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ABSTRACT Achieving efficient warehouse operations for product management in an indoor environment
has recently become a challenging issue. If a user can store a product in a vacant place and then roughly
localize the product with a simple system, this localization system will enable efficient and flexible
area usage in a warehouse. Complex radio wave propagation phenomena also make indoor localization
more challenging. This paper introduces a radio frequency identification (RFID) system to localize
products in indoor environments, including warehouses and cold storage. This approach uses distributed
directional reference RFID tags in the areas as product location beacons, enabling received signal strength
indicator (RSSI) measurements reflecting information on distances and directions for determining product
coordinates. A user with a handheld reader stands in the close vicinity of the product. Then, the user reads the
surrounding reference RFID tags for collecting the RSSI data. The use of machine learning (ML) addresses
unstable user behaviors and unexpected acquired RSSI variations due to wireless propagation. Regression
and classification algorithms in ML estimate product locations. The experimental demonstrations in actual
indoor environments validate the proposed localization method. The experimental environments measure
24 m x 12 m in a conference room and 9 m x 12 m in a laboratory room. Experimental results show that this
approach can provide localization accuracy of less than 2 meters, with wide application potential in inventory
management and product tracking in various indoor environments, including factories, warehouses, and cold
storage.

INDEX TERMS Handheld reader, indoor area, inventory management, machine learning, RFID tags, RSSI.

I. INTRODUCTION

Presently, the localization system of products has become
increasingly popular in recent years due to its ability to
provide real-time location data for various applications, such
as fleet management [1], [2], asset tracking [3], [4], [5],
[6] and personal safety [7]. These products typically use a
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combination of global positioning system (GPS), cellular, and
Wi-Fi technologies [8], [9] to provide accurate location data.
In industrial applications, this system is utilized for supply
chain traceability [10], [11], [12] and increasing efficiency
in manufacturing processes [13], [14]. These systems are
designed to track the movement of products throughout
the manufacturing process, from raw materials to finished
goods, and to provide real-time insights into inventory
levels [15], [16], production processes [17], shipping and
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FIGURE 1. Products management and their localization mechanisms using RFID tags. Product RFID tags enable item-level product management.
Reference RFID tags with directivities facilitate the localization of the products. The database combines the estimated coordinates with the EPC of the
product RFID tags. This localization makes it possible to search for a specific product on demand. This system consists of three procedures: (a) placing
a product with a product RFID tag in a vacant area, (b) localizing this area using reference RFID tags, a handheld RFID reader, and ML, (c) searching for
the product on a demand basis by reading the estimated coordinate from the database.

delivery schedules [18]. Industrial product tracking systems
with their features and benefits are available today [19].
Popular product tracking systems include barcode scanning,
GPS [20], and radio frequency identification (RFID) systems.
RFID systems use small electronic tags to track products
through the supply chain [21], providing real-time data on
the location and status of the products [22]. Furthermore,
GPS is unsuitable for indoor positioning [23]. To address this
limitation, ultra-high-frequency (UHF) band RFID technolo-
gies enable tracing of the locations of indoor products. UHF
band RFID tags can be read at a distance of several meters
to tens of meters between an RFID reader and RFID tags
[24], [25], [26].

Recently, the development of RFID localization systems in
industry today has had a significant impact and is increasingly
showing great potential for transformation in various fields.
Product localization systems based on RFID in the indoor
industry provide real-time location data and visibility of
products as they move through the supply chain [27], [28]
from manufacturing to delivery [29], [30], [31]. The use
of received signal strength indicator (RSSI) and phases is
possible for RFID-based localization. RSSI is a convenient
choice for localization because some commercially available
RFID readers only measure RSSIs. By providing real-time
tracking information, product tracking systems [32] can help
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businesses identify and address bottlenecks or delays in
the supply chain [33], optimize inventory levels [34], and
improve customer services [22]. These systems can reduce
costs and energy for decarbonization [35], increase produc-
tivity, and improve user satisfaction. RFID-based localization
systems can benefit by using device-free technologies that
do not require additional devices to be worn on humans
[36], [37].

This paper proposes the localization method of storing
goods in the warehouse using directional reference RFID
tags, a handheld RFID reader, and machine learning (ML).
The RFID tags have directivities, and ML facilitates localiza-
tion in complex indoor environments. The proposed method
focuses on indoor localization to overcome GPS constraints
and multipath challenges caused by complex variations in
the received signal strength indicator (RSSI). Experimental
results in actual indoor environments validate the purpose
method. The users read neighboring reference RFID tags for
localization using a handheld RFID reader to obtain RSSI
values. Directional reference RFID tags can overcome the
effects of multipath fading and improve positioning accuracy.
The reference RFID tags also provide angle information.
Applying ML to understand complex trends in the RSSI value
can significantly improve positioning accuracy in indoor
environments.

