
Received 29 August 2024, accepted 10 October 2024, date of publication 25 October 2024, date of current version 15 November 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3486333

A Quantum Algorithm for Boolean Functions
Processing
FAHAD ALJUAYDI1, SAMAR ABDELAZIM2, MOHAMED M. DARWISH3,
AND MOHAMMED ZIDAN 4
1Department of Mathematics, College of Science and Humanities, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
2Department of Computer Science, Faculty of Computers and Information, Assiut University, Asyut 71515, Egypt
3Department of Computer Science, University College of Al Wajh, University of Tabuk, Tabuk 71491, Saudi Arabia
4Department of Artificial Intelligence, Faculty of Computers and Artificial Intelligence, Hurghada University, Hurghada 1950003, Egypt

Corresponding author: Mohammed Zidan (comsi2014@gmail.com)

The authors extend their appreciation to Prince Sattam bin Abdulaziz University for funding this research work through the project
number (PSAU/2023/01/26741).

ABSTRACT Detecting junta variables is a critical issue in Boolean function analysis, circuit design
optimization, and machine learning feature selection. In this paper, we investigate a novel quantum
computation algorithm based on the Mz operator. The algorithm takes in an unknown oracle concealing a
Boolean function with n variables and an unknown input state, which can be quantum or classical. The input
state can be complete or incomplete quantum basis states, and it can be a weighted or uniform superposition
of basis states. The proposed approach determines whether a given variable is a junta with a time cost of
O(2/ϵ2) and a memory cost of 2n+6. The algorithm is analyzed and experimentally implemented using the
Qiskit simulator and IBM’s real quantum computer. Experimental results show that the proposed approach
achieved a quantum supremacy ratio 6300% higher than that of the classical method when verifying junta
variables for Boolean functions with 12 variables. The results suggest that the proposed quantum method
can verify junta variables in scenarios beyond the capabilities of current classical or quantum methods.

INDEX TERMS Quantum algorithm, junta problem, Mz, entanglement, Boolean functions.

I. INTRODUCTION
Quantum computers are complex devices based on the
concepts of quantum physics, a branch of research dedi-
cated to understanding the actions and properties of atoms
and particles. Quantum computers work by analyzing and
regulating the behavior of these particles. This operates
entirely differently than with supercomputers or traditional
computers [1]. Quantum computing is a cross-disciplinary
domain that incorporates elements of information science,
computer science, physics, and mathematics. It utilizes
quantum mechanics to tackle complicated issues quicker
than traditional computers. This field has grown rapidly and
made remarkable advancement across a variety of scientific
fields, which include quantummachine learning [2], quantum
communication [3], quantum IoT [4], quantum cryptogra-
phy [5], [6], quantum computation for power systems [7],
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[8], computational biology [9], drug discovery [10], protein
structure prediction [11], [12], quantum chemistry [13],
materials science [14], and other areas [15]. In accordance
with the principles of quantum physics, quantum comput-
ing is a potentially revolutionary technology that utilizes
quantum mechanical concepts such as superposition and
entanglement. This allows for the resolution of traditional
and intractable problems that are exceedingly challenging
for classical computers [16], enabling the tackling of issues
that are beyond the capabilities of traditional computing
systems [17], [18]. Researchers continually attempt to
develop creative quantum algorithms that surpass their
conventional equivalents as technology advances. Recently,
it was developed a quantum computing model that solves
problems by measuring the strength of entanglement using
the concurrence measure [16]. Based on the capability of this
model to reduce the cost of computations from exponential
time to polynomial time, this model was applied [19] to
solve the problem of hamming distance, and compared to
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the classical deterministic computations, it might require
exponentially less time.

The junta problem is a major problem that arises
throughout numerous domains. Based only on the variables,
chosen uniformly at random from samples, the junta problem
is the task of learning an unknown Boolean function.
These variables are sometimes referred to as the junta
for a Boolean function. The junta problem is currently
extensively utilized within the field of machine learning [20]
and computational learning theory [21]. In computational
biology, when studying the relationship between a genetic
attribute and a long DNA sequence, it is anticipated that
only a small, unidentified portion of the sequence affects this
attribute [22].

