. Multiple
circuits, each routed through multiple entry guards, are
utilized by TrafficSliver [16]. Multiple access points or
internet service providers are leveraged by HyWF [17]. Con-
nection migration, switching packets to multiple destination
IP addresses, is employed by CoMPS [18]. In this paper, each
traffic sent over each ofmultiple paths is referred to as a ‘‘split
trace.’’

The multipath strategy has been proposed as a design
improvement for Tor, aimed at enhancing the network’s per-
formance [19]. Although this approach does not specifically
target defenses against WF attacks, it demonstrates the

feasibility of splitting traffic across multiple circuits in
Tor. Consequently, investigating the potential vulnerabilities
introduced by traffic splitting defenses is crucial for further
strengthening this approach, given its practicality, effec-
tiveness, and zero bandwidth overhead. Addressing these
vulnerabilities is essential for ensuring the security of Tor
users. This research problem is both timely and important,
as it addresses an underexplored yet significant threat to
anonymity networks.

To this end, this paper presents a correlation model named
DeepCoAST (Deep Correlation Attack for Split Traces).
This model effectively detects correlations between split
traces originating from the same Tor connection when traffic
splitting defenses are deployed. By analyzing packet arrival
times, the model merges split traces back into a single trace,
reconstructing the original traffic pattern that would have
been observed when using a single circuit. These merged
traces allow WF attacks to regain sufficient traffic pattern
recognition by utilizing the complete trace.

The capabilities of the previous flow correlator, DeepCoF-
FEA [10], are extended by DeepCoAST to effectively corre-
late split traces generated by three well-known splitting WF
defenses: TrafficSliver [16], HyWF [17], and CoMPS [18].
The attack scenario with DeepCoAST is illustrated in Fig. 1.
To the best of our knowledge, the correlation between split

traces induced by WF defenses using deep learning-based
correlation models is investigated for the first time in
this paper. An in-depth analysis of correlation features is
included to propose a variant of recent WF features, termed
correlated traffic features, along with various adjustments
to DeepCoFFEA to develop DeepCoAST. Therefore, the
scope of this paper is to develop an effective correlator for
identifying correlated split traces, which are then merged (or
reconstructed) into single-path traffic and subsequently fed
into WF classification models, as outlined in the second and
third steps of Fig. 1. The experimental details of our approach
are provided in Section III-A.
It is noteworthy that while HyWF and CoMPS are not

exclusively designed for the Tor network, these mechanisms
were evaluated within the context of Tor. In this scenario,
communication is split by the Tor client through two
Autonomous Systems (ASes) before entering a Tor bridge.
Therefore, throughout the paper, the terms ‘‘circuit’’ and
‘‘path’’ are used interchangeably.

VOLUME 12, 2024 158267

G. Kim et al.: DeepCoAST: Unveiling Split Trace Correlation to Counter Traffic Splitting Defenses

The contributions of the paper are summarized as follows:

• A novel approach to counter traffic splitting defenses
is proposed using the DeepCoAST model to learn the
correlations between split traces. This represents the first
correlation methodology specifically designed to attack
traffic splitting defenses on Tor. The resulting correlator
yields an AUC of 0.98, correctly correlating 95 pairs of
split traces.

• To achieve such robustness, DeepCoAST is developed
by adapting DeepCoFFEA as a correlator to detect
the correlation between split traces. This transition
requires an in-depth investigation of model architectures
and feature explorations. Our implementation clearly
shows the gap between DeepCoFFEA and DeepCoAST.
First, DeepCoAST is based on a unified embedding
network model, while DeepCoFFEA relies on two sep-
arate embedding models. Second, DeepCoAST utilizes
intermediate-level granularity trace features, such as the
number of packets per timeslot, whereas DeepCoFFEA
uses fine-grained traffic features, such as packet timing
and size information.

• WF features widely used in previous literature [2],
[3], [4], [10], [20] are thoroughly explored, resulting
in the proposal of a variant of a recent feature called
Traffic Aggregation Matrix (TAM) [20] to enhance the
split trace correlator. This exploration is supported by
references to prior works such as k-NN [2], k-FP [3],
Deep Fingerprinting [4], DeepCoFFEA [10], and Robust
Fingerprinting [20].

• Our findings underscore the importance for security
researchers to enhance current traffic- splitting defenses,
given the substantial leakage of correlated traffic
patterns.

While defenses involving two-path settings with adver-
saries monitoring two split traces are examined in this
paper, it is important to note that TrafficSliver and CoMPS
support more than three paths. However, the primary goal
of this paper is to investigate the potential of existing flow
correlation models to be extended to detect the correlation
between two split traces and, in turn, undermine traffic
splitting defenses. Possible extensions to correlate more than
three split traces are also discussed in Section VI-C.

The organization of the paper is as follows: The back-
ground is discussed in Section II. The DeepCoAST is
detailed in Section III. The feature analysis for effective
DeepCoAST attacks against traffic splitting defenses is
presented in Section IV. The details of the experiments,
including the evaluation metrics, are provided in Section V.
The performance of the proposed model is evaluated and
the results are discussed in Section VI. Finally, the paper is
concluded in Section VII.

II. BACKGROUND
In this section, a review of prior literature on end-to-end
flow correlation attacks, WF attacks, and defenses, which

served as significant sources of inspiration for this paper,
is presented.

A. FLOW CORRELATION ATTACKS
The end-to-end flow correlation attack is recognized as a
fundamental threat to Tor, as the egress and ingress traffic
within the Tor network can be successfully correlated, thereby
revealing both ends of the Tor connection. Traffic metadata,
including packet timing and size information, has been
explored by researchers to extract robust features that can
be utilized in correlation using statistical methods, machine
learning, or deep learning models. Despite the presence of
considerable noise and perturbations in packet traces induced
by the Tor network, this type of attack poses a significant
threat to the anonymity of Tor users.

More recently, the potential of flow correlation attacks
based on traffic analysis was demonstrated by Sun et al.
in RAPTOR [9]. However, their methodology requires a
substantial amount of traffic for monitoring. For instance,
the attacks presented in their work demanded a 300-second-
long traffic duration to exhibit satisfactory performance for a
correlator based on Spearman’s rank correlation algorithms.

Recognizing the impracticality of RAPTOR, a more
efficient correlator, namely DeepCorr, was introduced by
Nasr et al. [11], based on deep learning models. This model
comprises multiple 2-D convolutional layers, stacking new
features that include packet timing and size vectors extracted
from both egress (traffic between exit nodes and destination
servers) and ingress (traffic between clients and guard
nodes) traffic within the Tor network. This novel approach
significantly reduces the amount of traffic monitored to a few
hundred packets per connection, from which traffic feature
vectors are extracted.

However, both RAPTOR and DeepCorr demonstrate
a drawback in their quadratic complexity. They require
n2 comparisons or stacked features, respectively, to identify
the correlation between n pairs of egress and ingress traffic
on the Tor network. Moreover, this pairwise setting has
led to a low base rate, 1

n , rendering the flow correlation
attack impractical in real-world scenarios. To demonstrate the
feasibility of end-to-end flow correlation attacks on Tor in
practice, there is a need for lower false positives.

Following previous literature, DeepCoFFEA was intro-
duced by Oh et al. [10], employing a generative deep learning
model fed by n triplets to learn the correlation between n
pairs of egress and ingress traffic on the Tor network. Greater
efficiency in both training and testing is achieved by this
model. Additionally, an amplification technique is utilized
by dividing each trace into multiple short-interval windows,
evaluating each window separately, and aggregating results
from multiple windows in an ensemble. This approach
dramatically reduces the number of false positives, enhancing
the practicality of the Tor flow correlation attack.

In this work, inspiration is drawn from DeepCoFFEA
but a different objective is pursued. While DeepCoFFEA
excels in detecting the correlation between egress and ingress

158268 VOLUME 12, 2024

G. Kim et al.: DeepCoAST: Unveiling Split Trace Correlation to Counter Traffic Splitting Defenses

traffic in the Tor network, the extensibility of the flow
correlation model in detecting the correlation between split
traces generated by traffic splitting defenses is explored.