157873



IEEEACC@SS D. K. Hadi et al.: Indoor Area Estimation System Using RSSI-Measuring Handheld Reader

Reflector to form
_Antenna Directivity

‘\
)

/
J/ > Antenna Directivity

D)

Se g Product with product
RFID tag

///77\\
( \\

Expected relationship between EPC numbers and RSSI values

|EP(‘ |1|1|J|4|5|6|7|8‘9|

RSSI@B) | 50 | 60 | 999 | 999 | 78 | 999 | 75 | -999 | 999 |

Known coordinate to supervise ML,

x|v|

Known coordinate (X, Y)
(only for supervising ML)

FIGURE 2. Role of reference RFID tags and the structure of a dataset
for ML.

This paper is organized as follows: Section II proposes a
localization system using a handheld RFID reader, directional
reference RFID tags, and ML for inventory management.
Section III discusses the experimental environment and
validation conditions. The experimental results in Section IV
cover the accuracy and reliability of the ML system in
determining the position of indoor products, including
maximum error measurements, error distribution, and the
required number of datasets for supervising ML. Section V
concludes this paper.

Il. PROPOSED PRODUCTS MANAGEMENT AND THEIR
LOCALIZATION METHOD

This section explains the proposed product management
and its localization mechanism. The proposed RFID-based
localization system assumes the use of a handheld RFID
reader and reference RFID tags for flexible product man-
agement in indoors. The handheld RFID reader obtains the
electronic product code (EPC) numbers and RSSI values. The
proposed system only uses this basic information to localize a
product in a warehouse, thereby making the proposed method
versatile and simple because most commercially available
RFID readers can measure RSSI values.

Figure 1 shows an operational principle of product
management and their localization method. In Fig. 1 (a),
a user places a product at a vacant place the floor in a
warehouse and factory, and identifies a product RFID tag
appended to the product by using a handheld RFID reader.
In Fig. 1 (b) the user subsequently localizes the product.
Because the user is in the close vicinity of the product,
this localization enables product localization. The proposed
system uses RFID tags to implement these two functions:
a product RFID tag for item-level product management and
a reference RFID tag used to localize the product in a
warehouse.

The procedure of this system consists of three stages. The
user first places a product having an RFID tag for item-level
identification in a vacant area, as shown in Fig. 1 (a).
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FIGURE 3. RFID reader control software.

This system subsequently performs area localization using
reference RFID tags, a handheld RFID reader, and a Machine
Learning (ML) approach as in Fig. 1 (b). The ML processes
the RSSI information of the reference RFID tags for area
estimations. The database keeps the estimated coordinate.
After this, the system reads the estimated product coordinates
from the database as an initial coordinate for searching
and localizing the product on a demand basis, as shown in
Fig. 1 (c). A user searches and localizes the product RFID
tag with the handheld RFID reader by monitoring the signal
levels of the product RFID tag.

This paper focuses on the area estimation method,
as shown in Fig. 1 (b).

The antenna of the reference RFID tag has specific direc-
tivity. A reflector allows an antenna to have perpendicular
directivity.

The directivity of the reference RFID tag enables the
proposed localization method to estimate angles. In addition,
this directivity enables RSSI variations caused by multipath
propagation to be mitigated while improving the direct
propagation path [38]. This directivity also leads to long
read distances. Angularly sectorized reference RFID tags
distributed in a warehouse enable the localization of products.
The following section details the specific allocations of
the reference RFID tags in the experimental environments
considered in this paper.

Note that the reference RFID tags are installed in known
places. The user identifies the reference RFID tags with a
handheld RFID reader by moving the arm while rotating
the body in place. This reading method facilitates reliable
reference RFID tag identification. Reliable identification of
reference RFID tags enhances localization accuracy because
the localization system can acquire detailed information on
RSSI decay and the incident angles of radio waves.

Despite the use of directional antennas, swinging the
arm and rotating the body in place may cause unexpected
variations in the obtained RSSI information. The remaining
multipath propagation effects still cause RSSI variations.

