
Received 30 September 2024, accepted 21 October 2024, date of publication 28 October 2024, date of current version 12 November 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3486734

CycleGAN-Gradient Penalty for Enhancing
Android Adversarial Malware Detection
in Gray Box Setting
FABRICE SETEPHIN ATEDJIO 1, JEAN-PIERRE LIENOU2, FREDERICA F. NELSON3,
SACHIN S. SHETTY 4, (Senior Member, IEEE),
AND CHARLES A. KAMHOUA 3, (Senior Member, IEEE)
1Department of Mathematics and Computer Science, University of Dschang, Dschang, Cameroon
2Department of Computer Engineering of Technology Fotso Victor of Bandjoun, University of Dschang, Dschang, Cameroon
3DEVCOM Army Research Laboratory, Adelphi, MD 20783, USA
4Department of Computational Modeling and Simulation Engineering, Old Dominion University, Norfolk, VA 23529, USA

Corresponding author: Fabrice Setephin Atedjio (fabriceatedjio@gmail.com)

This work was supported by the Army Research Office under Grant W911NF-21-1-0326.

ABSTRACT Adversarial attacks pose significant threats to Android malware detection by undermining
the effectiveness of machine learning-based systems. The rapid increase in Android apps complicates the
management of malicious software that can compromise user defense solutions. Many current Android
defense techniques rely on deep learning methods. Malicious users exploit GAN-based attacks to achieve
adversarial attack transferability and deceive target models by crafting adversarial examples based on known
models. We propose a new model based on a Cycle Generative Adversarial Network (CycleGAN) to detect
GAN-based attacks. This model incorporates a gradient penalty to enhance the detection rate of the target
model. Our investigation focuses on a gray box scenario, where the attacker has partial information about
the model. The results show that our model outperforms existing classifiers in detecting adversarial attacks.

INDEX TERMS Adversarial attacks, CycleGAN, gradient penalty, android, deep learning, gray box.

I. INTRODUCTION
Global smartphone shipments increase by 7.8% year over
year, reaching 289.4 million units in the first quarter of 2024,
according to IDC statistic data [1]. With the vast number
of Android users and millions of apps worldwide, malicious
actors attempt to compromise these apps to gain access
to sensitive information. The benefits of machine learning
(ML) models in fields such as image recognition, malware
detection, and anomaly detection are significant. However,
these models are vulnerable to adversarial examples (AEs)
[2], which are crafted inputs designed to mislead the
classification model. Robustness of a model against AEs
is indispensable and crucial. Numerous studies on Android
detection solutions [3], [4], [5] have been published in the

The associate editor coordinating the review of this manuscript and

approving it for publication was Jiachen Yang .

literature by proposing classifiers to distinguish between
benign and malicious software. However, These classifiers
are vulnerable to AEs, which are created by adding specific
perturbations to natural inputs. Chen et al. [6] generated
AEs by injecting perturbations into the AndroidManifest.xml
and the APK’s Dex code, effectively concealing well-known
Android malware detection systems like Drebin [7]. Adver-
sarial perturbations can enable malware to disguise itself
from ML-based detectors. Unfortunately, many Android
malware detectors lack adequate defenses against adversarial
attacks. Due to the notable distinctions between images
and Android apps, defensive techniques designed for image
adversarial instances [8] cannot be simply transferred to
Android malware detection. Researchers have demonstrated
that it is feasible to craft specific examples that can deceive
ML models [9]. For instance, Grosse et al. [10] showed
how to manipulate Android malware samples to mislead

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 162685

https://orcid.org/0009-0004-7541-8775
https://orcid.org/0000-0002-8789-0610
https://orcid.org/0000-0003-2169-5975
https://orcid.org/0000-0003-2558-552X

F. S. Atedjio et al.: CycleGAN-Gradient Penalty for Enhancing Android Adversarial Malware Detection

neural network malware detection systems. Their approach
modified a method proposed by Papernot et al. [11], utilizing
the Jacobianmatrix of the neural network to create adversarial
samples. It is important to note that the creation of AEs is
generally applicable across various ML algorithms due to the
inherent properties of these architectures. This vulnerability
extends to contemporary deep neural networks as well. The
ability of twomodels, trained on distinct datasets and network
topologies, to misclassify the same adversarial example (AE)
presents an intriguing scenario in a black box setting. In this
context, even with limited knowledge of the victim’s model,
an adversary can train a source network, create the AE,
and transfer it to the victim’s network [12]. In the context
of malware, an AE attacker can deceive a trained malware
detector into failing to identify malicious software by subtly
altering certain aspects of the code. Because an AE generated
from oneMLmodel can also mislead another model, they can
be highly effective. AE transferability refers to the ability of
an AE that evades one model to bypass others with different
architectures. Even without precise knowledge of the victim
model, transferability allows an attacker to create AEs using
a substitute or source model and then apply them to the victim
model, achieving a high success rate. Many previous studies
have focused on how attackers can increase transferability to
deceive defense methods. In contrast, this work proposes a
model to thwart adversarial attacks generated by generative
adversarial networks (GANs). The goal is to enhance defense
methods against transferability in a gray box scenario. The
contributions are as follows:

• We propose a solution based on CycleGAN to prepare
our model to resist adversarially transferable samples
from malicious users. Since the attack aims to transfer
AEs from a substitute model to the defender or victim
model, we aim to train the defender model to recognize
these transferable samples, enhancing its robustness
against GAN-based attacks in a gray box context.

• We introduce the concept of gradient penalty to
CycleGAN to improve model stability. This addition
enhances the adaptability of the neural network used for
classifying benign and adversarial samples, allowing for
better distinction between different classes.

• We generate adversarial samples within the context of
a gray box scenario, aligned with the adversarial threat
model, and test them on the defender model.

The remainder of the paper is structured as follows:
section II presents the relatedworks, then section III describes
cycleGAN, section IV showcases our model, section V is
dedicated to the results and discussions, and in the end
section VI concludes with perspectives on future work.