A k-junta is defined as a Boolean function f : {0, 1}n →

{0, 1} which is dependent solely on k of the n variables.
Evaluating accurately a Boolean function f for identifying
the k dependent variables is the goal of the k-junta problem.
As quantum computers evolve, numerous researchers are
utilizing algorithms of quantum learning to tackle the
problem of k-junta and the function operation Uf is built
around a Boolean function f . Based on Fourier sampling
and O( k

δ
) function operations, a quantum property detector

is introduced by Atıcı and Servedio [23] to identify k-junta
usingO( k

δ
) quantum queries. They also provided an algorithm

of quantum learning to determine the variables that are
dependent with an accuracy of δ, usingO(2k log δ−1) random
examples and O(δ−1k log k) quantum examples. A quantum
learning technique is presented by Floess et al. [24] for
solving the problem of k-junta that utilizes the amplitude
amplification technique [25] and the algorithm of Bernstein-
Vazirani [26]. Particularly, the Boolean function contains
linear, quadratic, or cubic terms, with each variable appearing
only once. When k approaches a big number, and for a
Boolean function that is a product of k input variables, the
Floess et al.’s algorithm needs to perform O(2k ) operations
of function to locate at least one dependent variable. This
algorithm achieves this task with a high success probability
close to 0.96. Ambainis et al. [27] proposed an algorithm of
quantum learning that employs

√
δ−1k function operations

and tackles the group testing problem. El-Wazan et al. [28]
proposed a quantum approach applicable to any Boolean
function. They also devised another black box function that
incorporates two function operations. To identify variables
that are dependent with a probability of at least 2

3 , the
explained quantum-based approach uses O(2

n
2 ) function

operations. However, no exact quantum learning algorithm
presented for the problem of k-junta. For the exceptional
case of 2-junta, the Boolean function f (x) = xgxh, where
0 ≤ g, h ≤ n − 1 is devised by Floess et al. [24]. They
suggested an algorithm for quantum computers that uses
t function operations to find variables that are dependent
with a probability of 1 − (0.25)t . Chen [29] presented a
quantum algorithm to tackle the problem of 2-junta with
certainty. In the worst scenario, Chen’s algorithm identifies
two dependent variables through applying O(log2 n) times.

Furthermore, on average, 3.82 function operations are
required. To find the three dependent variables of the Boolean
function f (x) = xgxhxk , where 0 ≤ g, h, k ≤ n−1, Chen [30]
utilized a similar concept to provide an exact quantum
algorithm. On average, 7.23 function operations are required
when n ≥ 16. He showed that the explained algorithm fails to
solve the problem of k-junta with a single uncomplemented
product for 4 ≤ k < 2−1n. Chen [31] introduced an
exact quantum learning approach to tackle the problem of 2-
junta, involving O(log2 n) function operation, in the worst-
case scenario. When n ≥ 8, this approach [31] requires on
average, 5.3 function operations. Chen and An [32] suggested
an exact algorithm of quantum learning for identifying
two dependent variables to tackle the problem of 2-junta.
In theworst-case scenario, usingmodified black-box function
that is presented by El-Wazan et al. [28], this algorithm
takes only three function operations. Later, to solve the
problem of 3-junta, Chen [33] proposes an exact algorithm
of quantum learning to find three dependent variables. This
algorithm solves the 3-junta problem using a modified black-
box function. The quantum algorithm necessitates O(log2 n)
function operations, with an average at most 3.41 in the
worst-case scenario.

Although there have been significant prior efforts, there
is still a need for further investigations to address and
tackle the issue of junta determination. Specifically, one
open research problem pertains to detecting junta variables
in scenarios where the oracle and inputs are both unknown
and the inputs are provided through an unknown weighted or
uniform distribution of incomplete or complete superposition
input states. Therefore, this paper explores a new quantum
approach to handle this open research problem. The approach
is based on the operatorMz and involves evaluating the degree
of entanglement. The time and memory costs associated
with this proposed approach are also extensively discussed.
Furthermore, this new approach is implemented empirically
using both IBM’s quantum computer simulator and IBM’s
real quantum computer.

The remaining paper is organized as follows: Section II
presents the problem statement. Section III explains the
classical algorithm for junta verification. In Section IV, the
methodology and the quantum Mz operators are discussed.
Section V provides a comprehensive explanation of the
proposed quantum approach, including an analysis of the
proposed algorithm through a case study. This section also
addresses the memory and time complexities of both the pro-
posed algorithm and its traditional counterpart. Section VII
focuses on presenting the experimental results and discussing
the proposed algorithm in detail. Section VIII comprises the
main results of this paper.