B. WEBSITE FINGERPRINTING ATTACKS
WF attacks have been recognized as another fundamental
threat to Tor and have been extensively studied by security
researchers. Informative traffic patterns are revealed by Tor
traffic metadata captured from the communication between
the Tor client and entry guards, enabling the determination of
the destination of Tor connections with high accuracy.

In earlier studies, traditional machine learning models
were demonstrated to be effective as WF models when fed
with carefully crafted features. For instance, diverse types of
features, including cell and burst sequences, were utilized by
k-NN [2]. A new type of feature, namely cumulative packet
size sequence, was incorporated by CUMUL [21]. Further-
more, 150 hand-crafted features, which were well-suited for
Random Forest classifiers, were investigated by k-FP [3].
More recently, to alleviate concerns about cumbersome

feature engineering, researchers have turned to applying
Deep Learning (DL) models to WF. A substantial WF dataset
necessary for effectively training DL-based WF models was
amassed by Automated Website Fingerprinting (AWF) [5].
Their work tailored StackedDenoisingAutoencoder (SDAE),
2-D CNNs, and Long Short Term Memory (LSTM) models
to WF. At the same time, a robust WF model based on deep
1-D CNNs, called the Deep Fingerprinting (DF) model, was
introduced by Sirinam et al. [4], showcasing its effectiveness
in identifying a user’s visited websites in both vanilla Tor
traffic and defended Tor traffic. Subsequently, the DF model
was expanded by Rahman et al. [22] by incorporating a novel
feature set, Tik-Tok features. This feature set encompasses a
sequence comprising both packet direction and packet arrival
time information. Superior performance compared to the
original DF model was demonstrated by their approach.

Despite the superior classification ability exhibited by
DL-based WF models, the substantial amount of Tor
traffic required poses a significant challenge, necessitating
considerable efforts in regularly collecting extensive traces.
To address this challenge, more advanced deep learning
models were utilized by researchers [8], [23] to minimize the
amount of required training data while still achieving compa-
rable performance in WF compared to earlier WF models.

Following this, a Robust Fingerprinting (RF) model based
on 2-D CNNs with a new category of WF features termed
‘‘Traffic Aggregation Matrix (TAM)’’ was introduced by
Shen et al. [20]. TAM is constructed by dividing Tor
traces into multiple short-interval window segments and
aggregating packet counts per window. These window-based
aggregated features effectively capture informative features
even in padded or split traces, enabling the RFmodel to detect
defended traces with high accuracy.

While this work is not directly focused on WF studies,
an exploration of various WF features, including Tik-Tok
and TAM, was conducted as part of the efforts to identify

more effective correlated traffic features for DeepCoFFEA
in detecting correlation between split traces. Notably, due
to TAM’s outstanding performance in identifying websites
against TrafficSliver defenses, TAM was extended to be
integrated into the DeepCoFFEA architecture. This extension
is discussed in detail in Section IV.

C. WEBSITE FINGERPRINTING DEFENSES
As WF attacks have evolved with the introduction of new
features and models, effective defenses to safeguard the
anonymity of Tor users have concurrently been developed
by security researchers. In earlier efforts, regular padding-
based defenses [12], [13], [24] were formulated, involving
the periodic transmission of dummy packets to obfuscate the
traffic pattern unique to the destination. Despite the success
demonstrated in hindering the accuracy of WF models,
a substantial amount of bandwidth overhead was incurred by
these defenses due to the addition of dummy packets.

To mitigate the overhead to some extent, selective padding
was introduced by WTF-PAD [15], where dummy packets
were sent only to fill statistically larger gaps. Reduced
overhead was achieved by this approach while maintaining
a slightly higher WF accuracy.

After this, additional research aimed to lower WF accu-
racy while minimizing bandwidth overhead by mimicking
representative traffic sequences during the padding of traces.
An example of such an approach is Walkie-Talkie [25], con-
structed based on the half-duplex mode, which simulates one
ormorewebsites for eachwebsite to have them carry the same
traffic pattern. The intention is to make them indistinguish-
able from each other, thereby achieving a balance between
reduced WF accuracy and lower bandwidth overhead.

To counter the ability of WF attackers to monitor com-
munication between the client and the entry guard through
a single path (e.g., a single entry guard), traffic splitting
defenses have been developed by researchers, involving
the sending of packets across multiple network paths. For
instance, TrafficSliver [16] achieves this by employing
multiple entry guards, HyWF [17] divides communication
across multiple Internet Service Providers, and CoMPS [18]
separates traffic through connection migration.

Powerful performance against recent WF attacks has
been demonstrated by these defenses while incurring zero
bandwidth overhead.

In this paper, the specific focus lies on three splitting
defenses—TrafficSliver, HyWF, and CoMPS—to identify
potential vulnerabilities, particularly correlated traffic pat-
terns between split traces of the same connection. Detailed
insights into each of these three defenses are provided in
Section II-E and the performance of the attack model against
these defenses is evaluated in Section V.

D. IOT INTRUSION DETECTION SYSTEMS
The important role of network traffic features in protecting
the security of the Internet of Things (IoT) has been
recognized.

VOLUME 12, 2024 158269

G. Kim et al.: DeepCoAST: Unveiling Split Trace Correlation to Counter Traffic Splitting Defenses

The IoT comprises interconnected devices equipped with
sensors, enabling data to be exchanged with other devices
and subsystems. As the IoT ecosystem expands, the inci-
dence of intrusions—unauthorized or malicious attempts
to gain access and compromise data—has also increased.
Consequently, the safeguarding of IoT systems by thwarting
unauthorized access and enhancing overall security has made
Intrusion Detection Systems (IDS) essential.

Numerous research [26], [27] have been conducted to
propose IoT IDS based on various machine learning and deep
learning models to understand malicious IoT traces based
on statistical traffic information such as IP addresses, port
numbers, protocol types, and specific application identifiers.
In particular, the efficiency of the IDS process was explored
by Nallakaruppan et al. [28] using various machine learning
algorithms. An effective algorithm and framework were
proposed by them to mitigate intrusions on the host side.

E. OVERVIEW OF TARGETED TRAFFIC-SPLITTING WF
DEFENSES
In this section, three traffic splitting defense mechanisms
that are targeted by the adversary are detailed. Furthermore,
the vulnerabilities that enable the detection of correlations
between split traces are discussed.

1) TrafficSliver
‘As illustrated in Fig. 2a, a lightweight WF defense employ-
ing a traffic splitting strategy was introduced by Cadena et
al. [16]. TCP packets are transmitted over multiple circuits
between the client and middle node through the use of
multiple entry guards. Subsequently, individual TCP streams
are merged at the middle node.

This defense limits the adversary’s ability to observe only
partial traffic along one circuit, thereby restricting exposure
to potentially identifiable traffic patterns. Consequently, its
effectiveness and efficiency in protecting against WF on Tor
are recognized, as no bandwidth overhead is incurred.

Traffic splitting at the application layer was also demon-
strated by Cadena et al., where HTTP requests are sent
over multiple circuits by configuring browser proxies with
different Tor circuits. However, the exclusive focus of this
paper is on TrafficSliver in the network-level setting, where
TCP streams are sent over multiple entry nodes.

The number of entry guards was varied, and multiple
splitting schemes including round robin, random splitting,
weighted random (WR), and batched weighted random
(BWR) were explored. The round-robin scheme simply
transitions to the subsequent circuit with each packet. The
random splitting scheme randomly chooses the path for each
packet. In the WR scheme, each entry guard is assigned a
probabilityw derived from a Dirichlet distribution, with these
probabilities summing up to 1. These probabilities influence
the selection of the path when sending packets. In the BWR
scheme, packets are sent in batches comprising n packets to

the designated entry node. Additionally, for each batch, the
value of n is re-sampled.

The exclusive focus of this paper is on the BWR scheme,
acknowledged as the most effective configuration. Notably,
their experimental results indicated that selecting a value for
n within the range of 50 to 70 resulted in the highest security.
This is one of the settings used to configure TrafficSliver in
Section V.