ML compensates for these unstable phenomena, making
the proposed localization method robust and reliable. The
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next section details the implementation of the ML algorithms.
After training, the ML method processes the ordered RSSI
values of identified reference RFID tags to generate a
predicted coordinate for the product. In the ML supervision
phase, ordered RSSI values and a known coordinate or label
are used to construct a dataset at each known location to
facilitate ML supervision. The directional radiation patterns
in the reference RFID tags reduce the number of datasets
needed to enable the ML method to be trained because the
directivities mitigate multipath fading effects.

A database links the EPC number in a product’s RFID tag
to its ML-generated coordinate for searching for the product
on a demand basis.

Figure 2 shows examples of a reference RFID tag
arrangement and its antenna directivities. As previously
mentioned, after placing a product in a vacant space, the
user identifies the product’s RFID tag with a handheld RFID
reader. The user subsequently identifies the surrounding
reference RFID tags in the area with the same handheld
RFID reader by swinging the arm and rotating the body.
The reference RFID tags, with directivities indicated by red
lines, will respond to requests issued by the handheld RFID
reader. Depending on the angles and distances between the
handheld RFID reader and reference RFID tags, the RSSI
values are measured, and a dataset of ordered RSSI values
is constructed, as shown in the upper table. Note that an
RSSI value of —999 dB represents undetected reference
RFID tags because numerically representing unidentified
reference RFID tags simplifies the data representation and
ML implementation.

In the learning phase, the ML method processes the RSSI
values at known coordinates to allow ML supervision. The
tables in Fig. 2 represent the format of the dataset. This
learning phase uses the ordered RSSI values (upper table)
and known coordinates (lower table). The datasets collected
at known points in an area enable ML supervision. After
this learning phase, the ML method generates a predicted
coordinate based only on a dataset consisting of RSSI values.
The following sections describe the proposed localization
system.

Note that if the test datasets have reference RFID tags’
position errors for the learning datasets, this situation will
degrade localization accuracies. The changes in furniture
arrangements will also cause degradation. Therefore, the
updates of the learning datasets will be necessary. Additional
reference RFID tag sets can enhance a coverage area.

If phase information is available, it allows accurate
localization and synthetic aperture radar (SAR)-based self-
localization and trajectory estimation for moving robots [19],
[27], [39], [40], [41], [42]. Time-of-arrival (ToA)-based
localization enables accurate localization. However, some
commercially available RFID readers, including the handheld
reader that was used in this paper, provide only RSSI
information because the software development kit (SDK)
and its software library do not support measurements of
the phase and Doppler shift of radio waves. In this context,
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the proposed indoor localization method involves the use of
reference RFID tags with directive antennas, instantaneous
RSSI measurements, and ML to develop a versatile indoor
localization method. The reference RFID tags with antenna
directivities sectorize the indoor area, facilitating RSSI-based
indoor localization. Furthermore, the use of ML and its
learning overcome the inferior localization performance
of indoor localization based on RSSI alone, especially in
multipath-rich environments. The subsection shown later
experimentally validates the effect of ML and how much the
ML improves the localization performance on the basis of the
distance decays of RSSI values [27], [28].

The purpose of the use of RFID was to develop a
simple and easy-to-use area localization method to register
the estimated area coordinate of an item to a database
while eliminating human error, dependence on individual
human skills and physical abilities, language barriers for
international workers, time use inefficiencies, and manual
data entry. In a local middle-scale factory environment
in Japan, operations by human workers are realistic due
to a limited budget and congested environment, both of
which prohibit the introduction of highly accurate and fully
automated robot-based or unmanned ground vehicle (UGV)-
based item management. We also need to assume the presence
of existing stored items on the floor, tall facilities and
items, and stacked items. These items and facilities shadow
the visual identification of optical markers and posters for
localization. RFID is more robust for dirt on optical makers
and posters indicating areas. Instantaneous RSSI values also
increase the time efficiency of the proposed method. RFID
systems eliminate manual data entry and careless mistakes.

Ill. EXPERIMENTAL SETUP AND ENVIRONMENTS

This section details an experimental setup and environments
for validating the proposed localization method. The subsec-
tions each explain the reference of RFID tag specifications,
experimental environments, an employed ML model, and the
preparation of datasets for ML.

The experimental setup employed the RFID tags named
Shortdipole produced by Avery Dennison. The RFID hand-
held reader used in this work was DOTR-3200, which
radiates 1 W directional circularly polarized radio waves in
a 920 MHz band. Bluetooth connected the handheld RFID
reader to a laptop computer. RFID reader software developed
in C# collected EPC numbers and the corresponding RSSI
values of identified reference RFID tags. Fig. 3 shows a
snapshot of the developed software on a laptop computer.