II. RELATED WORKS
A. ADVERSARIAL EXAMPLE
Many ML algorithms are highly susceptible to malicious
attacks. If ML-based malware detection algorithms can
be easily defeated by specific adversarial techniques, they

are not suitable for real-world applications. Deep learning
AEs have garnered significant interest from researchers.
Szegedy et al. [8] demonstrated that applying imperceptible
perturbations to images can increase classification errors
in a trained neural network, preventing accurate image
classification. Samples with these perturbations are known
as AEs. To generate AEs, Goodfellow et al. [13] proposed a
gradient-based approach. When creating AEs, Papernot et al.
[11] used the Jacobian matrix to determine which features
to modify when creating these examples. Additionally,
Grosse et al. [14] recommended a gradient-based technique
for generating adversarial Android malware instances. These
AEs are designed to deceive malware detection algorithms
based on neural networks.

B. GAN FOR ANDROID
MalGAN [15] is an adversarial malware attack tech-
nique designed for computers, but it is also applicable
to Android due to the significant similarity between PC
software and Android applications. The generator produces
harmful adversarial malware instances by using noise and
malicious samples as input. The basic white box attack
is transformed into a black box attack by employing a
replacement detector–essentially a model that mimics the
target detector and uses its gradient to generate adversarial
samples. In addition toMalGAN, various other techniques for
generating AEs have emerged in recent years. For instance,
Hu et al. [16] proposed sequence generation based on API
calls, while MalGAN leverages binary characteristics in
software and a Recurrent Neural Network (RNN) model
to create adversarial instances. E-MalGAN [17] enhances
MalGAN by introducing a new substitute detector that
learns to detect AEs within the detection system. Peng et al.
[18] developed AEs using a Long Short-Term Memory
(LSTM) network generator and a Convolutional Neural
Network (CNN) as a substitute model. In another study,
Peng et al. [19] used RNNs to generate adversarial API
sequences, utilizing the context of API calls and word
embeddings. Wang utilized LSGAN-AT [20] to improve the
generation of smoother AEs by applying Least Squares (LS)
loss to optimize the GAN’s network topology. The model
p-MalGAN, which incorporates predictive capabilities, was
proposed in [21]. This approach also addresses the issue
that both the detector and the attacker utilize the same
features during the development of these methods. Li et al.
[17] proposed an approach using bi-objective GANs to
develop an AE attack strategy against Android malware
classifiers. Jan et al. [22] utilized GANs to enhance the
security of Android malware detectors through features based
on intents. Taheri et al. [23] tested four different evasion
attack models on Android malware classifiers and developed
a countermeasure using GANs, reporting that GAN-based
techniques improved evasion detection of Android malware
by up to 50%. Additionally, Rafiq et al. [24] introduced
DanDroid, a model that categorizes both obfuscated and

162686 VOLUME 12, 2024

F. S. Atedjio et al.: CycleGAN-Gradient Penalty for Enhancing Android Adversarial Malware Detection

unobfuscated malicious and benign Android applications
using GANs. They employed the classifier-two sample test
(C2ST) to evaluate the accuracy and expected loss of both the
discriminator and the generator. In practice, malicious data
was input into theGANs to generate artificial data that closely
resembled actual malicious programs.

C. TRANSFERABILITY IN ANDROID ADVERSARIAL
MALWARE
Wallace et al. [25] employed gradient-based attacks to
investigate the transferability of black box machine trans-
lation systems in natural language processing applications.
They developed an imitation model that mimicked the
victim model, allowing them to create AEs that could be
transferred to production systems. Afterward, to enhance
the transferability of adversarial attacks, the authors in [26]
introduced an input transformation-based attack architecture.
It is important to note that deep learning-based adversarial
attacks have become a significant concern in the field
of artificial intelligence, particularly in computer vision
applications [26]. The transferability of AEs has also been
explored in various computer vision tasks. The authors
in [27] proposed AEs to improve cross-task transferability in
classification, explicit content detection, and object detection
models. Suciu et al. [28] developed a system to assess actual
AEs in contexts such as image classification, data breach
prediction, Twitter-based exploit prediction, and Android
malware detection.They suggested poisoning and evasion
attacks against ML systems, demonstrating that a recent
evasion attack is less effective in the absence of broad
transferability. The authors examined the transferability of
these attacks and identified various factors that influence this
characteristic. Similarly, Demontis et al. [29] evaluated the
transferability of evasion and poisoning techniques across
three datasets related to different applications, including face
recognition, handwritten digit identification, and Android
malware detection. Many state-of-the-art studies focus on
enhancing the attacker’s capabilities, by demonstrating
methods to increase transferability to compromise the victim
model. In this paper, our main goal is to examine the
transferability problem from a different perspective by
proposing a model that strengthens the victim or defense
model against GAN-based transferability attacks.

III. CycleGAN
CycleGAN, also known as cycle-consistent generative adver-
sarial network, is a type of usual GAN that is designed to train
two generators, GM and GB, along with two discriminators,
DM andDB. It was initially developed for unpaired image-to-
image translation [30]. Using a diverse set of samples from
both the target and source domains, it employs unsupervised
training to build the model. This straightforward approach
yields visually striking results across a wide range of
applications. CycleGAN learns mappings GB : 6M → 6B
andGM : 6B → 6M . The cycle consistency loss for bothGB
and GM ensures the bijectivity of these mapping functions.

Importantly, the distinct features of CycleGAN arise from
the requirement that both functions must interact with one
another. The adversarial loss is combined with the cycle loss
to achieve the goal of translating unpaired data effectively.

IV. ADVERSARIAL THREAT MODEL AND DEFENSIVE
APPROACH
A. CycleGAN GENERATOR
The CycleGAN generator comprises three key components:
the encoder, transformer, and decoder. First, the encoder
is a neural network that compresses input data into a
lower-dimensional latent space, effectively capturing essen-
tial features and information. It extracts relevant characteris-
tics from the input (e.g., features of benign APKs), allowing
the model to concentrate on critical aspects necessary
for transformation. Second, the transformer modifies the
latent representation obtained from the encoder, adjusting
features to align with those of the target domain (e.g.,
characteristics of malware). This component introduces
adversarial manipulations, generating a representation that
resembles malware while retaining certain attributes of the
original benign input. Finally, the decoder reconstructs the
transformed latent representation back into the original data
format, producing the final output. It translates the modified
features into a complete set of APK features that mimic
malicious behavior, thereby creating adversarial examples.
The discriminator evaluates the output from the decoder,
providing feedback to the generator based on whether the
output is classified as real or fake.