Despite the BWR scheme introducing randomness to the
selection of circuits and the number of packets to be sent,
correlations among split traces were observed. Specifically,
correlations in the inter-packet arrivals of split traces were
identified. This refers to the intervals between consecu-
tive packets, packet sizes, and aggregated packet statistics
computed from each fixed-time interval. Since packets are
transmitted asynchronously across multiple circuits, upon
detecting correlations between split traces, correlated split
traces can be effectively merged, reconstructing the full trace
as if it were collected using a single entry guard.

2) HyWF
A HyWF that entails sending packets across two networks
provided by two Internet Service Providers (ISPs) or two
different access points such as Wi-Fi and cellular networks
was proposed by Henri et al. [17]. The objective of this
strategy is to eliminate some of the packets by redirecting
them over another network.

After various splitting schemes were explored, a multi-
path scheduler that dynamically adjusts both the number of
packets sent over the network and the probability of selecting
a particular network was introduced.

The number of consecutive packets, denoted as n, to be sent
over the network is selected from a geometric distribution
with a mean value of ncons. Subsequently, the probability p to
choose one network is drawn from the Bernoulli distribution,
while the probability of selecting the other is 1 − p. This
approach incurs zero bandwidth overhead and demonstrates
privacy protection that is comparable or superior to existing
WF defenses.

In this paper, HyWF was configured under specific
conditions where the client is multi-homed through two
ASes and then passes through a Tor bridge that supports
multipath, as illustrated in Fig. 2b. Despite the randomness
in the number of sent packets and network path selection,
correlations in split traces were observed. Specifically,
correlations in their packet counts per time slot, intervals
between consecutive packets, and packet sizes were noted.

Given that packets are transmitted independently across
two networks, detecting correlations between split traces
allows correlated split traces to be smoothly merged,
reconstructing the entire trace as if it were collected using
a single network.

3) CoMPS
CoMPS, which leverages connection migration features
offered by diverse network protocols like QUIC, WireGuard,

158270 VOLUME 12, 2024

G. Kim et al.: DeepCoAST: Unveiling Split Trace Correlation to Counter Traffic Splitting Defenses

FIGURE 2. Traffic splitting defenses: TrafficSliver, HyWF, and CoMPS.

TABLE 1. The parameters of TrafficSliver, HyWF, and CoMPS.

and Mosh, was introduced by Wang et al. [18]. Traffic
is effectively split by dynamically switching the network
addresses for packet transmission, thereby mitigating WF
attacks that monitor traffic through one of the networks.
In contrast to defenses like TrafficSliver and HyWF that
necessitate additional implementations and are confined to
specific network protocols like Tor, CoMPS is notable for its
ease of deployment and can be readily applied to any network
system supporting connection migration.

For path switching, a consistent splitting scheduler was
proposed. This scheduler employs various schemes, includ-
ing round-robin, uniform random, and weighted random,
to select the path for packet transmission. Additionally,
a context-dependent splitting scheduler was introduced,
where switching occurs only in response to specific network
events such as handshaking.

The consistent splitting scheme was primarily focused
on in their evaluation, with experiments conducted that
encompassed all three path selectionmethods. Thesemethods
included round-robin, which alternates paths for packet
transmission; uniform random, which uniformly selects paths
at random; and weighted random, where probabilities are
drawn from a Dirichlet distribution and assigned to paths for
each connection. The utilization of a varying number of paths,
ranging from two to five, was investigated.

Following previous literature [18], our approach was
evaluated against CoMPS with a weighted random path
scheduler while maintaining a fixed number of paths.
Furthermore, although CoMPS was not originally designed
exclusively for the Tor network, its vulnerabilities against

TABLE 2. Various TrafficSliver configurations with each denoted as TS1,
TS2, TS3, and TS4.

FIGURE 3. Threat model: correlation attack on split traces.

correlation attacks were re-evaluated within the context of
Tor, as shown in Fig. 2b.

Despite the random selection of multipath, a remarkably
consistent pattern in the packet count within fixed short-
time intervals, inter-packet delays, and packet sizes for
connections directed towards the same destination was
observed.

Even though packets traverse the network via multiple
paths, each represented by heterogeneous network protocols,
the identification of correlations between split connections
enables the successful reconstruction of the full trace.
This reconstruction mimics the process of collecting traces
over a single network protocol, essentially consolidating
the information as if transmitted along a single path.
Consequently, this approach significantly contributes to high
WF accuracy.

In Table 1, we present the selected parameter values for
TrafficSliver, HyWF, and CoMPS. Additionally, we investi-
gated four different configurations for TrafficSliver (Table 2)
to evaluate their impact on defense performance against
DeepCoAST.

III. DEEPCOAST DETAILS
In this section, the adversary model, the dataset used to
evaluate DeepCoAST, its architecture, and the tuning process
are presented.

VOLUME 12, 2024 158271

G. Kim et al.: DeepCoAST: Unveiling Split Trace Correlation to Counter Traffic Splitting Defenses

FIGURE 4. DeepCoAST’s feature extractor.

A. THREAT MODEL
It is assumed that the adversary is a global network-level
adversary, similar to those commonly utilized in prior Tor
flow correlation research [9], [10], [11]. Additionally, it is
posited that users initiate connections to the server through
multiple network paths designed to split the traffic. The
term ‘‘multiple network paths’’ takes on different indications
depending on the defense mechanisms employed.

For TrafficSliver, it represents multiple entry nodes in
the Tor network. For HyWF, it denotes multiple TCP
connections originating from a multi-homed client. For
CoMPS, it indicates multiple split connections to various
IP addresses and ports, achieved through multiple tunneling
protocols using proxies and VPNs. In this paper, it is assumed
that the adversary monitors two network paths, denoted as
‘‘path1’’ and ‘‘path2,’’ as shown in Fig. 3.

AS-level adversaries can monitor all split traces by
observing multiple entry guards or controlling ASes. For
example, nationwide censorship might intercept all network
paths split through multiple guard nodes, multihoming,
or connection migration.

Additionally, this attack can be executed using a somewhat
less powerful network-level model capable of BGP hijacking.
This technique allows the adversary to compel target users to
route their traffic through a selected pool of ISPs or ASes,
facilitating the monitoring of their split connections despite
existing defenses. The overall attack model is illustrated in
Fig. 3.

DeepCoAST, the proposed attack, is designed to detect
correlations between traffic split through multiple network
paths. Once correlated traces are identified, they are merged
by ordering Tor cells based on their arrival timestamps, thus
reconstructing the full trace. It is important to note that
throughout the paper, split trace refers to the sequence of
Tor cells rather than packets, with approximately 512 bytes
of data encapsulated in each cell. This is because the dataset
used was constructed by capturing Tor cell traces. The dataset
will be detailed in Section III-B.

B. DATASET
Defended traces were generated using the BigEnough
dataset collected by Matthews et al. [29], which consists of
95 websites, each with 200 Tor cell trace instances. While
three browser security levels (standard, safe, and safest) are

offered by the dataset, instances collected under the standard
security level were specifically utilized for this paper.

As outlined in Table 2 in Section II-E, various configu-
rations for TrafficSliver were further explored, focusing on
different values of n and w. Here, n represents the number
of Tor cells transmitted by a guard node, randomly chosen
within specified ranges, and w denotes the path selection
probability, also randomly selected within specified ranges.

The original implementations provided by the authors
of TrafficSliver,1 HyWF,2 and a re-implemented version of
CoMPS3 by Beckerle et al. [30] were utilized to extract
defended traces.

Since each defense method significantly reduced the
number of cells in split traces, a filtering step was applied to
remove very short traces containing fewer than 10 cells. After
this filtering process, the dataset consisted of 18,986 pairs for
TrafficSliver, 19,000 pairs for HyWF, and 18,780 pairs for
CoMPS.