II. PROBLEM STATEMENT
The problem statement is formulated by two cases as follows:
(i) Assuming it is required to learn a classical machine
learning model on a Boolean expression of a very large
number of Boolean variables n, e.g., n ≥ 50. Thus, it

164504 VOLUME 12, 2024



F. Aljuaydi et al.: Quantum Algorithm for Boolean Functions Processing

is needed to generate a dataset for this expression to train
the model, but this type of dataset cannot be processed
using current classical main computer memories (RAM). One
approach that could help reduce the size of the dataset is by
checking whether this logical expression has a junta variable
or not. If a Boolean expression hasm junta variables, this will
reduce the dataset to 2m rows in the dataset rather than 2n,
where m < n.

(ii) Assuming that an unknown Boolean expression is
provided via an oracle and is applied to an unknown input
in a weighted and complete/incomplete superposition state,
such that the input state is received through a quantum
communication channel [34]. It is required to check whether
there are junta variables for this oracle and input or not. These
two cases can be is articulated as follows:

Given: An oracle Uf that hides an unknown Boolean
expression acts on a given unknown or a prepared input state
of n variables defined as follows:

|0⟩ = |x1, x2, . . . , xn⟩ =

∑
j

wj| j ⟩,where K ≤ 2n, (1)

such that K is the number of basis states.
Goal: Check whether a given variable xi, where i =

1, 2, . . . , n, is a junta or not in polynomial time in terms of
a predefined error of ϵ.
If the input state |0⟩ is prepared with all the basis states

K = 2n and all coefficients w′
js are equal to 2

−n
2 in Eq. (1),

then this corresponds to case (i). On the other hand, if the
input state |0⟩ is given and unknown such that K < 2n, or all
coefficients w′

js are not equal in Eq. (1), then this corresponds
to case (ii).

III. CLASSICAL COMPUTING APPROACH
In the domain of function testing, particularly within the
context of machine learning, when faced with an extensive
array of input features, the investigation focuses on the
challenges associated with managing a substantial number
of input variables. The goal is to determine if there is a
limited set of characteristics that influence another property
within the dataset [35]. In this scenario, the features are
treated as coordinates, and the elements of the original
problem are encoded through a dictation process. This
process systematically represents the problem components
as follows: Encode a certain i ∈ [n] by providing the truth
table of the function f : {0, 1}n → {0, 1}, where f (x) = xi.
The process requires log(N ) bits to specify i and 2n bits for the
truth table of the Boolean function f . Junta testing is applied
to input functions for Boolean functions f : {0, 1}n → {0, 1}.
This can be verified classically using Algo. 1 [36], [37].

IV. METHODOLOGY
The quantum entanglement phenomenon denotes a state
wherein subsystems are correlated to a certain degree such
that measuring the state of a subsystem affects the state
of the remaining subsystem no matter what, irrespective
of their spatial separation [38]. In situations where direct

Algorithm 1 : Classical Algorithm of Checking Junta
Variables [37]
Step 1: Any Boolean function f in positive polarity
Reed-Muller form of n input variables, and N = 2n can be
written as follows: f = f (x0, x1, . . . . . . ., xn−1).
Step 2: Define f the function when flipping the xi bit in f :

f = f (x0, x1, x2 . . . .., xi−1, xi, xi+1, . . . . . . , xn−3, xn−2, xn−1)

Step 3: Check if the function f = f by comparing the outputs
of each function.
Step 4: To decide the result of testing xi:
(a) If xi affects the function then

f ̸= f and xi is junta.
(b) If xi does not affect the function then

f = f and xi is not junta.

detection of entanglement is not feasible, for example, due
to quantum operations, entanglement measures are employed
to quantify the degree of entanglement within a quantum
system. Specifically, in the context of a two-qubit system, the
strength of entanglement is assessed through the utilization
of the concurrence measure [19], which is estimated as
C(|lh⟩) = 2|a0a3|, where C ∈ [0, 1], only if the
two-qubit system is in the state |lh⟩ = a0|00⟩ + a3|11⟩
[16]. Recently, a new quantum computing model [16] was
discussed to perform quantum computing operations based
on the actual/virtual degree of entanglement. Fig. 1 shows
the schematic structure of this model, the main operations
and techniques of this model are summarized. This model
involves creating two decoupled replicas. On each replica,
an oracle Uf is applied independently to an input state |9(t)⟩
and an output qubit |l⟩. An additional qubit |h⟩ = |0⟩,
is attached to this system. Subsequently, the Mz operator
is applied to the qubits |l⟩ ⊗ |h⟩, which performs two
operations: (1) creation of entanglement and (2)measurement
of entanglement.