B. ADVERSARIAL THREAT MODEL
Security threats are classified based on their objectives
and capabilities. This section outlines the adversarial threat
model, specifically designed to counter malware evasion
attacks, which consists of four components: adversarial
knowledge, adversarial capabilities, adversarial goals, and
attack surface.

1) ADVERSARIAL KNOWLEDGE
Adversarial knowledge refers to the amount of information
that an attacker possesses, or is presumed to possess,
to conduct attacks against a model. Based on this knowledge,
adversarial attacks can be categorized into three types:

• White box attack: In a white box scenario, the attacker
has full access to the underlying model. This includes
knowledge of the algorithm, training data, hyperparam-
eters, gradient information, and other relevant details.
Due to the extensive information available, attacks in a
white box context are relatively straightforward. Exist-
ing state-of-the-art works in white box environments
have demonstrated a significant level of adversarial
effectiveness [31].

• Black box attack: In a black box scenario, the attacker
only has access to the model’s inputs and outputs,
with no information about its internal architecture.

VOLUME 12, 2024 162687

F. S. Atedjio et al.: CycleGAN-Gradient Penalty for Enhancing Android Adversarial Malware Detection

Typically, the attacker constructs a surrogate model by
inferring the target model’s structure from the input-
output relationships [32].

• Gray box: This type of attack falls between the black box
and white box approaches, where the attacker has some
limited knowledge about the model but does not possess
complete information.

2) ADVERSARIAL CAPABILITIES
Adversarial capabilities refer to an adversary’s capacity and
are based on their understanding of the target model or victim
model. The training datasetD, the feature representation of a
sampleX , themodel architecture g, and themodel parameters
θ are the four types of knowledge that an attacker might
obtain about the victim model. Depending on how much
data the attacker has, a black box attacker does not know
anything about the victim model, and a gray box attacker
only knows a subset of {X ,D, g, θ}. A white box attacker,
on the other hand, is fully aware of all the details of the
targeted victim model. In this study, we focus on a gray
box attack, where the attacker is aware of a subset of D
and X .

FIGURE 1. Goal of the attacker.

3) ADVERSARIAL GOAL
The primary objective of a malicious user is to deceive the
target model into making incorrect classifications, as illus-
trated in Fig. 1. The attacker utilizes resources such as X and
a subset of D to develop a substitutemodel against the defense
or victim model. Since the attacker constructs this substitute
model independently, it functions as a white box model for
them. The attacker generates the corresponding AE X ad for
the substitute model based on a malicious clean sample X ;
thus, X ad is an effective AE on the substitute model. Finally,
to assess the effectiveness of X ad on the victim model,
the attacker applies it. The greater the likelihood that X ad
succeeds against the victim model, the more transferable the
attack becomes.

C. CycleGAN MODEL TO GENERATE ADVERSARIAL
SAMPLES
The model presented here includes two generators: generator
GB and generator GM , and two discriminators: discriminator
DB and the discriminator DM . Generator GB is used to
create samples for the benign category, while generator GM
generates samples from the malicious category. One of the
key advantages of CycleGAN is its ability to be trained on

both paired and unpaired samples, allowing the model to
leverage patterns within each domain to facilitate transitions
that accurately represent each field. The CycleGAN model
is employed to map adversarial malware samples to the
benign domain and vice versa. This process enables the
model to learn the intricate transformations that occur
when malware attempts to evade detection. We utilized the
Drebin dataset [7], which we divided into two unpaired
subsets: malicious and benign. Our architecture consists
of two GANs, each with its generator and discriminator.
The first GAN generates benign samples from malicious
inputs, as illustrated in Fig. 2, while the second GAN creates
malicious samples from benign inputs, as shown in Fig. 3.
Each GAN also includes a discriminator to evaluate the
authenticity of the generated samples. As training progresses,
they can produce samples that closely resemble those from
the target domains.

FIGURE 2. Generating fake benign samples.

FIGURE 3. Generating fake malicious samples.

1) CYCLE LOSS
Like other GAN models, the discriminator and generator of
CycleGANs are trained using the adversarial zero-sum prin-
ciple. The discriminators focus on identifying generated false
data, while the generators work to enhance their ability to
deceive them. The generators translate input samples, where
GM receives samples from the set of malicious samples 6B
and GB receives samples from the set of benign samples
6M . GM aims to generate adversarial data that closely
resembles traffic from 6B, and vice versa. Discriminator DM
distinguishes between real malicious samples and adversarial
samples generated by GM , producing a real or fake decision.
Similarly, discriminator DB performs the same function with
genuine benign traffic and adversarial traffic from GB.
Additionally, the generators are designed to produce

adversarial data in the target domain while also synthesizing

162688 VOLUME 12, 2024

F. S. Atedjio et al.: CycleGAN-Gradient Penalty for Enhancing Android Adversarial Malware Detection

reconstructed data from the source domain. This is accom-
plished by inputting the generated samples into the corre-
sponding generator and comparing the results to the original
samples. A cycle is defined as the transition of samples
across both generators. As illustrated in Fig. 4, each pair of
generators is trained to improve the reproduction of the source
samples. This process is known as cycle consistency. The
cycle-consistency property ensures that our model is better
at capturing the underlying structure of the data, making
CycleGAN more robust for adversarial defense tasks.

FIGURE 4. Cycle consistency loss [30].