C. MODEL ARCHITECTURE
As sketched in Fig.4, the feature extraction model of Deep-
CoAST, trained using a CNN-based architecture, is similar to
two Feature Embedding Networks (FENs) of Deep CoFFEA
[10] jointly trained using triple loss. Specifically, each FEN
in DeepCoAST is composed of four convolutional blocks,
with each block consisting of two 1-D convolutional layers
followed by amax pooling layer. The ELU activation function
was used for the first block, while ReLU was applied to
the subsequent blocks. Oh et al. demonstrated that FENs
neither required pair-wise correlated or uncorrelated flow pair
generations, as DeepCorr [11] did, nor pair-wise similarity
score computations for all ingress and egress trace pairs,
as RAPTOR [9] conducted. This indicates that FENs achieve
less computational complexity than other correlation metrics.
We will justify this later in this section.

In addition, DeepCoFFEA is equipped with an evaluator
utilizing k-Nearest Neighbors (k-NN) with cosine similarity
metrics. Trace amplification is employed by DeepCoFFEA
by evenly dividing the trace into short-time intervals (win-
dows), with each window being evaluated separately. The
aggregated results from each window are then used in an

1https://github.com/TrafficSliver/splitting_simulator
2https://github.com/sebhenri/HyWF
3https://github.com/m-bec/Splitting-Hairs-and-Network-

Traces/blob/main/simulators/comps-sim.py

158272 VOLUME 12, 2024

G. Kim et al.: DeepCoAST: Unveiling Split Trace Correlation to Counter Traffic Splitting Defenses

ensemble to determine whether the Tor and exit traces belong
to the same connection. This approach has been proven to
significantly reduce false positives, as agreement from many
windows is required.

Two key modifications were made to adapt DeepCoFFEA
for correlating split traces. First, considering that split traces
through multiple network paths are homogeneous (e.g.,
in TrafficSliver, they are Tor traffic, and for HyWF and
CoMPS, they are encrypted traffic like HTTPS going through
a Tor bridge), three models in the feature extractor F were
established and trained jointly while sharing weights. This
results in a single feature embedding network, or in other
words, a unified embedding model similar to the one used
in FaceNet [31].

Second, the amplification step of dividing the full trace into
windows was excluded. This decision was made based on
the observation that many windows in split traces contained
only zero cells after dividing each split trace into multiple
windows.

According to Fig. 4, F comprises three submodels: anchor,
positive, and negative. These submodels are trained jointly to
maximize the correlation between embedding pairs from the
anchor and positive models while minimizing the correlation
between embedding pairs from the anchor and negative
models.

For example, in TrafficSliver with two circuits, the traffic
of one circuit is fed to the anchor, the traffic of the other circuit
on the same connection is fed to the positive, and the traffic of
either circuit but on the other connection is fed to the negative.

This objective is captured in the triplet loss function (1).

max(0, Corr(F(a),F(n)) − Corr(F(a),F(p)) + α) (1)

In this expression, Corr denotes the correlation metric,
specifically the cosine similarity chosen for the model. Here,
‘a’ refers to the input to the anchor model, ‘p’ corresponds to
the input to the positive model, and ‘n’ represents the input to
the negative model.

In the correlation analysis for n correlated pairs, (ti, pj),
where 1 ≤ i, j ≤ n, the triplet (a, p, n) was constructed, with
a = t1 and p = p1.

To select an effective n from pj where j ̸= 1, the boundaryα

was empirically set to be farther, but not significantly farther
than p1. This hyperparameter α is empirically chosen and
serves as a boundary when selecting negative samples for
training. Specifically, the negative sample is chosen between
the positive sample and α. This way, F only requires n triplets
for its training to learn the correlation between n correlated
pairs.

This approach contrasts with prior methods like RAP-
TOR [9] and DeepCorr [11], which suffer from quadratic
complexity (n2 comparisons) in identifying correlations,
as pair-wise feature extractions or correlation score compu-
tations are required. This quadratic complexity is a primary
reason why triplet loss was chosen to train the feature
extractor model of DeepCoAST.

The architecture of the three submodels is built upon the
DF [4] architecture, which is one of the most effective traffic
fingerprinting models. However, the hyperparameters within
the DF model were fine-tuned to enhance its performance,
as discussed in Section III-E.

D. EVALUATION METHODOLOGY
After the feature extractor was trained based on three
submodels using the triplet loss, feature embedding vectors
were generated using the testing set. Then, pairwise cosine
similarity scores between the feature embeddings of split
trace pairs were calculated by DeepCoAST, and the top k
embeddings were selected.

For instance, as illustrated in Fig. 3, pairwise cosine
similarity scores against each trace pj in path2 were computed
for each trace ti in path1, where 1 ≤ i, j ≤ n and n is the total
number of correlated pairs. Here, i = j indicates a correlated
pair.

Subsequently, the top k pj’s with the highest scores were
selected for each ti. If pj is present in this top list, it is
classified by DeepCoAST as correlated; otherwise, it is
classified as uncorrelated. In this context, k serves as the
threshold impacting DeepCoAST’s performance, and it was
varied from 1 to 95, as demonstrated in Section V.

FIGURE 5. ROC curves by varying the optimizer and learning rate. Note
that the x-axis is a log scale and we used the 1-D TAM features.

E. HYPERPARAMETER TUNING
To attain superior performance for DeepCoAST, model
tuning was conducted against TrafficSliver with the TS1
setting. The search space and the selected parameters are
outlined in Table 3. Various search spaces for parameters
were explored, including the correlation metric (i.e., Corr)
employed in the triplet loss, the boundary α for selecting
negative samples, and the number of batches and epochs.

According to Table 3, 128 batches and 300 epochs were
used as DeepCoAST demonstrated comparable performance
across all batch sizes while requiring less running time
with 128 batches. Additionally, improved performance up
to 300 epochs was exhibited; however, beyond this point,
no further improvement in performance was observed.

VOLUME 12, 2024 158273

G. Kim et al.: DeepCoAST: Unveiling Split Trace Correlation to Counter Traffic Splitting Defenses

TABLE 3. Chosen hyper-parameters and search spaces used in the hyper-parameter optimization.

Algorithm 1 DeepCoAST Training Algorithm

1 Input: Anchor traces, A, positive traces, P, negative
traces, N , a margin, α.

2 Output: Network parameters, θ , of the feature extractor
model.

3 Step 1: Initialize the shared model, f , which has DF
architecture.

4 Step 2: Feed A, P, and N into f to obtain embedding
vectors:

5 EA = f (A)
6 EP = f (P)
7 EN = f (N)
8 Step 3: Compute the cosine similarity scores:
9 CorrAP =

EA·EP
∥EA∥∥EP∥

10 CorrAN =
EA·EN

∥EA∥∥EN ∥

11 Step 4: Train the triplet model with inputs, [EA,EP,EN]
1313 while not converge do
14 Compute the triplet loss as follows:
15 L = max(0,CorrAN − CorrAP + α)
16 Backpropagate the loss L.
17 Update the triplet network parameters θ .

Furthermore, based on the observations in Fig. 5, the
Adaptive Moment Estimation (Adam) optimizer with a
learning rate of 10−3 was chosen.

Even though the parameter optimization resulted in the
same architecture as the DF model consisting of two convo-
lutional layers per block, known as a CNN block, different
but more effective parameter settings for DeepCoAST were
identified.