1-Entanglement creation:
By applying a CNOT gate on the two ancillary
qubits, with |l⟩ as the control qubit and |h⟩ as the
target qubit, we can create either actual or virtual
quantum entanglement between the qubits |lh⟩ to
varying degrees depending on the state of the qubit |l⟩.
We define ‘actual entanglement’ as a situation where
the state of two qubits |lh⟩ cannot be factorized into
individual qubit states across all possible orthonormal
basis sets. On the other hand, if the state of two qubits
cannot be factorized only within the computational
basis set, we refer to this as ‘virtual entanglement’.
2-Entanglement measurement:
In this operation, a measurement in the computational
basis set is conducted on the four qubits of the two
replicas, denoted as |lhlh⟩. To determine the virtual or
actual concurrence valueC between the qubits |lh⟩, one
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of the three formulas in Eq.(2) is used [16]:

C =

√
2(P0011 + P1100) = 2

√
P1100 = 2

√
P0011,

(2)

Algorithm 2 The Proposed Quantum Algorithm for Verify-
ing Junta Variables
Step 1: If an unknown input state |0⟩ is received and its state is
defined by Eq. (1) then set the qubit |Ct ⟩ = |0⟩, and go to Step 2.
Else{
(i) Set the qubit |Ct ⟩ = |1⟩.
(ii) Apply n controlled Hadamard gates, CH , on the control qubit
|Ct ⟩ and each qubit |0r ⟩ in the register |0⟩ as a target qubit, where
r = 0, 1, 2, . . . , n−1, to create a uniform complete superposition
of all possible computational basis states as follows:

|Ct ⟩ ⊗ |0⟩ =

n−1∏
r=0

CH{Ct0r }(|Ct ⟩|0⟩)
⊗n) =

K−1∑
x=0

wx |x⟩,

where wx = 2
−n
2 , and K = 2n}.

Step 2: Initialize a closed quantum system composed of the qubit
|Ct ⟩, the register |0⟩, and three ancillary qubits |slh⟩ = |0⟩⊗3. The
state of this system is described by Eq. (3).

|ψ
S1
0 ⟩ = |Ct ⟩ ⊗ |0⟩ ⊗ |slh⟩ = |Ct ⟩

∑
x
wx |x⟩|000⟩. (3)

Step 3: To generate the output of the unknown Boolean expression
on the qubit |s⟩, the oracle Uf is applied to the qubits |0⟩|s⟩ of the
system |ψS1

0 ⟩ as follows:

|ψ
S1
1 ⟩ = (I ⊗ Uf ⊗ I⊗2)|ψS1

0 ⟩ = |Ct ⟩
∑
x
wx |x⟩|f (x)⟩|00⟩. (4)

Step 4: Apply the quantum negation gate X on the qubit with index
i in the register |0⟩ as explained in Eq. (5).

|ψ
S1
2 ⟩ = (I⊗(2+1+2+...+(i−1))

⊗ X ⊗ I⊗((i+1)+...+(n−1)+3))|ψS1
1 ⟩

= |Ct ⟩
∑
x
wx |x ′

⟩|f (x)⟩|00⟩,

where x ′
= (x1, x2, . . . ,¬xi, . . . , xn). (5)

Step 5: Repeat Step 3 again by applying the oracleUf on the register
|0⟩, and the qubit |s⟩.

|ψ
S1
3 ⟩ = (I ⊗ Uf ⊗ I⊗2)|ψS1

2 ⟩

= |Ct ⟩
∑
x
wx |x ′

⟩|f (x) ⊕ f (x ′)⟩|00⟩. (6)

Step 6: Apply the controlled Hadamard gate CH gate on the control
qubit |s⟩, and the target qubit |l⟩,

|ψ
S1
4 ⟩ = (I⊗(n+1)

⊗ CH ⊗ I )|ψS1
3 ⟩. (7)

Step 7: Apply Steps 1-6 in parallel to create an additional replica.
This step does not violate the no-cloning theorem [39] because, upon
repeating these steps, a new closed decoupled version of the same
state |ψ

S2
4 ⟩ = |ψ

S1
4 ⟩ is created. Therefore, the state of the whole

system is |ψ5⟩ = |ψ
S1
4 ⟩ ⊗ |ψ

S2
4 ⟩.