A. EXPERIMENTAL ENVIRONMENTS

Reference RFID tags employ metal plates as reflectors that
create antenna directivities perpendicular to the reflectors.
The use of reflectors increases the read distances of the
reference RFID tags by increasing the antenna gains of the
reference RFID tags. Figure 4 shows two types of reference
RFID tags used in this study. The spacing between the metal
plate and the reference RFID tag is A/4 to create a single
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FIGURE 4. Reference RFID tags for experiments. (a) three directive antennas tilted to place them along the walls at higher heights and
(b) four directive antennas for placing around the center areas of a room.

beam radiation pattern, where A is a wavelength at 920 MHz.
RFID tags are horizontally arranged. The reference RFID
tags shown in Figs. 4 (a) and (b) have three directivities
and four directivities, respectively. The reflectors shown in
Fig. 4 (a) are tilted toward the floor so that these reference
RFID tags are suitable for placing along walls at higher
heights. The reference RFID tags enable us to estimate not
only the distances but also the directions of the handheld
RFID reader.

The moment-based electromagnetic simulator (EEM-
MOM ver. 3.0) was used to compute the radiation pattern of
the reference RFID tag; the antenna geometry of the reference
RFID tag was constructed by referring to the actual Avery
Dennison Shortdipole. Figure 5 (a) shows the geometry of
the reference RFID tag, and Figs. 5 (b) and (c) compare
the antenna radiation patterns of the reference RFID tag
without and with the tilted reflector at a tilt angle of 45°. The
horizontally oriented reference RFID tag antenna without
the tilted reflector, approximated as a dipole antenna, has
an omnidirectional radiation pattern in the elevation plane,
as shown in Fig. 5 (b). In contrast, the reference RFID tag with
the tilted reflector creates a single-beam radiation pattern
toward the ground, yielding an antenna radiation pattern in
the elevation plane, as shown in Fig. 5 (c). Accordingly, the
reflectors provided 5.41 dB antenna gain increases, enabling
more sensitive and long-range RSSI measurements.

The spacing between the reference RFID tag and its
reflector was a quarter of the wavelength [43] at an operating
frequency of 920 MHz to create single-beam radiation.
A reflector with this spacing increases the antenna gain with
less degradation of impedance matching.

The reflectors behind the reference RFID tags enhance
their reading distances, thereby expanding the coverage of
the reference RFID tags. According to Friis’s transmission
formula, the gain increase (5.41 dB) obtained in the analyses
shown in Figs. 5 (b) and (c) increases the reading distance
/3.5 = 1.87 times. Therefore, reference RFID tags with
reflectors can reduce the number of reference RFID tag sites
available for covering a localization area.
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FIGURE 5. Reference RFID tag antenna geometry and radiation patterns
in the elevation plane without and with the tilted reflector. (a) Reference
RFID tag antenna geometry without the tilted reflector, (b) radiation
pattern (without the tilted reflector), and (c) radiation pattern (with the
tilted reflector, at a tilt angle of 45 °).

The experimental environments include a conference room
and laboratory room at Ibaraki University. The conference
room is located in Building E5 on the 8th floor and measures
24m x 12m. The laboratory room is located in Building
ES on the 4th floor and measures 9m x 12m. Three sets
of the reference RFID tags shown in Fig. 4 (a) cover the
conference room using nine reference RFID tags. Three
reference RFID tag sets shown in Fig. 4 (b) also cover the
laboratory room using 12 reference RFID tags. Figs. 6 and 7
show the experimental environments.

The room shown in Fig. 6 is a conference room and equips
tables and chairs. The sets of reference RFID tags shown
in Fig. 4 (a) were placed along the walls at three locations.
Because there are no tall metallic objects, the propagation
between the handheld RFID reader and reference RFID tags
comprises line of sight (LoS) channels. The localization
results in this environment serve as reference data for the

VOLUME 12, 2024



D. K. Hadi et al.: Indoor Area Estimation System Using RSSI-Measuring Handheld Reader

IEEE Access

Reference RFID Tags

Reference RFID Tags
12
6 u 4 9 u 7
L] L]
C it G 8 J
[ . b3 L] o X . ° X o
15 16 17 18 19 0 n
A F
6 X . L] o ° X (] .
1 9 10 1 1 13 14
D H
X X
B E 1
3 e X e . o X e X o
1 2 3 4 5 6
2
N
l X Label Random Coordinates
0
o 3 6 9 12 15 18 21 24
X [m]

(b)

FIGURE 6. Experimental setup and environment of a conference room. (a) photo of the conference room and (b) layout of the reference RFID tags
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system validation in this paper. The circles in this figure
represent the points to obtain the data for ML supervision.