During the hyperparameter optimization process for acti-
vation functions, the highest AUC for DeepCoAST was
achieved by using the ELU activation function for the first
block and the ReLU activation function for the subsequent
blocks. Additionally, it was observed that increasing the

Algorithm 2 DeepCoAST Evaluation Algorithm

1 Input: Testing traces on path1, T , testing traces on
path2, P, a threshold, k , a feature extractor model, f .

2 Output: A true positive count, TP, a false positive count,
FP, a true negative count, TN, a false negative count, FN.

3 Step 1: Load the feature extractor model, fθ .
4 Step 2: Compute the feature embedding vectors using fθ :
5 ET = fθ (T)
6 EP = fθ (P)
7 Step 3: Compute the pairwise cosine similarity score
matrix:

8 CorrTP =
ET ·EP

∥ET ∥∥EP∥

9 Step 4: Compute TP, TN, FP, FN:
10 Initialize TP = 0, TN = 0, FP = 0, FN = 0.
11 Sort the cosine similarity score matrix in an ascending

order.
1313 for i = 0; len(ET) − 1; i+ + do
1515 for j = 0; len(EP) − 1; j+ + do
1717 if i == j and j < k then
18 TP = TP + 1

2020 else if i ̸= j and j < k then
21 TN = TN + 1

2323 else if i == j and j ≥ k then
24 FN = FN + 1

2626 else if i ̸= j and j ≥ k then
27 FP = FP + 1

28 return TP, TN, FP, FN

number of filters in the 1-D convolutional layers enhances
the performance of DeepCoAST. The number of filters was
set to 32, 64, 128, and 256, respectively, each representing
the number of filters in the two convolutional layers of the
i-th CNN block, where 1 ≤ i ≤ 4. Furthermore, a consistent
dropout rate of 0.1 was maintained across all blocks.

158274 VOLUME 12, 2024

G. Kim et al.: DeepCoAST: Unveiling Split Trace Correlation to Counter Traffic Splitting Defenses

TABLE 4. AUC of DeepCoAST when evaluating against TrafficSliver (TS1)
by varying s.

F. TRAINING & TESTING POLICIES
1) TRAINING PROCEDURE
The training procedure, as outlined in Algorithm 1, is con-
ducted in three steps. The goal is to train the feature extractor
model of DeepCoAST to compute feature embedding vectors
that are cosine similar for correlated split traces on the same
Tor connection.

a: STEP 1 - MODEL PREPARATION
The shared model, f , based on the DF architecture, is initial-
ized. This model will be used to generate feature embedding
vectors for the anchor (A) traces on path1, and the positive
(P) and negative (N) traces on path2. Note that positive traces
are correlated with the anchor traces as they are split traces on
the same connections, while negative traces are not correlated
with the anchor traces as they are split traces on different
connections.

b: STEP 2 - TRAINING EMBEDDING VECTOR GENERATION
The feature embedding vectors for the training set are
computed using f . EA, EP, and EN denote the feature
embedding vectors of anchor traces, positive traces, and
negative traces, respectively.

c: STEP 3 - CORRELATION SCORE COMPUTATION
The cosine similarity scores between EA and EP and between
EA and EN are computed.

d: STEP 4 - TRAINING WITH A TRIPLET LOSS FUNCTION
Finally, the feature extractor model, f , is trained with EA, EP,
and EN , using the triplet loss function that maximizes the
cosine similarities between EA and EP while minimizing the
cosine similarities between EA and EN .

2) TESTING PROCEDURE
The testing procedure, as outlined in Algorithm 2, is con-
ducted in four steps. The goal is to correlate testing split traces
on path1 and path2 to determine whether they are from the
same Tor connection.

a: STEP 1 - MODEL LOADING
The feature extractor model, fθ , trained in the training
procedure is loaded.

b: STEP 2 - TESTING EMBEDDING VECTOR GENERATION
The feature embedding vectors for the testing set are
computed using fθ . ET and EP denote the feature embedding
vectors of traces on path1 and traces on path2, respectively.

c: STEP 3 - PAIRWISE CORRELATION SCORE COMPUTATION
The pairwise cosine similarity scores between ET and EP are
computed.

d: STEP 4 - TOP K EMBEDDING SELECTION AND
COMPARISON
For the i-th vector in ET , ET i, the pairwise cosine similarity
scores are computed against each vector of EP, EPj, where
i = j indicates a correlated pair, 1 ≤ i, j ≤ n, and n is the
total number of correlated pairs.

Then, for each ET i, the top k vectors with higher cosine
similarity scores are selected from EP. If EPj is present in
this top list, it is determined that ET i and EPj are correlated;
otherwise, decide it as uncorrelated.

When i = j, if ET i and EPj are decided as correlated, it is
a TP; otherwise, it is an FN.

When i ̸= j, if ET i and EPj are decided as correlated, it is
an FP; otherwise, it is a TN.

IV. FEATURE ANALYSIS
In this section, various features employed in earlier WF
studies [2], [3], [4], [5], [10], [20], [22] are explored, and
an extension of a recent WF feature known as TAM [20] is
proposed. This extension aims to optimize TAM as an input
vector, enhancing its effectiveness in DeepCoAST.

Let l denote a trace comprising a series of Tor cells ci,
where 1 ≤ i ≤ n and n represents the total number of Tor
cells in l. For each Tor cell ci, the cell direction denoted as di,
cell timing (i.e., arrival time) information denoted as ti, and
cell size information denoted as si are extracted. Therefore,
l = [(d1, t1, s1), (d2, t2, s2),, (dn, tn, sn)].

A. CELL DIRECTION
The cell direction, denoted as ‘‘+1’’ when cells are transmit-
ted from the Tor client to the server and ‘‘−1’’ when cells are
transmitted from the server to the Tor client, is acknowledged
as a valuable feature in WF studies. Consequently, the cell
directional sequence is represented as [d1, d2, . . . , dn].

B. TIK-TOK
A feature representation was introduced by Rahman et al.
[22] by encoding both cell timing and direction information.
This was achieved by multiplying each cell’s timestamp by
its direction. The resulting feature vector is represented as
[d1 · t1, d2 · t2, . . . , dn · tn], and this enhancement significantly
improved the performance of DF models, leading to the
implementation of Tik-Tok.

C. INTER CELL DELAY (ICD)
In addition to packet arrival time, the computation of
inter-packet delay (IPD), representing the time gap between
two consecutive packets, provides informative features and
has been widely adopted in WF research [3], [32]. Con-
sequently, the sequence of inter-cell delay (ICD), which
indicates the interval between two consecutive cells with a

VOLUME 12, 2024 158275

G. Kim et al.: DeepCoAST: Unveiling Split Trace Correlation to Counter Traffic Splitting Defenses

modification involving multiplication by the cell direction,
was evaluated. The resulting feature vector is denoted as
[d1 ·0, d2 · (t2 − t1), . . . , dn · (tn− tn−1)]. Note that 0 is placed
at the beginning, as the first cell should not incur any delays.

Additionally, the values of ICDs were scaled by a factor of
s, where s = 1, 10, 100, and 1,000. This re-scaling might be
beneficial in effectively handling small ICDs, such as those
below 0.0001, as such values frequently appeared in the ICD
sequences. However, as illustrated in Table 4, DeepCoAST
demonstrated comparable performance across various values
of s.

D. INTER-CELL DELAY WITH SIZE (ICDS)
Inter-cell delay with size (ICDS) was also considered.
In DeepCoFFEA [10], IPDs and packet sizes were linearly
concatenated in their feature representation, denoted as
[[0, (t2 − t1), . . . , (tn − tn−1)]||[s1, s2, . . . , sn]]. IPDs were
rescaled by a factor of 1,000 to align their scale with the
packet size scale. Following this approach, various scaling
factors s from 1 to 1,000 were explored. As shown in Table 4,
DeepCoAST demonstrated marginally superior performance
with s = 100 against TrafficSliver.

FIGURE 6. 1-D TAM feature.

E. 1-DIMENSIONAL TAM
A feature matrix representing the packet count within each
window, called TAM, was introduced by Shen et al. [20].
These windows are short time intervals into which the trace
is evenly divided. The feature representation is separately
computed for incoming (i.e., −1) and outgoing (i.e., +1)
packet directions, and the results are stacked into a 2-D
matrix.

Let lin denote lin = {(di, ti, si)|(di, ti, si) ∈ l and di = −1}
and lout denote lout = {(dj, tj, sj)|(dj, tj, sj) ∈ l and dj = +1}.
Note that i+ j = n. The i-th window is denoted as wi and the
packet count in wi is denoted as ci. For wi, the sequence of
packet counts Cin for lin and Cout for lout is extracted. Then,
the original TAM is represented as [Cout ;Cin].