Step 8: ApplyMz operator on the four qubits |lh⟩⊗|lh⟩, and estimate
the virtual/actual concurrence value C using Eq. (2):
(a) If C > 0 then

xi is junta.
(b) If C = 0 then

xi is not junta.

where P0011 and P1100 represent the probabilities of
the basis states |0011⟩ and |1100⟩, respectively. Subse-
quently, the solution to the problem is derived using one
of two approaches. The first approach involves utilizing
the formula solution C = 2

√
t1(N−t1)
N = 2|a0a3|, while

the second technique determines the solution based on
identifying the presence or absence of actual/virtual
entanglement between the two qubits [16].

V. THE PROPOSED QUANTUM ALGORITHM AND
ANALYSIS
A. PROPOSED QUANTUM ALGORITHM FOR JUNTA
VARIABLES
To handle the two cases of the stated problem described
in Section II, a novel quantum algorithm based on the
computing model explained in Section IV is suggested. The
detailed steps of this new quantum algorithm are explained
in Algo. 2, and Fig. 2 shows the quantum circuit of this
algorithm.

B. ANALYSIS OF THE PROPOSED ALGORITHM: CASE
STUDY
Here, Algorithm 2 is analyzed extensively through a case
study ensuring that the analysis remains generalizable. In this
particular case study, we assume that we have received an
input state via a quantum teleportation channel [34], [40] in
the following form:

|0⟩ = |x0x1x2⟩ =

√
3
20
e

−8π i
3 |010⟩ +

√
6
20

|011⟩

+

√
2
20

|101⟩ +

√
9
20

|110⟩, (8)

where K = 4. Additionally, we have an oracle Uf that
conceals a Boolean function f (x0, x1, x2) with the following
mappings:

f (001) = 1, f (010) = 0, f (011) = 1,

f (101) = 1, f (110) = 0, f (111) = 0. (9)

The objective of this case study is to determine whether the
variable x0 is a junta or not. Therefore, by applying the
steps of this algorithm, we begin with Step 1. In this case
study, since the received inputs |0⟩ are defined by Eq. (8),
we proceed to Step 2. Hence, this case study represents case
(ii) as described in Section II. However, in another case study,
if the state of the inputs is not given, it corresponds to case
(i) in Section II. In such scenario, it can be simulated on a
quantum computer and solved by applying three Hadamard
gates H⊗3 on three empty qubits |0⟩⊗3, producing the state
|0⟩ = 8−0.5 ∑7

x=0 |x⟩. In Step 2, the state is incorporated
into a larger subsystem comprising 6 qubits. This subsystem
consists of the three qubits from the register |0⟩ and
additional extra qubits denoted as |slh⟩ = |0⟩⊗3. The state
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FIGURE 1. The abstract structure of the Mz operator-based quantum computing model when operating on a single replica.

of this subsystem is given by:

|ψ
S1
0 ⟩ = |Ct ⟩|0⟩|slh⟩ =

√
3
20
e

−8π i
3 |0, 010, 000⟩

+

√
6
20

|0, 011, 000⟩ +

√
2
20

|0, 101, 000⟩

+

√
9
20

|0, 110, 000⟩. (10)

In Step 3, the oracle Uf that contains the operations of the
Boolean function is applied to the register |0⟩ and the qubit
|s⟩, resulting in the state defined by Eq. (11).

|ψ
S1
1 ⟩ = (I ⊗ Uf ⊗ I⊗2)|ψS1

0 ⟩ =

√
3
20
e

−8π i
3 |0, 010, 000⟩

+

√
6
20

|0, 011, 100⟩ +

√
2
20

|0, 101, 100⟩

+

√
9
20

|0, 110, 000⟩. (11)

This state indicates that the outputs of the oracle Uf are
generated in the qubit |s⟩, which is entangled with the register
|0⟩. In Step 4, the quantum negation gate X is applied to the
variable under investigation, which in this case study is x0.
The resulting state is defined by Eq. (12).

|ψ
S1
2 ⟩ = (I ⊗ X ⊗ I⊗5)|ψS1

1 ⟩

=

√
3
20
e

−8π i
3 |0, 110, 000⟩ +

√
6
20

|0, 111, 100⟩

+

√
2
20

|0, 001, 100⟩ +

√
9
20

|0, 010, 000⟩. (12)

Step 5 involves repeating Step 3, resulting in the state defined
by Eq. (13).

|ψ
S1
3 ⟩ = (I ⊗ Uf ⊗ I⊗2)|ψS1

2 ⟩

=

√
3
20
e

−8π i
3 |0, 110, (0 ⊕ 0)00⟩

+

√
6
20

|0, 111, (1 ⊕ 0)00⟩

+

√
2
20

|0, 001, (1 ⊕ 1)00⟩

+

√
9
20

|0, 010, (0 ⊕ 0)00⟩.