Themathematical formulation of the cycle consistency loss
is as follows:

For any malicious sample from 6M , the data translation
cycle must be able to return MM to its original instance:

∀M ∈ 6M ,M → GB(M) → GM (GB(M)) ≈ M (1)

For any benign sample from 6B, the data translation cycle
must return BB to its original instance:

∀B ∈ 6B,B → GM (B) → GB(GM (B)) ≈ B (2)

The cycle consistency loss [30] is thus defined as:

Lcyc(GM ,GB) = EM∈6M [||GM (GB(M)) −M ||1]

+ EB∈6B [||GB(GM (B)) − B||1] (3)

2) IDENTITY LOSS
Identity loss ensures that input data from the target domain
produces the same input samples. This is expressed as:
GM (M) ≈ M and GB(B) ≈ B

The identity loss [30] is defined as:

Lid (GM ,GB) = EM∈6M [||GM (M) −M ||1]

+ EB∈6B [||GB(B) − B||1] (4)

where M represents the malicious traffic in the malicious
training set 6M , and B represents the benign traffic in the
benign training set 6B. The Fig. 5 illustrates the identity loss.

FIGURE 5. Identity loss [30].

3) ADVERSARIAL LOSS
Adversarial losses are closely related to the mapping
functions GM and GB. For the mapping GM : 6B → 6M
and its discriminator DM , we have:

Ladv(GM ,DM) = EM∈6M

[
log(DM (M))

]
+ EB∈6B

[
log(1 − DM (GM (B)))

]
(5)

For the mappingGB : 6M → 6B and its discriminatorDB,
we have:

Ladv(GB,DB) = EM∈6M

[
log(DB(B))

]
+ EB∈6B

[
log(1 − DB(GB(M)))

]
(6)

where M represents the malicious traffic in the malicious
training set 6M , and B represents the benign traffic in the
benign training set 6B.

4) GENERATOR LOSS FUNCTION
The generator aims to produce data that closely resembles the
original data, while the discriminator attempts to differentiate
between original and translated samples. The discriminator
seeks to maximize the loss function, whereas the generator
aims to minimize it. Therefore, the generator loss func-
tion [30] can be expressed as follows:

L (GB,GM ,DB,DM) = Ladv(GB,DB) + Ladv(GM ,DM)

+ α1 · Lcyc(GM ,GB)

+ α2 · Lid (GM ,GB) (7)

where α1 and α2 are parameters that control the weightings of
the cycle consistency loss and the identity loss, respectively.

Algorithm 1 illustrates the process of the CycleGAN
architecture for generating systems.

D. DETECTING ADVERSARIAL ANDROID MALWARE BY
BUILDING CycleGAN-GRADIENT PENALTY
The model described here is a type of GAN that features
two generator architectures and two critic architectures.

VOLUME 12, 2024 162689

F. S. Atedjio et al.: CycleGAN-Gradient Penalty for Enhancing Android Adversarial Malware Detection

FIGURE 6. Detecting adversarial Android malware by building CycleGAN-gradient penalty.

Algorithm 1 Training of the cycleGAN Architecture Gener-
ating System
INPUT:
GM : malicious samples generator,
GB: benign samples generator,
6M : malicious domain,
6B: benign domain,
num_epochs
OUTPUT: trained cycleGAN architecture for adversarial
samples
for num_epochs do M (i)

i=1,...,m ∈ 6M

B(i)i=1,...,m ∈ 6B
Generate m samples of GB(M) and GM (B)
Generate m sample of GB(GM) and GM (GB)
Generate m samples of GM (M) and GB(B)
update the discriminatorDM according to the adversarial loss
function using equation (5)
update the discriminator DB according to the adversarial loss
function using equation (6)
update the generator GM and GB according to the total
cycleGAN loss function using equation (7)

It incorporates a gradient penalty to stabilize the model
and enhance performance. As shown in Fig. 6, the traffic
generated by the CycleGAN system is included in the training
set of the model. The Critic CB aims to differentiate benign
traffic from malicious traffic, while the critic CM focuses on
identifying malicious traffic. Both critics CM and CB work

to detect adversarial samples. Algorithm IV-D3 details the
procedure.

Considering the generator GB and the critic CB. The
Wasserstein loss (W-loss) approximation of the Earth
Mover’s [33] distance of the adversarial loss given in
Equation 8 is:

EB∈6B (CB(x) + EB∈6B (C(GB(x)) (8)

Here, x is a sample, and CB is a critic referred to
as discriminator DB. In this context, usually is used the
term ‘‘critic’’ instead of ‘‘discriminator’’ because there is
no logarithmic function involved. The goal for critic CB
is to maximize the distance between fake benign samples
and real benign samples, while the generator GB aims to
minimize it.

The output of discriminator DB must be a prediction
between 0 and 1 for binary cross-entropy (BCE) loss
to be effective. Consequently, the neural network of the
discriminator for GANs trained with BCE loss typically
employs a Sigmoid activation function in the output layer to
confine the values between 0 and 1.

However, W-loss does not impose this condition, allowing
the discriminator’s neural network to include a linear layer
at the end, which can output any real value. This output
serves as the critic’s assessment of how authentic a sample
is. Since the output is no longer bounded between 0 and 1,
we refer to it as a critic rather than a discriminator.
W-loss approximates the EarthMover’s distance in a way that
mitigates mode collapse and addresses vanishing gradient
problems [33].

162690 VOLUME 12, 2024

F. S. Atedjio et al.: CycleGAN-Gradient Penalty for Enhancing Android Adversarial Malware Detection

1) CycleGAN IN THE ANDROID ADVERSARIAL MALWARE
When implementing CycleGAN for malware detection, our
model focuses on feature representations or transformed ver-
sions of Android applications rather than traditional images.
The input to the model consists of transformed feature
sets extracted from Android applications, which the model
processes. The output is another structured representation of
the application after the model has attempted to translate it,
indicating the transformation it would undergo to become
either benign or adversarial.

In a gray box context, the CycleGAN model learns to
translate an adversarial example (amalicious application with
adversarial modifications) back to its benign equivalent, and
vice versa. This mechanism ensures that for each adversarial
input (the attacked malware sample), a corresponding benign
representation is produced as the output. Likewise, the inverse
transformation is maintained, allowing for the mapping
of benign samples to their potential representations under
adversarial conditions.