To align with the DF architecture [4], based on 1-D
convolutional layers and recognized as one of the most
effective traffic fingerprinting models, the 1-D TAM feature
was devised by linearly concatenating Cout and Cin, resulting
in [Cout ||Cin], as shown in Fig. 6.

To identify more effective features against each of the three
defenses, DeepCoAST was evaluated using these features in
Section V.

V. EXPERIMENT DETAILS
In this section, DeepCoAST is assessed as a correlator
for detecting correlations between split traces created by
three defenses: TrafficSliver, HyWF, and CoMPS. Details
on the experimental settings, evaluation metrics, and the
performance of DeepCoAST are provided.

A. SETUP
A single NVIDIA RTXA6000 GPUwith 48GBmemory was
utilized for both training and evaluating DeepCoAST.

For all experiments, the testing set comprised one instance
per destination (i.e., website). This ensures that all testing
connections are directed to unique destinations, consistent
with the setup used in the DeepCoFFEA experiments [10].
Utilizing the BigEnough dataset, which consists of 95 web-
sites, one instance per website was randomly selected,
resulting in 95 pairs for the testing set. The remaining pairs
were then used for the training set.

B. EVALUATION METRICS
The performance of DeepCoAST is evaluated using multiple
metrics such as True Positive Rate (TPR), False Positive Rate
(FPR), Receiver Operating Characteristic (ROC) Curve, F1-
Score, Accuracy, and Specificity. These metrics provide a
comprehensive assessment of the model’s effectiveness and
reliability in detecting correlations between split traces.

The following evaluation metrics are used to show the
performance of DeepCoAST:

• True Positive Rate (TPR, Sensitivity): The fraction of
correctly identified correlated pairs over all correlated
pairs. The performance of DeepCoAST in detecting the
presence of a specific correlation is measured by this
metric.

TPR(Sensitivity) =
TP

TP+ FN
(2)

where TP (True Positive) is the number of correctly
identified correlated pairs, and FN (False Negative) is
the number of correlated pairs that were incorrectly
identified as uncorrelated.

• False Positive Rate (FPR): The fraction of incorrectly
identified uncorrelated pairs over all uncorrelated pairs.
It is important to note that the number of uncorrelated
pairs is n2−1 for n correlated pairs. A low value for this
metric is indicative of the effectiveness of the correlator,
considering the pairwise comparisons involved.

FPR =
FP

FP+ TN
(3)

where FP (False Positive) is the number of uncorrelated
pairs that were incorrectly identified as correlated, and
TN (True Negative) is the number of correctly identified
uncorrelated pairs.

• Receiver Operating Characteristic (ROC) Curve:
Instead of fixing the confidence threshold at a specific
value, varying the threshold allows for a comprehensive

158276 VOLUME 12, 2024

G. Kim et al.: DeepCoAST: Unveiling Split Trace Correlation to Counter Traffic Splitting Defenses

assessment of model performance. As discussed in
Section III-D, k was varied, representing the number of
path2 traces with the highest cosine similarity scores.
Using these different values of k , both TPRs and FPRs
were visualized and the AUC was subsequently calcu-
lated. A larger AUC signifies the greater effectiveness
of the model.

• F1-Score: The F1-Score acts as the harmonic mean
of precision and recall, providing a balance between
the two. Given the known tradeoff between precision
and recall when varying the thresholds, the F1-Score is
beneficial as it reflects both precision and recall. The
score is computed as follows:

F1-Score = 2 ·
Precision · Recall
Precision+ Recall

(4)

where,

Precision =
TP

TP+ FP

and

Recall =
TP

TP+ FN

• Accuracy: The accuracy is computed as the fraction
of correctly determined pairs, whether correlated or
uncorrelated. It provides an overall measure of the
model’s performance. The formula for accuracy is as
follows:

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(5)

• Specificity: The specificity is computed as the fraction
of correctly identified, uncorrelated pairs among all
uncorrelated pairs. It measures the ability of the model
to correctly identify uncorrelated pairs. The formula for
specificity is as follows:

Specificity = 1 − FPR (6)

VI. RESULTS AND DISCUSSIONS
In this section, we discuss the performance ofDeepCoAST by
exploring diverse features, defense parameters, and various
evaluation metrics to demonstrate their impact. Furthermore,
we summarize our key findings and discuss potential future
work to address the identified limitations.

A. DEEPCOAST PERFORMANCE
DeepCoAST was evaluated by exploring various features,
defenses, and configurations (Table 2), particularly in Traf-
ficSliver (TS).

1) FEATURES
As discussed in Section IV, various popular WF features
were applied to DeepCoAST to assess their effectiveness in
correlation detection. This exploration involved five feature
sets across all three defenses.

TABLE 5. AUC of DeepCoAST by varying defenses, features, and TS
configurations.

As observed in Fig. 7, different feature rankings were
resulted by the defenses, although 1-D TAMand ICD features
consistently occupied top positions. Notably, directional
feature vectors did not exhibit a significant level of correlated
traffic patterns, in contrast to traditional WF models where
they played a central role, as observed in well-known WF
models [4], [5].

In addition, the utilization of only cosine similarity without
a feature extractor yielded poor performance across all
defenses, consistent with the findings in DeepCoFFEA [10].
This underscores the significance of the deep learning-based
feature extractor in detecting correlations between split traces
across multiple network paths.

2) DEFENSES
The performance of DeepCoAST across three defenses was
further compared. As illustrated in Fig. 8, the correlation
between split traces was successfully identified by Deep-
CoAST when utilizing 1-D TAM features under all three
defenses. This result raises significant concerns, as split
traces displayed a notable level of correlation, achieving an
AUC of over 0.98 at best.

Additional features for all defenses were explored, as pre-
sented in Table 5. Overall, superior performance in detecting
correlations was demonstrated by DeepCoAST, particularly
with Tik-Tok, 1-D TAM, and ICD features, across all three
defenses.

3) TS PARAMETERS
To investigate the impact of parameters n (the number of
cells to be sent) and w (the probability to select the path)
in TrafficSliver, four parameter combinations were explored,
as shown in Table 2. The performance of DeepCoAST
is presented in Table 5, and Fig. 9 indicates that these
parameters marginally impacted DeepCoAST, especially
with more powerful features such as Tik-Tok, 1-D TAM, and
ICD. The extension of this analysis to cover more parameter
sets is left for future work.

4) OTHER EVALUATION METRICS
When k increases from 1 to 95, both TPR and FPR
increase, as shown in Fig.7. However, Fig.7 does not clearly
show the performance of DeepCoAST by precision scores.
To address this, k is fixed at 5, and the F1-scores are
computed by considering both TPRs and precision scores.
According to Table 6, even at over 90% TPR, F1-scores were

VOLUME 12, 2024 158277

G. Kim et al.: DeepCoAST: Unveiling Split Trace Correlation to Counter Traffic Splitting Defenses

FIGURE 7. ROC curve of DeepCoAST by varying features and defenses. Note that s = 100 for ICD and ICDS.

TABLE 6. The accuracy, F1-Score, TPR(Sensitivity), FPR, specificity of DeepCoAST by varying defenses and features (when, threshold k = 5).

FIGURE 8. Comparison of TrafficSliver (TS1), HyWF, and CoMPS using the
1-D TAM features.

around 30%, indicating that the number of false positives
should be reduced further through potential improvements.
However, as presented in Table 6, the FPRs were under
5%, and specificity scores were over 95%, indicating that
uncorrelated pairs were accurately identified in all cases.
Further improvements to achieve sufficiently high precision
are left for future work.

FIGURE 9. Comparison of TS1, TS2, TS3, and TS4 using the 1-D TAM
features. Note that the x-axis is a log scale.

B. SUMMARY OF FINDINGS
We summarize our findings through experiments in Sec-
tion VI.

• DeepCoAST demonstrated robust performance against
three well-known traffic splitting defenses: Traffic-
Sliver, HyWF, and CoMPS.

158278 VOLUME 12, 2024

G. Kim et al.: DeepCoAST: Unveiling Split Trace Correlation to Counter Traffic Splitting Defenses

• Both traditional WF features and their variants, along
with the modified feature embedding models of Deep-
CoFFEA, make DeepCoAST advantageous as a split
traffic correlation detector.