VOLUME 12, 2024

The spacing between the points is three meters. The height
of the reference RFID tags is 2.3 meters, whereas that of
the ceiling is 2.5 meters. The crosses show randomly chosen
coordinates for validating the versatility of the proposed
localization method.

The laboratory room shown in Fig. 7 has many high
metallic partitions and a large pillar. This environment causes
complicated radio wave propagation channels, sometimes
leading to non-line-of-sight (NLoS) propagation channels.
This room provides a realistic evaluation environment as
warehouses and cold storage to validate the proposed method.
The height of the reference RFID tags was two meters.
Furthermore, randomly chosen points represented by crosses
in Fig. 7 evaluated the versatility of an ML algorithm.

The numbers and alphabets represent the labels utilized for
evaluating classification algorithms later.

The conference room and laboratory are assumed to
be environments with no major existing facilities and a
congested area, respectively. These environments partly
simulate factory and warehouse environments. Although this
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paper assumes that items are stored in a vacant area on
the floor, as shown in Fig. 1, if environments have equally
spaced tall metallic shelves, the arrangement scenarios of
the reference RFID tags need to be modified because the
shelves may shadow the radio wave propagation paths.
An evaluation of this environment will be performed in the
future.

This paper evaluated our method in indoor environ-
ments to determine how the proposed method overcomes
and addresses multipath effects in indoor environments.
An inverse distance weight (IDW)-assisted particle swarm
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optimized (PSO) indoor localization (IDWPSOInLoc) [44]
was used to evaluate a wireless fidelity (WiFi)-based indoor
localization method in a 57-m wide indoor corridor area.
Although the experimental environment in this paper is
sometimes narrower than warehouses and factory environ-
ments, our experimental environment partly mimics real
environments. Furthermore, narrower indoor environments
cause severe multipath effects and are suitable for assessing
the robustness of the proposed method for indoor multipath
effects. In addition, the proposed method can widen the
coverage of the proposed method by deploying additional
reference RFID tags and applying them to the environment
in [44]. Our future work will include detailed evaluations of
the proposed method in larger indoor areas.

B. PROCEDURES FOR TRAINING AND EVALUATING ML
Python libraries named scikit-learn enabled ML processing.
Figure 8 shows ML procedures assuming the use of a
tree-based ensemble learning. The proposed system collects
the datasets on the points by performing the procedures
explained in Figs. 1 and 2 multiple times to supervise
ML. The obtained datasets were divided into two datasets,
enabling ML training and evaluation. The data consist of
ordered RSSI values of the identified reference RFID tags and
known coordinates (X, Y) in the ML training phase. These
datasets facilitate supervision of ML in the experimental
environments.
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at on-grid and off-grid and (b) Laboratory room at on-grid and off-grid.

The data consist of ordered RSSI and coordinates (X, Y)
in the ML training phase for use in regression algorithms.
In the classification, the location is learned and predicted by
referring to the RSSI values and position labels.

C. PREPARATION OF DATASETS FOR ML TRAINING AND
EVALUATION

There were 21 points with an interval distance of 3 meters
in the conference room, as shown in Fig. 6. The experiments
were conducted in the conference room twelve times on each
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of the 21 points. Eleven datasets for training and one dataset
for testing on each of the 21 points are utilized for ML training
and evaluation, respectively.

The laboratory room has 17 points with a distance interval
of 1.5 meters, as shown in Fig. 7. The experiments in
this room collected 16 datasets at each of the 17 points
of training and one dataset for testing because this room
contains many pieces of high-tall metallic furniture. Sixteen
datasets and one dataset were employed for ML training
and evaluation, respectively. Because severe multipath fading
may cause unexpected variations in RSSI values, the number
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FIGURE 15. Maximum error distance as a function of the number of
datasets.

of datasets in the laboratory room, 17, is greater than that in
the conference room, 12.