=

√
3
20
e

−8π i
3 |0, 110, 000⟩ +

√
6
20

|0, 111, 100⟩

+

√
2
20

|0, 001, 000⟩ +

√
9
20

|0, 010, 000⟩. (13)

The result of this step is obtained due to the XOR operation
between the output of the oracleUf fromStep 3 and the output
of the oracle Uf after negating the Boolean input variable
x0 in Step 4. Then, in Step 6, the controlled Hadamard gate
CH is applied to the control and target qubits |s⟩ and |l⟩,
respectively, to transform the state as described by Eq. (14).

|ψ
S1
4 ⟩ = (I⊗4

⊗ CH ⊗ I )|ψS1
3 ⟩

=

√
3
20
e

−8π i
3 |0, 110⟩|0⟩⊗3

+

√
2
20

|0, 001⟩|0⟩⊗3

+

√
9
20

|0, 010⟩|0⟩⊗3

+

√
6
20

|0, 111⟩
(|100⟩ + |110⟩)

√
2

. (14)
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In this formula:

Let |ζ1⟩ =

√
3
20
e

−8π i
3 |0, 110⟩|0⟩ +

√
2
20

|0, 001⟩|0⟩

+

√
9
20

|0, 010⟩|0⟩, and |ζ2⟩ =

√
6
20

|0, 111⟩|1⟩.

(15)

Then, Eq. (14) can be rewritten as:

|ψ
S1
4 ⟩ = (I⊗4

⊗ CH ⊗ I )|ψS1
3 ⟩

= |ζ1⟩|00⟩ + |ζ2⟩
(|00⟩ + |10⟩)

√
2

. (16)

In parallel, Step 7 executes Steps 1-6 to construct another
independent replica of the system, denoted as |ψ

S2
4 ⟩ = |ψ

S1
4 ⟩,

without violating the no-cloning theorem [39]. Step 7 deter-
mines the state of the whole system, which is described by
Eq. (17).

|ψ5⟩

= |ψ
S1
4 ⟩ ⊗ |ψ

S2
4 ⟩

= (|ζ1⟩⊗2
+

1
√
2
|ζ1⟩|ζ2⟩ +

1
√
2
|ζ2⟩|ζ1⟩ + 0.5|ζ2⟩⊗2)|0⟩⊗4

+ (
1

√
2
|ζ1⟩|ζ2⟩ +

1
2
|ζ2⟩

⊗2)|0⟩⊗2
|10⟩

+ (
1

√
2
|ζ2⟩|ζ1⟩ +

1
2
|ζ2⟩

⊗2)|1⟩|0⟩⊗3

+ 0.5|ζ2⟩⊗2)|10⟩⊗2
|10⟩⊗2. (17)

Finally, in step 8, the operator Mz is applied by using two
CNOT gates on the four qubits |lh⟩ ⊗ |lh⟩, where |l⟩ is the
control qubit and |h⟩ is the target qubit. This yields the state
described in Eq. (18).

|ψ6⟩

= (I⊗10
⊗ CNOT{lh} ⊗ CNOT{lh})|ψ5⟩

= (|ζ1⟩⊗2
+

1
√
2
|ζ1⟩|ζ2⟩ +

1
√
2
|ζ2⟩|ζ1⟩ + 0.5|ζ2⟩⊗2)|0⟩⊗4

+ (
1

√
2
|ζ1⟩|ζ2⟩ +

1
2
|ζ2⟩

⊗2)|0011⟩

+ (
1

√
2
|ζ2⟩|ζ1⟩ +

1
2
|ζ2⟩

⊗2)|1100⟩ + 0.5|ζ2⟩⊗2)|1⟩⊗4.

(18)

Subsequently, this operator assesses the success probabilities
of obtaining the basis states |0011⟩ and |1100⟩ by measuring
the four qubits |lh⟩ ⊗ |lh⟩ to ascertain the value of the
virtual/actual concurrence C using one of the formulas in
Eq. (2). By considering the states |ζ1⟩ and |ζ2⟩ in Eq. (15),
alongside Eqs. (18) and (2), it is deduced that C > 0.
Consequently, it is inferred that the variable x0 constitutes a
junta.