• The performance of DeepCoAST remains effective even
when varying parameters of the three defenses.

With these findings, our correlation analysis of split traffic
by WF defenses urges Tor researchers to improve traffic
splitting defenses to prevent leaking the correlation between
split traces of the same connection.

C. FUTURE WORK DISCUSSIONS
Even though DeepCoAST shows potential as a split traffic
correlator, this paper includes some limitations. In this
section, we discuss potential future work aimed at enhancing
the robustness of DeepCoAST and conducting more realistic
evaluations.

1) LARGER TESTING DATASET
The construction of the testing set, which includes unique
destinations based on the BigEnough dataset, resulted in
some artificial settings. In the real world, many destinations,
including some overlapping destinations, would appear in
multiple Tor connections.

As the potential of DeepCoAST as a correlator to
correlate 95 split traces heading to unique destinations has
been successfully demonstrated, the current experimental
scenarios will be extended to evaluate DeepCoAST against a
much larger dataset with overlapping destinations. This will
result in more realistic experimental settings.

2) END-TO-END FLOW CORRELATION
Even though the effectiveness of DeepCoAST in detecting
the correlation between split traces has been demonstrated,
the extent to which this approach helps identify website traces
under splitting defense techniques is questionable.

For the end-to-end flow correlation attack, the attack can
be carried out in two stages. First, once the correlated traces
are determined by DeepCoAST, they are merged to recover a
single path trace. Second, the WF models are evaluated using
these recovered traces.

With a higher correlation rate demonstrated by AUC,
DeepCoAST would result in lower false predictions while
identifying websites. The second stage of the attack also
allows for a fair comparison to other WF attacks against
splitting defenses. Although this paper focuses on the first
stage of the attack, the second stage is left as future work.

3) EVALUATION USING MORE NETWORK PATHS
The experiments primarily focus on evaluating DeepCoAST
using split traces collected from two network paths. However,
considering that TrafficSliver and CoMPS are configurable
with more than three paths, exploring this additional setting
would be a reasonable next step. As a possible extension to

detect the correlation between n split traces, where n ≥ 3,
DeepCoAST is utilized sequentially.

For example, the testing set comprising ai, bj, and ck ,
where 1 ≤ i, j, k ≤ n and n is the total number of
connections, with each collected from path1, path2, and
path3, respectively, is assumed. DeepCoAST first detects the
correlation between ai and bj, sorts out correlated pairs, and
merges each pair (determined as correlated) as a single path
trace. Then, DeepCoAST computes the correlation between
these recovered traces and ck , consequently deriving the final
correlated triplets.

Further elaboration on this approach, including how to
compute WF metrics to properly measure the performance
of this style of attack, could be an interesting area for future
work.

4) DEEPCOAST WITH AMPLIFICATION
As a significant loss in the number of packets in split
traces was experienced, the amplification setting in the
DeepCoFFEA implementation was canceled. This decision
was made as the amplification further divided the split
traces into multiple small windows, leading to an increase
in the amount of padding. However, previous literature [10]
has demonstrated the effectiveness of amplification in
considerably reducing the number of false positives, as they
are determined with enough votes as correlated frommultiple
windows.

To incorporate amplification into DeepCoAST, longer
connections will be captured. Specifically, by monitoring Tor
connections for a longer duration (e.g., more than oneminute,
which was a flow duration used in DeepCoFFEA [10]),
further investigation into how much amplification enhances
the correlation capability will be conducted in future work.

VII. CONCLUSION
In this paper, the effectiveness of end-to-end flow correlation
attacks against two split traces generated by traffic splitting
defenses using a new split trace correlation model, Deep-
CoAST, was investigated.

While traffic splitting defense techniques have been
recognized as robust WF defenses, DeepCoAST can lead
to the merging of split traces into a single trace, resulting
in high WF accuracies as shown in previous WF literature.
A thorough feature analysis based on WF features was
conducted to suggest more effective correlated features for
DeepCoAST, and DeepCoFFEA was carefully tailored to
build a robust architecture of the feature extractor model
against split traces. Across three defenses, multiple fea-
tures, and various TrafficSliver configurations, DeepCoAST
demonstrated effective performance with an AUC of 0.98.

Based on the experimental results, an urgent need for
further research on additional defense mechanisms to counter
DeepCoAST attacks exists, given the considerable amount
of correlated traffic pattern leakage. Additionally, further
studies on DeepCoAST evaluation against more network path

VOLUME 12, 2024 158279

G. Kim et al.: DeepCoAST: Unveiling Split Trace Correlation to Counter Traffic Splitting Defenses

settings and the enhancement of DeepCoAST remain future
work.

REFERENCES
[1] A. Mani, T. Wilson-Brown, R. Jansen, A. Johnson, and M. Sherr,

‘‘Understanding tor usage with privacy-preserving measurement,’’ in Proc.
Internet Meas. Conf., Oct. 2018.

[2] T. Wang, X. Cai, R. Nithyanand, R. Johnson, and I. Goldberg, ‘‘Effective
attacks and provable defenses for website fingerprinting,’’ in Proc. 23rd
USENIX Secur. Symp. (USENIX Secur.), 2014, pp. 143–157.

[3] J. Hayes and G. Danezis, ‘‘k-fingerprinting: A robust scalable website
fingerprinting technique,’’ in Proc. 25th USENIX Secur. Symp. (USENIX
Security). Austin, TX, USA: USENIX Association, Aug. 2016,
pp. 1187–1203.

[4] P. Sirinam, M. Imani, M. Juarez, and M. Wright, ‘‘Deep fingerprinting:
Undermining website fingerprinting defenses with deep learning,’’ inProc.
ACM SIGSAC Conf. Comput. Commun. Secur., New York, NY, USA,
Oct. 2018, pp. 1928–1943.

[5] V. Rimmer, D. Preuveneers, M. Juarez, T. Van Goethem, and W. Joosen,
‘‘Automated website fingerprinting through deep learning,’’ 2017,
arXiv:1708.06376.

[6] S. Eun Oh, S. Sunkam, and N. Hopper, ‘‘P-FP: Extraction, classification,
and prediction of website fingerprints with deep learning,’’ 2017,
arXiv:1711.03656.

[7] P. Sirinam, N. Mathews, M. S. Rahman, and M. Wright, ‘‘Triplet
fingerprinting: More practical and portable website fingerprinting with N-
shot learning,’’ in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
New York, NY, USA, Nov. 2019, pp. 1131–1148.

[8] S. E. Oh, N. Mathews, M. S. Rahman, M. Wright, and N. Hopper, ‘‘GAN-
DaLF: GAN for data-limited fingerprinting,’’ Proc. Privacy Enhancing
Technol., vol. 2021, no. 2, pp. 305–322, Apr. 2021.

[9] Y. Sun, A. Edmundson, L. Vanbever, O. Li, J. Rexford, M. Chiang, and
P. Mittal, ‘‘RAPTOR: Routing attacks on privacy in Tor,’’ in Proc. 24th
USENIX Secur. Symp. (USENIX Secur.), 2015, pp. 271–286.

[10] S. E. Oh, T. Yang, N. Mathews, J. K. Holland, M. S. Rahman, N. Hopper,
and M. Wright, ‘‘DeepCoFFEA: Improved flow correlation attacks on tor
via metric learning and amplification,’’ in Proc. IEEE Symp. Secur. Privacy
(SP), May 2022, pp. 1915–1932.

[11] M. Nasr, A. Bahramali, and A. Houmansadr, ‘‘DeepCorr: Strong flow
correlation attacks on tor using deep learning,’’ in Proc. ACM SIGSAC
Conf. Comput. Commun. Secur., New York, NY, USA, Oct. 2018,
pp. 1962–1976.

[12] K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton, ‘‘Peek-a-boo, I
still see you: Why efficient traffic analysis countermeasures fail,’’ in Proc.
IEEE Symp. Secur. Privacy, May 2012, pp. 332–346.