2) W-LOSS WITH GRADIENT PENALTY
Implementing a gradient penalty serves to regularize the
training process of the CycleGAN, ensuring that the
generated adversarial samples exhibit smoother and more
realistic properties. This enhancement significantly bolsters
the defensive model’s capacity to identify adversarial attacks
effectively. W-loss is a straightforward expression that
computes the difference between the expected values of the
critic’s output for a real example x and its prediction for a fake
example G(z):

E(C(x) + E(C(G(z)) (9)

The critic C aims to maximize this expression to effectively
distinguish between real and fake examples, while the
generator G seeks to minimize it to make the generated
example as close to the real example as possible. However, the
critic must satisfy a specific requirement for training GANs
with W-loss: it must be 1-Lipschitz continuous [34].

To implement the gradient penalty, we add a regularization
term to the loss function. When the gradient norm exceeds 1,
this regularization term penalizes the critic. The complete
expression of the loss function used for training with W-loss
and gradient penalty is given by:

L (G,C) = E(C(x)) − E(C(G(z)))

+ β · E
(
||∇C(x̂)||2 − 1

)2 (10)

Here, β is a hyperparameter that controls the weighting
of the regularization term relative to the primary loss
function. Checking the critic’s gradient at every point in
the feature space is typically impractical. Therefore, during
implementation, we interpolate between genuine and fake
examples to incorporate the gradient penalty logic:
x̂ = ϵx + (1 − ϵ)G(z)

where ϵ is a random vector of benign samples.

3) CycleGAN-GRADIENT PENALTY ADVERSARIAL LOSS
From the equation 10 we can derive the following new
adversarial loss for CycleGAN-gradient penalty.

For the mapping GM : 6B → 6M and its discriminator
CM we have:

L ′(GM ,CM) = E(CM (x)) − E(CM (GM (z)))

+ βM · E
(
||∇CM (x̂)||2 − 1

)2 (11)

For the mapping GB : 6M → 6B and its discriminator DB
we have:

L ′(GB,CB) = E(CB(x)) − E(CB(GB(z)))

+ βB · E
(
||∇CB(x̂)||2 − 1

)2 (12)

Here, M represents the malicious traffic in the malicious
training set 6M , and B represents the benign traffic in benign
the training set 6B.
The new generator loss is given as follows:

L (GB,GB,CM ,CB) = L ′
adv(GB,CB) + L ′(GM ,CM)

+ α1 · Lcyc(GM ,GB)

+ α2 · Lid (GM ,GB) (13)

Algorithm 2 Detecting Adversarial Android Malware
Algorithm
INPUT: GM malicious samples generator,
GB benign samples generator,
CM : malicious samples critic,
CB: benign samples critic,
B: benign samples,
M: malicious samples,
adv: adversarial malicious samples generated by cycleGAN,
OUTPUT: trained defense model
Y = combine M and adv samples
for num_epochs do generate m samples of GM (B)
generate m samples of GB(Y)

for n_criticM do max[E(CM (xY)) − E(GM (zY)) +

βME(||∇CM (x̂Y ||2 − 1)2]
for n_criticB do

max[E(CB(xB)) − E(GB(zB)) + βBE(||∇CB(x̂B||2 − 1)2]
update critic CM according to the equation (11)
update critic CB according to the equation (12)
update generator GM and GB according to the to the new
equation (13)

V. EXPERIENCES, RESULTS AND DISCUSSIONS
A. EXPERIENCES AND RESULTS
Our experiments were conducted on an Intel® Xeon® CPU
@ 2.20GHz machine with 12GB of RAM, running Ubuntu
22.04.3 LTS. We utilized PyTorch version 2.3.0 and Python
3.10 for programming.

The dataset was split into 70% for training and 30% for
testing, with each part further divided into malicious (M)
and benign (B) samples. Although CycleGAN was initially

VOLUME 12, 2024 162691

F. S. Atedjio et al.: CycleGAN-Gradient Penalty for Enhancing Android Adversarial Malware Detection

developed for one-to-one mappings (e.g., mapping one image
to another), Android adversarial malware attacks involve
various transformations, which means multiple adversarial
examples could correspond to a single benign app or
vice versa. To handle this, we have introduced additional
variability during training by using diverse sets of adversarial
examples for the same benign app, allowing the CycleGAN
to learn a broader range of mappings. This helps the model
generalize better and learn to detect different adversarial
modifications effectively. Various performance metrics were
employed for comparison, including accuracy, precision,
F1-score, and the Receiver Operating Characteristic (ROC)
curve. The training process is conducted using a supervised
learning approach.

TABLE 1. Hyperparameters for attack or substitute model.

TABLE 2. Hyperparameters for the defender training model.

B. RESULTS ON NORMAL SAMPLES
This section presents the performance metrics obtained
without any adversarial attacks.

C. RESULTS ON ADVERSARIAL SAMPLES
Here, we present the performance metrics after applying
adversarial samples generated from the substitute model.

D. DISCUSSIONS
We first evaluated the model using normal samples without
adversarial attacks. Fig. 7 to 11 present the results without
adversarial attacks: Fig. 7 shows the accuracy result, Fig. 8
represents the precision metric, Fig. 9 displays the recall,
Fig. 10 indicates the F1-score, and Fig. 11 illustrates the
ROC curve. Our model achieved outstanding classification
results among the five classifiers, with an accuracy of 99.8%
accuracy, 99.8% precision, 99.9% recall, 99.9% F1-score,
and 99.8% ROC. In the second place, the Random Forest
(RF) classifier achieved 99% accuracy, 99% precision, 99.5%
recall, 99.2% F1-score, and 99.8% ROC. Following closely

FIGURE 7. Normal samples: accuracy.

FIGURE 8. Normal classification: precision.