VI. COMPLEXITY ANALYSIS
Here, the efficiency of the proposed algorithm is investigated
in terms of memory space cost, time space cost, and the

problem domain in comparison to the classical algorithm.
In the classical approach (see Section III), examining whether
a given Boolean variable xi is a junta requires generating
2n rows in the truth table, where n is the number of
Boolean variables. Consequently, this truth table is stored
in 2n locations in the main memory. Then, the oracle Uf
that encodes a given unknown Boolean function is invoked
2n times to evaluate each row in the truth table. After
that, the Boolean values of the variable xi are negated, and
the oracle Uf is invoked an additional 2n times, with the
outcomes stored in memory. Finally, the 2n truth values
obtained from invoking the oracle Uf before negating the
variable are compared with the truth values obtained after
invoking the same oracle after negating the Boolean function.
Therefore, the memory cost is 2 · 2n = 2n+1, and the
time cost is also 2 · 2n = 2n+1 when using classical
computers. Furthermore, in terms of the problem domain,
the classical algorithm can be used to handle case (1), but
it cannot handle case (2) in the proposed problem statement
(see Section II). Case (2) cannot be solved using classical
computers because unknown, incomplete, and weighted
superposition states cannot be implemented or processed via
classical computing systems. On the other hand, for case (1)
in the proposed problem statement: The proposed quantum
algorithm examines whether a Boolean variable xi is a junta
or not, based on whether the virtual/actual concurrence value
C > 0 or not. The value C is computed by estimating the
probabilities of the basis states |0011⟩ and |1100⟩ using Eq.
(2). The upper bound error of evaluating the actual/virtual
concurrence is ϵmax =

1
√
2M
, where M is the number of

oracle recalls. In the proposed algorithm, a given oracle
Uf is recalled twice (total queries are 4M see Algo. 2) in
each replica, so the maximum complexity of the proposed
approach is given by Eq. (19).

M = 2ϵ−2. (19)

Consequently, it is evident that the time complexity is
significantly reduced from the exponential computation time
of 2n+1 using the classical approach to the polynomial time of
2ϵ−2 in the proposed quantum approach. Fig. 3 illustrates the
comparison between the complexity of the classical algorithm
and the proposed quantum approach for examining whether a
given Boolean variable xi. Also, It is evident from this figure
that as the number of variables n increases, the proposed
algorithm achieves exponential speedup compared to the
classical approach. Additionally, the proposed algorithm
significantly outperforms the quantum approach explained in
Ref. [28], which has an exponential time cost of O(

√
2n).

Moreover, the proposed algorithm tackles case (2) in the
proposed problem statement, with a time cost of O(ϵ−2),
which current quantum approaches [28], [30], [31], [32], [33]
have been unable to solve. Regarding the proposed quantum
approach, it requires a memory register of size n qubits to
store the basis states of an input state, alongwith an additional
three ancillary qubits |s⟩, |l⟩, and |h⟩ for each replica. Since
the propose algorithm needs two replicas, the total memory
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FIGURE 2. The detailed elementary quantum circuit of the proposed approach that classifies variables of unknown
logical functions that receive unknown quantum input states into junta/not junta classes.

space required for the proposed approach is 2n + 6 qubits.
It should be noted that the qubit |Ct ⟩ can be insulated from
the system after the first step. Therefore, it is evident that the
memory space is reduced from exponential space 2n+1 in the
classical approach to linear space in the proposed quantum
approach.

VII. EXPERIMENTAL REALIZATION OF THE PROPOSED
ALGORITHM
The proposed quantum approach is implemented experi-
mentally via eight experiments. These experiments verify
whether given oracles are junta for the number of inputs:
n = 2, n = 3, n = 12, and n = 60. The simulation
results are obtained using a machine with v.0.40.0 platform
characteristics, running on a local PC with 12 GB of
RAM and a 2.4 GHz CPU. Then, all of these experiments
are conducted on IBM’s real quantum computers. Ten
trials are conducted for each experiment, and the average
probabilities are provided. The supposition behind these
experimental configurations is that the oracles are kept secret
from everyone except the experiment creator. The statistical

fidelities of both the simulation results and real quantum
computer results are computed as Fsim =