[13] X. Cai, R. Nithyanand, T. Wang, R. Johnson, and I. Goldberg, ‘‘A sys-
tematic approach to developing and evaluating website fingerprinting
defenses,’’ in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
Nov. 2014, pp. 227–238.

[14] J. Gong and T. Wang, ‘‘Zero-delay lightweight defenses against website
fingerprinting,’’ in Proc. USENIX Secur. Symp., 2020.

[15] M. Juarez, M. Imani, M. Perry, C. Diaz, and M. Wright, ‘‘Toward an
efficient website fingerprinting defense,’’ in Proc. 21st Eur. Symp. Res.
Comput. Secur. (ESORICS), Heraklion, Greece, Sep. 2016, pp. 27–46.

[16] W. De la Cadena, A. Mitseva, J. Hiller, J. Pennekamp, S. Reuter,
J. Filter, T. Engel, K. Wehrle, and A. Panchenko, ‘‘TrafficSliver: Fighting
website fingerprinting attacks with traffic splitting,’’ in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., New York, NY, USA, Oct. 2020,
pp. 1971–1985.

[17] S. Henri, G. Garcia-Aviles, P. Serrano, A. Banchs, and P. Thiran,
‘‘Protecting against website fingerprinting with multihoming,’’ Proc.
Privacy Enhancing Technol., vol. 2020, no. 2, pp. 89–110, Apr. 2020.

[18] M. Wang, A. Kulshrestha, L. Wang, and P. Mittal, ‘‘Leveraging strategic
connection migration-powered traffic splitting for privacy,’’ Proc. Privacy
Enhancing Technol., vol. 2022, no. 3, pp. 498–515, Jul. 2022.

[19] Tor Design Proposals: Overcoming tor’s Bottlenecks With Traffic Split-
ting. [Online]. Available: https://spec.torproject.org/proposals/329-traffic-
splitting.html

[20] M. Shen, J. Zhang, L. Zhu, K. Xu, and X. Du, ‘‘Subverting website
fingerprinting defenses with robust traffic representation,’’ in Proc. 32nd
USENIX Secur. Symp., 2023, pp. 607–624.

[21] A. Panchenko, F. Lanze, A. Zinnen, M. Henze, J. Pennekamp, K. Wehrle,
and T. Engel, ‘‘Website fingerprinting at internet scale,’’ in Proc. Netw.
Distrib. Syst. Secur. Symp., 2016.

[22] M. S. Rahman, P. Sirinam, N.Mathews, K. G. Gangadhara, andM.Wright,
‘‘Tik-tok: The utility of packet timing in website fingerprinting attacks,’’
Proc. Privacy Enhancing Technol., vol. 2020, no. 3, pp. 5–24, Jul. 2020.

[23] S. Bhat, D. Lu, A. Kwon, and S. Devadas, ‘‘Var-CNN: A data-efficient
website fingerprinting attack based on deep learning,’’ Proc. Privacy
Enhancing Technol., vol. 2019, no. 4, pp. 292–310, Jul. 2019.

[24] X. Cai, R. Nithyanand, and R. Johnson, ‘‘CS-BuFLO: A congestion
sensitive website fingerprinting defense,’’ in Proc. 13th Workshop Privacy
Electron. Soc., Nov. 2014.

[25] T. Wang and I. Goldberg, ‘‘Walkie-talkie: An efficient defense against
passive website fingerprinting attacks,’’ in Proc. 26th USENIX Secur.
Symp. (SEC), Vancouver, BC, Canada, Aug. 2017, pp. 1375–1390.

[26] J. Asharf, N. Moustafa, H. Khurshid, E. Debie, W. Haider, and A.
Wahab, ‘‘A review of intrusion detection systems using machine and deep
learning in Internet of Things: Challenges, solutions and future directions,’’
Electronics, vol. 9, no. 7, p. 1177, Jul. 2020.

[27] R. M. S. Priya P. K. R. Maddikunta, M. Parimala, S. Koppu,
T. R. Gadekallu, C. L. Chowdhary, and M. Alazab, ‘‘An effective feature
engineering for DNN using hybrid PCA-GWO for intrusion detection in
IoMT architecture,’’ Comput. Commun., vol. 160, pp. 139–149, Jul. 2020.

[28] M. K. Nallakaruppan, S. R. K. Somayaji, S. Fuladi, F. Benedetto,
S. K. Ulaganathan, and G. Yenduri, ‘‘Enhancing security of host-based
intrusion detection systems for the Internet of Things,’’ IEEE Access,
vol. 12, pp. 31788–31797, 2024.

[29] N. Mathews, J. K. Holland, S. E. Oh, M. S. Rahman, N. Hopper, and
M. Wright, ‘‘SoK: A critical evaluation of efficient website fingerprinting
defenses,’’ in Proc. IEEE Symp. Secur. Privacy (SP), May 2023,
pp. 969–986.

[30] M. Beckerle, J. Magnusson, and T. Pulls, ‘‘Splitting hairs and network
traces: Improved attacks against traffic splitting as a website fingerprinting
defense,’’ in Proc. 21st Workshop Privacy Electron. Soc., vol. 42,
New York, NY, USA, Nov. 2022, pp. 15–27.

[31] F. Schroff, D. Kalenichenko, and J. Philbin, ‘‘FaceNet: A unified
embedding for face recognition and clustering,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015, pp. 815–823.

[32] G. D. Bissias, M. Liberatore, D. Jensen, and B. N. Levine, ‘‘Privacy
vulnerabilities in encrypted HTTP streams,’’ in Proc. Int. Workshop
Privacy Enhancing Technol. Cavtat, Croatia. Berlin, Germany: Springer,
2005, pp. 1–11.

GOUN KIM received the B.S. degree in computer
science and engineering from Ewha Womans
University, Seoul, South Korea, in 2021, where
she is currently pursuing the M.S. degree in AI
convergence. She has been actively involved as a
Graduate Researcher with the AI Security (AISec)
Laboratory, where she conducts research on traffic
analysis for network security, autonomous vehicle
security, and user authentication.

HYEONJEONG KWAK is currently pursuing the
B.S. degree in computer science and engineering
with Ewha Womans University. She is actively
involved in an internship for undergraduate stu-
dents with the AISec Laboratory, Ewha Womans
University, where she is conducting research
on network security, specifically utilizing deep
learning techniques. Her primary interests include
machine learning and networking.

158280 VOLUME 12, 2024

G. Kim et al.: DeepCoAST: Unveiling Split Trace Correlation to Counter Traffic Splitting Defenses

SUJIN KIM is currently pursuing the B.S. degree
in artificial intelligence and computer science
and engineering (minor) with Ewha Womans
University. She is also an Undergraduate Research
Student with theAISec Laboratory, EwhaWomans
University.

YOUHEE PARK is currently pursuing the dual
B.S. degree in food science and engineering and in
computer science with Ewha Womans University.
She has been actively engaged in an internship
with the AISec Laboratory for a year, where
she serves as a Researcher focusing on network
security. Her work involves utilizing deep learning
and machine learning skills to contribute to the
field.

JIHYEUN PARK is currently pursuing the B.S.
degree in computer science with engineering
with Ewha Womans University. In 2022, she
completed a one-year internship with the AISec
Laboratory. Her current research interest includes
the application of AI models to various domains.

SE EUN OH (Member, IEEE) received the M.S.
degree in computer science from the University
of Illinois at Urbana–Champaign, and the Ph.D.
degree in computer science and engineering from
the University of Minnesota. She is an Assistant
Professor with the Computer Science and Engi-
neering Department and a Director of the AISec
Laboratory, Ewha Womans University. She has
published several research papers in the domain of
anonymity and privacy within prestigious security

and privacy venues, including the IEEE Symposium on Security and Privacy
(S&P) and the Proceedings on Privacy Enhancing Technologies Symposium
(PoPETS). Additionally, she has served as a reviewer for reputable security
journals, such as IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING

and PoPETS.

VOLUME 12, 2024 158281