FIGURE 9. Normal classification: recall.

were the Decision Tree (DT) classifier with 97.6% accuracy,
98.5% precision, 97.8% recall, 98.2% F1-score, and 97.5 %
ROC.; and the Gradient Boosting (GB) classifier with 97.6%
accuracy, 97.5% precision, 98.7 %recall, 98.1% F1-score and

162692 VOLUME 12, 2024

F. S. Atedjio et al.: CycleGAN-Gradient Penalty for Enhancing Android Adversarial Malware Detection

FIGURE 10. Normal classification: F1-score.

FIGURE 11. Normal classification: ROC curve.

FIGURE 12. Adversarial classification: accuracy.

99.5% ROC. The Naive Bayes (NB) classifier performed the
least well, with 72.1%, 98.5% precision, 57.4% recall, 72.6%,
and 95.8% ROC.

FIGURE 13. Adversarial classification: precision.

FIGURE 14. Adversarial classification: recall.

FIGURE 15. Adversarial classification: F1-score.

After generating adversarial samples from the substitute
model, we applied them to the defensivemodel and classifiers
to assess new performance metrics. Fig. 12 to 16 show the
results of GAN adversarial attacks in the gray box context:

VOLUME 12, 2024 162693

F. S. Atedjio et al.: CycleGAN-Gradient Penalty for Enhancing Android Adversarial Malware Detection

FIGURE 16. Adversarial classification: ROC curve.

Fig. 12 displays the accuracy performance, Fig. 13 presents
precision, Fig. 14 points recall, Fig. 15 indicates F1-score,
Fig. 16 illustrates the ROC curve.
Despite the attacks, our model remained the best among

the classifiers, achieving, 67.1% accuracy, 70.1% precision,
82.9% recall, 76% F1-score, and 61.61% ROC. In contrast,
RF’s performance decreased significantly, dropping from
99% to 48.2% accuracy, from 99% to 56.4% precision,
from 99.5% to 76.8% recall, from 99.2 to 65% F1-score,
and from 99.8% to 48.1% ROC. The DT classifier scored
49.7% for accuracy, 57,2% for precision, 79% for recall,
66.3% for F1-score, and 51.31% for ROC. The GB classifier
achieved 39.4% of accuracy, 51.4% of precision, 62.9% of
recall, 56.6% of F1-score, and 48.8% of ROC. Lastly, NB’s
performance was significantly diminished, with accuracy at
28.3%, precision at 6.5%, recall at 1.1%, F1-score at 1.8%,
and ROC at 48.2%.

Therefore, our model proved to be the most effective in
both the presence and absence of GAN-based adversarial
attacks.

VI. CONCLUSION AND FUTURE WORKS
The goal of this paper was to propose a solution to the
problem of GAN-based adversarial malware. This issue can
arise in various contexts, including white box, black box, and
gray box scenarios. We focused on a gray box scenario in
which an attacker has partial information about the model.
The attacker exploits this knowledge to construct a substitute
model, generating adversarial samples before applying them
to the victim or defender model. Our proposed solution
leverages the attacker’s existing knowledge to train the model
to recognize and prevent these adversarial samples. We built
our model based on CycleGAN logic, enabling it to learn
how to identify adversarial inputs. Additionally, we modified
the CycleGAN to include a gradient penalty, which helps to
stabilize the model and increase the detection rate. Future
work will address all types of adversarial attacks, particularly
in the context of transferability, and will explore adversarial
attacks in black box scenarios.

ACKNOWLEDGMENT
The views and conclusions contained in this document
are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied,
of the Army Research Office or the U.S. government. The
U.S. government is authorized to reproduce and distribute
reprints for government purposes notwithstanding any copy-
right notation herein.

REFERENCES
[1] (2024). Worldwide Quarterly Mobile Phone Tracker. [Online]. Available:

https://www.idc.com/getdoc.jsp?containerId=IDC_P8397
[2] A. Rashid and J. Such, ‘‘StratDef: Strategic defense against adversarial

attacks in ML-based malware detection,’’ Comput. Secur., vol. 134,
Nov. 2023, Art. no. 103459.

[3] S. Wang, Q. Yan, Z. Chen, B. Yang, C. Zhao, and M. Conti,
‘‘Detecting Android malware leveraging text semantics of network flows,’’
IEEE Trans. Inf. Forensics Security, vol. 13, no. 5, pp. 1096–1109,
May 2018.

[4] S. Xi, S. Yang, X. Xiao, Y. Yao, Y. Xiong, F. Xu, H. Wang, P. Gao, Z. Liu,
F. Xu, and J. Lu, ‘‘DeepIntent: Deep icon-behavior learning for detecting
intention-behavior discrepancy in mobile apps,’’ in Proc. ACM SIGSAC
Conf. Comput. Commun. Secur., Nov. 2019, pp. 2421–2436.

[5] H. Li, S. Zhou, W. Yuan, X. Luo, C. Gao, and S. Chen, ‘‘Robust Android
malware detection against adversarial example attacks,’’ in Proc. Web
Conf., Apr. 2021, pp. 3603–3612.

[6] X. Chen, C. Li, D. Wang, S. Wen, J. Zhang, S. Nepal, Y. Xiang, and
K. Ren, ‘‘Android HIV: A study of repackaging malware for evading
machine-learning detection,’’ IEEE Trans. Inf. Forensics Security, vol. 15,
pp. 987–1001, 2020.

[7] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon, and K. Rieck, ‘‘Drebin:
Effective and explainable detection of Android malware in your pocket,’’
in Proc. Netw. Distrib. Syst. Secur. Symp., 2014, pp. 23–26.

[8] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, ‘‘Intriguing properties of neural networks,’’ 2013,
arXiv:1312.6199.

[9] E. Nowroozi, A. Dehghantanha, R. M. Parizi, and K.-K.-R. Choo,
‘‘A survey of machine learning techniques in adversarial image forensics,’’
Comput. Secur., vol. 100, Jan. 2021, Art. no. 102092.

[10] K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. McDaniel,
‘‘Adversarial examples for malware detection,’’ in Proc. 22nd Eur.
Symp. Res. Comput. Secur., Oslo, Norway. Cham, Switzerland: Springer,
Sep. 2017, pp. 62–79.