IV. EXPERIMENTAL RESULTS

A. EVALUATION OF MAXIMUM ERRORS FOR TYPICAL
ML-BASED REGRESSION ALGORITHMS

The evaluation results for typical ML algorithms enable
identification of the most suitable algorithm for our
localization environments. This paper evaluated a random
forest algorithm [45], XGBoost algorithm [46], decision
tree [47], linear regression [48], and convolutional neural
network algorithm (CNN) [49]. Figures 9 and 10 provide
comparative studies on the maximum error distances for ML
algorithms at the coordinates presented in Figs. 6 and 7,
respectively. The required number of datasets for ML will be
clarified in the subsequent subsection. In addition, Figs. (a)
and (b) in each figure respectively provide maximum error
distances on the points for supervising ML (on-grids) and
randomly chosen coordinates for evaluating the versatilities
of individual ML algorithms (off-grids). Note that the
maximum error distance is the largest error distance for each
algorithm.

From Figs. 9 (a) and (b), although the decision tree
provided the best localization performance for on-grid points
in the conference room as shown in Fig. 9 (a), this
algorithm was not versatile enough because the maximum
error provided for off-grids was not minimum as shown
in Fig. 9 (b). Furthermore, the decision tree algorithm
was worse for the on-grid and off-grid points in the
laboratory room, as discussed in the following figure. On the
other hand, the XGBoost provided the best performance
for the off-grid points. This algorithm, however, did not
achieve the best performance for the on-grid points. The
linear regression and CNN algorithms were worse in the
conference room. The random forest algorithm provided
the second-best performance for both on- and off-grid
coordinates.

As shown in Figs. 10 (a) and (b), we can confirm that
using the random forest was the best choice for the laboratory
room. Although in Fig. 10 (b) XGboost has good performance
on off-grid, this algorithm has a large error, as shown in
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Fig. 10 (a). The decision tree, CNN, and linear regression
algorithm were worse for the on-grid and off-grid points.

These evaluation results confirmed that the random forest
algorithm was suitable for regression in this experimental
environment.

To evaluate the latencies of the ML methods, Fig. 11
shows the average processing times of the individual ML
methods over the on-grid points in each room, where the
processing time corresponds to the time between introducing
the RSSI vector and generating the predicted coordinate in
the evaluation phase, as shown in Fig. 8. The specifications
of the computer were as follows: Windows 11 Pro 64-bit, 13th
Gen Intel Core i7-1355U (12 CPUs), 2.6 GHz, 32 GB RAM.
The processing times for the laboratory are longer than those
for the conference room because the laboratory has more
reference RFID tags than the conference room does, which
makes the input vector of RSSI values to the MLs large.

B. MAXIMUM ERROR DISTANCE DISTRIBUTIONS FOR
RANDOM FOREST REGRESSION ALGORITHM

Because we confirmed that the random forest regression
was the most suitable for our experimental environments,
the error distance distribution maps for the random forest
algorithm further evaluate the localization performance of
the proposed method. Figures 12 and 13 show the error
distance distribution maps for the conference room and
laboratory room, respectively. Figures (a) and (b) show the
results for the on- and off-grid coordinates, respectively. The
red and green symbols represent the ideal and predicted
coordinates, respectively. These results confirmed that the
proposed localization system works well in realistic indoor
environments.

Figures 14 (a) and (b) show box-and-whisker plots
presenting the detailed information, including means and
deviations, for Figs. 12 and 13, respectively.

Considering the use of an unstable handheld RFID reader
operated by human workers, the use of instantaneous RSSI
values, congested and multipath indoor environments, and
the search procedure that is used when inventorying the
expected items, the obtained distance errors are acceptable
for managing items in a local factory in Japan. The
search capability of the RFID system shown in Fig. 1
can inventory the expected items and absorb the inade-
quate accuracies of the proposed method. These points
make the proposed system acceptable despite its modest
accuracies.

C. NECESSARY NUMBER OF DATASETS FOR SUPERVISING
ML

Collecting datasets for supervising ML is a time-consuming
and labor-intensive task. Therefore, clarifying the number of
necessary datasets for supervising ML is crucial. Figure 15
shows the maximum error distance as a function of the
number of datasets at each coordinate for the conference and
laboratory rooms. These results confirmed that the maximum
error distances saturate at nine and thirteen for the conference
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FIGURE 17. Success rates for classifications in the laboratory room: (a) on-grid and (b) off-grid.

| @ Label Coordinate points % Label RandomCoordinates |

Y [m]
R W W |
12 3G 14 15 16 H 17
7.5 ° ax ° ° °
Red rectangle to 12 Table and partition

explain classification
success rate criteria 1

||ll 9

Metal Locker

FIGURE 18. Error map of the laboratory room: off-grid using the decision
tree algorithm.

room and laboratory room, respectively. These necessary
numbers are realistic for the practical implementation of the
proposed method.
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FIGURE 19. Experimental setup and environment of the conference room
with 4 reference RFID tag sites and points for ML training and evaluation.