[11] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami, ‘‘The limitations of deep learning in adversarial settings,’’ in
Proc. IEEE Eur. Symp. Secur. Privacy, Mar. 2016, pp. 372–387.

[12] N. Papernot, P. McDaniel, and I. Goodfellow, ‘‘Transferability in
machine learning: From phenomena to black-box attacks using adversarial
samples,’’ 2016, arXiv:1605.07277.

[13] I. J. Goodfellow, J. Shlens, and C. Szegedy, ‘‘Explaining and harnessing
adversarial examples,’’ 2014, arXiv:1412.6572.

[14] K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. McDaniel,
‘‘Adversarial perturbations against deep neural networks for malware
classification,’’ 2016, arXiv:1606.04435.

[15] W. Hu and Y. Tan, ‘‘Generating adversarial malware examples for black-
box attacks based on GAN,’’ in Proc. Int. Conf. Data Mining Big Data.
Springer, 2022, pp. 409–423.

[16] W. Hu and Y. Tan, ‘‘Black-box attacks against RNN based malware
detection algorithms,’’ in Proc. 32nd AAAI Conf. Artif. Intell., 2018,
pp. 1–7.

[17] H. Li, S. Zhou,W. Yuan, J. Li, and H. Leung, ‘‘Adversarial-example attacks
toward Android malware detection system,’’ IEEE Syst. J., vol. 14, no. 1,
pp. 653–656, Mar. 2020.

[18] X. Peng, H. Xian, Q. Lu, and X. Lu, ‘‘Generating adversarial malware
examples with API semantics-awareness for black-box attacks,’’ in Proc.
6th Int. Symp., Tianjin, China. Cham, Switzerland: Springer, Sep. 2020,
pp. 52–61.

[19] X. Peng, H. Xian, Q. Lu, andX. Lu, ‘‘Semantics aware adversarial malware
examples generation for black-box attacks,’’ Appl. Soft Comput., vol. 109,
Sep. 2021, Art. no. 107506.

162694 VOLUME 12, 2024

F. S. Atedjio et al.: CycleGAN-Gradient Penalty for Enhancing Android Adversarial Malware Detection

[20] J. Wang, X. Chang, Y. Wang, R. J. Rodríguez, and J. Zhang, ‘‘LSGAN-
AT: Enhancingmalware detector robustness against adversarial examples,’’
Cybersecurity, vol. 4, no. 1, pp. 1–15, Dec. 2021.

[21] Y. Guo and Q. Yan, ‘‘Android malware adversarial attacks based on feature
importance prediction,’’ Int. J. Mach. Learn. Cybern., vol. 14, no. 6,
pp. 2087–2097, Jun. 2023.

[22] S. Jan, T. Ali, A. Alzahrani, and S. Musa, ‘‘Deep convolutional generative
adversarial networks for intent-based dynamic behavior capture,’’ Int. J.
Eng. Technol., vol. 7, pp. 101–103, Jul. 2018.

[23] R. Taheri, R. Javidan, M. Shojafar, P. Vinod, and M. Conti, ‘‘Can machine
learning model with static features be fooled: An adversarial machine
learning approach,’’ Cluster Comput., vol. 23, no. 4, pp. 3233–3253,
Dec. 2020.

[24] H. Rafiq, N. Aslam, B. Issac, and R. H. Randhawa, ‘‘An investigation on
fragility of machine learning classifiers in Android malware detection,’’ in
Proc. IEEE INFOCOM Conf. Comput. Commun. Workshops (INFOCOM
WKSHPS), May 2022, pp. 1–6.

[25] E. Wallace, M. Stern, and D. Song, ‘‘Imitation attacks and defenses for
black-box machine translation systems,’’ 2020, arXiv:2004.15015.

[26] N. Akhtar and A. Mian, ‘‘Threat of adversarial attacks on deep learning
in computer vision: A survey,’’ IEEE Access, vol. 6, pp. 14410–14430,
2018.

[27] Y. Jia, Y. Lu, S. Velipasalar, Z. Zhong, and T. Wei, ‘‘Enhancing cross-task
transferability of adversarial examples with dispersion reduction,’’ 2019,
arXiv:1905.03333.

[28] O. Suciu, R. Marginean, Y. Kaya, H. Daume III, and T. Dumitras,
‘‘When does machine learning FAIL? Generalized transferability for
evasion and poisoning attacks,’’ in Proc. 27th USENIX Secur. Symp., 2018,
pp. 1299–1316.

[29] A. Demontis, M. Melis, M. Pintor, M. Jagielski, B. Biggio, A. Oprea,
C. Nita-Rotaru, and F. Roli, ‘‘Why do adversarial attacks transfer?
Explaining transferability of evasion and poisoning attacks,’’ in Proc.
USENIX Security Symp., 2019, pp. 321–338.

[30] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, ‘‘Unpaired image-to-image
translation using cycle-consistent adversarial networks,’’ inProc. IEEE Int.
Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 2242–2251.

[31] O. Suciu, S. E. Coull, and J. Johns, ‘‘Exploring adversarial examples
in malware detection,’’ in Proc. IEEE Secur. Privacy Workshops (SPW),
May 2019, pp. 8–14.

[32] K. Aryal, M. Gupta, and M. Abdelsalam, ‘‘A survey on adversarial attacks
for malware analysis,’’ 2021, arXiv:2111.08223.

[33] M. Arjovsky, S. Chintala, and L. Bottou, ‘‘Wasserstein generative adver-
sarial networks,’’ in Proc. Int. Conf. Mach. Learn., 2017, pp. 214–223.

[34] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville,
‘‘Improved training of Wasserstein GANs,’’ in Proc. Adv. Neural Inf.
Process. Syst., vol. 30, 2017, pp. 1–11.

FABRICE SETEPHIN ATEDJIO received the
bachelor’s degree in mathematics and in computer
science, in 2017, and the master’s degree in
computer science, focusing on IoT security. He is
currently pursuing the Doctorate degree with the
University of Dschang, Cameroon.