Figure 15 also shows the RSSI variations among the
datasets obtained at the same data acquisition positions.
The relationships between the maximum error distances
and the number of datasets at each coordinate confirmed
that increasing the number of datasets at each coordinate
caused the maximum error distances to gradually decrease
and converge to certain levels. These trends are due to the
variations among the RSSI datasets obtained at the same data
acquisition positions. Preparing nine and 13 RSSI datasets
at the same data acquisition positions suppressed the effects
of RSSI variations in the conference and laboratory rooms,
respectively.
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FIGURE 21. Box-and-whisker plots for error distances in the conference room when using three and four reference RFID tag sites: (a) on-grid

coordinates and (b) randomly chosen off-grid coordinates.

D. EVALUATING ACCURACY USING CLASSIFICATION
ALGORITHMS

Classification algorithms based on label coordinates are also
applicable in RFID-based localization systems. The label to
be tested in this experiment is shown in Figs. 6 (b) and 7 (b).

There are two criteria for determining accuracy. Criteria 1:
its success is measured by the ability to predict the position,
including neighboring points. For example, in Fig. 18, Label
13 is considered successful if this point is predicted on labels
included in the red rectangle. Criteria 2: accuracy is judged
by whether the predicted label is on the ideal label or next to
the nearest point.

From the evaluation results in Figs. 16 and 17, the decision
tree algorithm produces the best accuracy.

The error map of the laboratory room off-grid using the
decision tree algorithm is shown in Fig. 18. Based on the error
map, the prediction of label F goes to label 11, meaning that
label F is not included in the calculation of success rate in
criteria 1 and 2.
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E. PERFORMANCE COMPARISON OF TREE-BASED
ALGORITHMS IN REGRESSION AND CLASSIFICATION

The tree-based algorithms (decision tree, random forest,
and XGBoost) showed better performance than that of the
CNN and linear regression. Although decision trees are
typically applied to simple problems, the occurrence of
overfitting may worsen performance of the decision tree
algorithm [50]. Therefore, the decision tree algorithm showed
the best performance in the classification and regression of
the on-grid analysis in the conference room. However, for
other regressions, decision tree algorithms showed worse
performance. In contrast, the random forest and XGBoost,
which employ ensemble averages of decision trees, showed
better performance than did the decision tree because the
ensemble average can eliminate overfitting problems. These
studies concluded that evaluating tree-based algorithms,
including decision trees, random forests, and XGBoost,
is essential for effectively choosing the best algorithm for a
target environment.
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F. EXPERIMENTAL RESULTS FOR FOUR REFERENCE RFID
TAG SITES

Figure 19 shows the new experimental results obtained in
the conference room after adding one more set of reference
RFID tags (from #10 to #12). Figures 20 (a) and (b) show the
error distance distribution maps for the on-grid and off-grid
conditions, respectively, when regressions are applied using
the random forest algorithm. Figures 21 (a) and (b) show
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box-and-whisker plots for the on-grid and off-grid conditions,
respectively. Figures 21 (a) and (b) also compare the results
for the cases using three (Figure 12 (a) and (b)) and four
reference RFID tag sites. Min is the smallest observed value,
QI is the first quartile, Median is the middle value, Q3 is the
third quartile, and Max is the largest value. The outliers are
significantly different from the other values in the dataset.

These comparative studies confirmed that increasing the
number of reference RFID tag sites slightly decreases the
localization accuracy because an increase in the number of
sites increases the RSSI vector dimensions and complicates
ML estimation problems. In addition, different arrangements
of the reference RFID tag sites may lead to different
performance. However, these results also verified that the
proposed localization method worked well and provided
acceptable results in a realistic indoor environment. This issue
will be addressed in our future studies.

G. AREA ESTIMATION METHOD BASED ON THE DISTANCE
DECAYS OF RSSIS

As a comparative study with the proposed ML-based
localization method, this subsection evaluates the localization
method on the basis of the distance decay of radio waves [27],
[28]. The RSSIs of the reference RFID tags are measured
by the handheld reader decay depending on the distances
between them. This method provides approximated distances
between the handheld reader and reference RFID tags,
allowing localization in conjunction with the directivity
of the reference RFID tags. This method considers the
propagation channel to be a line-of-sight propagation path
between the handheld RFID reader and reference RFID tags,
ignoring the complex multipath propagation effects in indoor
environments. This method may be a simple and effective
area estimation method in non-multipath-rich environments
such as conference rooms. In contrast, this method cannot
provide reasonable area estimation performance in multipath-
rich environments, such as the laboratory that was described
in this paper. The advantage of this distance decay-based
area estimation method is its simplicity of implementa-
tion because no fingerprint constructions are necessary in
advance, as in the proposed ML-based method.

Figure 22 shows the area estimation method utilizing the
distance decays of RSSIs instead of ML. Figure 22 (a)
shows the area estimation principle of this method. The
sectors represent the approximated antenna directivities of
the reference RFID tags in the azimuth plane, and the radii
correspond to the estimated distances. It should be noted that
the goal of showing the sectors is to provide a comprehensive
understanding for users, and the details of the sector shapes do
not affect the area estimation accuracies. The colors indicate
the magnitudes of the RSSIs. The antenna directivities of the
reference RFID tags also provide representative directions as
the centers of the antenna directivities. Distance decay-based
distance estimation provides the distance d’ between the
reference RFID tag and the handheld RFID reader, as shown
in Fig. 22 (b). The distance d in Fig. 22 (a) corresponds to
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FIGURE 26. Box-and-whisker plots for error distances between ML and distance decay in the (a) conference room and (b) laboratory.

the distance d in Fig. 22 (b) if a user directs the handheld
RFID reader toward the reference RFID tag and assumes the
known heights of the handheld RFID reader and reference
RFID tag. The representative directions of the reference
RFID tags antenna directivities and distances d point to the
coordinates C1, C> and C3 in Fig. 22 (a), leading to an average
coordinate C.

Figure 23 shows the experimentally obtained relationship
between the RSSI and distance d’, and the insets present
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the experimental environment. The dotted line provides
the approximated curve of this relationship, and this
approximated curve is given by

RSSI = —11.55Ind’ — 42.434. (1)

Transforming the above equation, we obtain the equation that
is used to convert a measured RSSI value to a distance:

RSSI+42.434
s .

d =e 2)
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Figure 24 provides an example of the area estimation
result based on the distance decay of the RSSI. Figure 24 (a)
shows the EPC numbers of the reference RFID tags and their
corresponding RSSI values in descending order. Figure 24 (b)
provides an area estimation result computed by our developed
software, corresponding to the illustrated area estimation
principle shown in Fig. 22 (a). The distances derived from
the three maximum RSSI values, the red, green, and blue
sectors, and Cy, C; and C3 lead to the average coordinate C
represented by the red cross in Fig. 22 (b).

Figure 25 compares the distance errors of the distance
decay-based method with those of the ML-based method.
In this figure, the distance error of the distance decay-based
method overlaps the previously shown figures: Fig. 12 (a)
and 13 (a). Additional experiments in the conference room
and laboratory were performed to produce error distance
maps, as shown in Fig. 25 (a) and (b), respectively. Figure 26
shows box-and-whisker plots presenting comparative studies
between the ML-based and distance decay-based methods.
These additional experimental results confirmed that the
error distances of the conference room are much shorter
than those of the laboratory because the laboratory is a
more highly multipath-rich environment compared with the
conference room. However, the area estimation performance
of the distance decay-based method is inferior to that of the
ML-based method. These comparative studies revealed that
the proposed ML-based method is necessary, especially in
multipath-rich environments.

V. CONCLUSION

This paper introduces a simplified indoor localization sys-
tem that uses a handheld RFID reader and the reference
RFID tags with directional antenna radiation patterns using
reflectors. These reference RFID tags provide RSSI and
angle information, enabling localization in conference and
laboratory rooms. A user with a handheld reader collects
RSSI values by waving an arm and rotating the body to
create a vector dataset. Known coordinates and on-grid RSSI
datasets are utilized to train ML models. Both regression
and classification algorithms were evaluated in this paper.
Validation indicates that nine datasets are sufficient for
the conference room, while 13 datasets are needed for
the laboratory due to complex propagation and shadowing.
Notably, in the conference room and laboratory room, the
random forest regression algorithm was indicated to be the
most effective for predicting coordinates, with maximum
error distances of 1.15 m (on-grid) and 2.65 m (off-grid)
in the conference room and 1.74 m (on-grid) and 2.53 m
(off-grid) in the laboratory. The decision tree classification
algorithm emerges as the most accurate for the conference
and laboratory rooms.
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