He is currently a Researcher in artificial intel-
ligence applied to cybersecurity. In 2021, he was
selected to join the ‘‘Game Theory and Machine
Learning for Cyber Deception, Resilience, and

Agility (GMC-DRA)’’ Project, sponsored by U.S. Army Research Office.
He holds professional certifications in cybersecurity and data analysis from
Google and a certification in deep learning from DeepMind. In 2022, he was
awarded the Best Poster Award at both the International Conference on
Machine Learning and the Indabax Cybersecurity Event.

JEAN-PIERRE LIENOU received the Master of
Science degree in system engineering from the
Kiev Polytechnic Institute (National Technical
University of Ukraine) and the Ph.D. degree from
the University of Yaound I, Cameroon, in 2011.
He is currently an Associate Professor with the
Department of Computer Engineering, University
of Dschang. Before his academic career, he was
a Maintenance Engineer with Labotech Medical,
where he was responsible for the upkeep and

operation of medical imaging equipment. He joined the University of
Dschang, in 2012, he has since established himself as a prominent figure
in the field of computer engineering. He is also the Head of the Department
of Computer Engineering, College of Technology, University of Bamenda.
In addition to his academic responsibilities, he has been an active member
of the Engineering Association of the National Group (EANG), since 2018.
His research interests includemethod engineering applied to control systems,
multi-agent systems utilized in power electric systems, cyber resilience, and
the application of various artificial intelligence techniques in the diagnosis
of complex systems. His work in these areas contributes significantly to
advancements in both theoretical and practical aspects of engineering and
technology.

FREDERICA F. NELSON is currently a Researcher
and the Program Lead with U.S. Army Research
Laboratory (ARL), Adelphi, MD, USA, where
she leads research on machine learning and
intrusion detection methods and techniques to
promote cyber resilience and foster research
on autonomous active cyber defence. She man-
ages and negotiates the Research and Project
Agreements for ARL between the network
security branch and academia or international

organizations. She is the lead for the robust low-level cyber-attack resilience
for Military Defense (ROLLCAGE) Program working in collaboration with
Army Tank Automotive Research, Development and Engineering Center,
Office of Naval Research, and Air Force Research Laboratory to build
a cohesive in-vehicular resilient system for defense against sophisticated
enemy malware that strives to blend in with normal system activities. She
has over 20 years combined experience in Cybersecurity Research, Software
Engineering, and Program Management within the DoD and other federal
services including the Federal Bureau of Investigation and the Department
of Justice. She has expertise in leading projects to success from conception to
execution and delivery/transfer. She currently serves as the Chairperson for
the International Science Technology (IST-163) Panel—NATO Science &
Technology Organization on the topic of deep machine learning for military
cyber defence. She is a participant in the Army Education Outreach Program
as an Ambassador and a Virtual Judge for the eCybermission Program.

VOLUME 12, 2024 162695

F. S. Atedjio et al.: CycleGAN-Gradient Penalty for Enhancing Android Adversarial Malware Detection

SACHIN S. SHETTY (Senior Member, IEEE)
received the Ph.D. degree in modeling and sim-
ulation from Old Dominion University, in 2007.
He is currently an Executive Director of the Center
for Secure and Intelligent Critical System and a
Professor with the Department of Electrical and
Computer Engineering, Old Dominion University.
His research interests include the intersection
of computer networking, network security, and
machine learning.Within the last 15 years, he com-

pleted many large-scale projects with multiple collaborators and institutions
and served as the PI/Co-PI on various grants and contracts, funded by
various military and federal government departments and private businesses.
He has published over 300 research articles in journals and conference
proceedings and edited four books. Two research papers were chosen as the
top 50 academic papers in blockchain, in 2018. His laboratory conducts cloud
and mobile security research and has received over $18 million in funding
from the National Science Foundation, Air Office of Scientific Research,
Air Force Research Laboratory, Office of Naval Research, Department of
Homeland Security, and Boeing. He received the Commonwealth Cyber
Initiative Fellow, DHS Scientific Leadership Award, and Fulbright Specialist
and was inducted into the Tennessee State University Million-Dollar Club.
He was the Winner of the Electric Power Research Institute Cyber Security
Challenge Competition, in 2019.

CHARLES A. KAMHOUA (Senior Member,
IEEE) received the B.S. degree in electronics from
the University of Douala (ENSET), Cameroon,
in 1999, and theM.S. degree in telecommunication
and networking and the Ph.D. degree in electrical
engineering from Florida International University
(FIU), in 2008 and 2011, respectively. He is
currently a Researcher with the Network Secu-
rity Branch of U.S. Army Research Laboratory,
Adelphi, MD, USA, where he is responsible for

conducting and directing basic research in the areas of game theory applied
to cyber security. Prior to joining the Army Research Laboratory, he was
a Researcher with U.S. Air Force Research Laboratory (AFRL), Rome,
New York City, for six years and an educator in different academic
institutions for more than ten years. He has held visiting research positions
with Oxford and Harvard. He has co-authored more than 100 peer-reviewed
journals and conference papers. He has been invited to more than 40 keynote
and distinguished speeches and co-organized more than ten conferences
and workshops. He has mentored more than 50 young scholars including
students, postdoctorals, and AFRL Summer Faculty Fellow. He has been
recognized for his scholarship and leadership with numerous prestigious
awards, including the 2017 AFRL’s Information Directorate Basic Research
Award ‘‘For outstanding achievements in basic research,’’ the 2017 Fred
I. Diamond Award for the best paper published at AFRL’s Information
Directorate, 40 Air Force Notable Achievement Awards, the 2016 FIU
Charles E. Perry Young Alumni Visionary Award, the 2015 Black Engineer
of the Year Award (BEYA), the 2015 NSBE Golden Torch Award—Pioneer
of the Year, and a selection to the 2015 Heidelberg Laureate Forum, to name
a few. He is currently an Advisor of the National Research Council and a
member of the FIU Alumni Association and the ACM.

162696 VOLUME 12, 2024