∑2n−1
j=0

√
psimj pthj

and Frc =
∑2n−1

j=0

√
prcj p

th
j . Here, pthj , psimj , and prcj

are the success probabilities for the basis states obtained
from theoretical calculations, simulation results, and real
quantum computer results, respectively. In each experiment,
the oracle receives different Boolean input variables whose
states are known only to the experiment’s creator. The
proposed algorithm is empirically implemented in four
different sets of experiments. Each experimental set consists
of two experiments tested for different predefined numbers
of variables: n = 2, n = 3, and n = 12, with errors
ϵ =

2
√
20,000

≈ 0.01 (see section VI), where the number of
shots is 20, 000 for experiments 1-4 and experiments 7-8. The
results of all experiments are plotted in Figs. 9-16. In these
figures, the red bars represent the theoretical probabilities
of the basis states, while the green bars and the blue bars
represent the average probabilities of the simulation results
and the real quantum computer for 10 trials, respectively.
In the first experiment, we assume that the number of Boolean
variables is n = 2, and the oracle Uf1 implements the
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FIGURE 3. Comparison between the time cost for the proposed quantum approach for unknown oracles on uniform superposition states with a
predefined error of ϵ = 10−2 and the classical approach.

TABLE 1. Comparing the advantages and disadvantages of testing junta variables using the classical and the quantum approaches.

FIGURE 4. Representation of the Boolean function f (x0, x1) = x0x1 by
unitary transformations in the quantum circuit model.

Boolean function f (x0, x1) = x0x1, which is described by the
quantum circuit shown in Fig. 4. The objective is to determine
whether the variable x0 is a junta or not. Fig. 9 presents

FIGURE 5. Representation of the Boolean function f (x0, x1) = x1 by
unitary transformations in the quantum circuit model.

the results obtained for theoretical, simulation, and real
quantum computer outcomes. Theoretically, after applying
the quantum circuit of the proposed quantum approach (see
Fig. (2)), the estimated probabilities for the basis states
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FIGURE 6. Representation of the Boolean function f (x0, x1, x2) =

x0x2 + x2 by unitary transformations in the quantum circuit model.

FIGURE 7. Representation of the Boolean function f (x0, x1, x2) = x
2x0x1 + x2 by unitary transformations in the quantum circuit model.

|00⟩|00⟩, |00⟩|11⟩, |11⟩|00⟩, and |11⟩|11⟩ are 0.5625, 0.1875,
0.1875, and 0.0625, respectively. Therefore, according to
Eq. (2), the theoretical value of the virtual concurrence is
Cth = 0.866025404, indicating that Cth > 0. According
to Step 8 of the proposed algorithm (see Algo. 2), since Cth
is greater than 0, theoretically, x0 is a junta. The simulation
results for the average probabilities of these basis states,
|00⟩|00⟩, |00⟩|11⟩, |11⟩|00⟩, and |11⟩|11⟩, are obtained as
0.562463379, 0.186132813, 0.187597656 and 0.063806152,
respectively. According to Eq. (2), the simulation value of
the virtual concurrence is Csim =

√
2(P0011 + P1100) =

0.864558233, indicating that Csim > 0. According to
Step 8 of the proposed algorithm, since Csim is greater than
0, experimentally, x0 is a junta. The results produced by the
quantum circuit, Fig. (2), via the real quantum computer
for the average probabilities of these basis states, |00⟩|00⟩,
|00⟩|11⟩, |11⟩|00⟩, and |11⟩|11⟩, are 0.544415, 0.16163,
0.167595 and 0.04899, respectively. Additionally, the sum of
the average probabilities for the basis states |0001⟩, |0010⟩,
|0100⟩, and |1000⟩ is 0.07737. According to Eq. (2), the
real quantum computer value of the virtual concurrence is
Crc =

√
2(P0011 + P1100) = 0.811449, indicating that

Crc > 0. According to Step 8 of the proposed algorithm,
since Crc is greater than 0, experimentally, x0 is a junta.

FIGURE 8. Representation of the Boolean function f (x0, x1, . . . , x11) =

x0x9x11 + x11 by unitary transformations in the quantum circuit model.

The statistical fidelity of the simulation results and the real
quantum computer results are Fsim ≈ 1, and Frc = 0.96072.
In the second experiment, it is assumed that the number of
Boolean variables is n = 2, and the oracle Uf2 implements
the Boolean function f (x0, x1) = x1. The quantum circuit
of this oracle is shown in Fig. 5. The objective is to decide
whether the variable x0 is junta or not. Fig. 10 presents
the results obtained for theoretical, simulation, and real
quantum computer outcomes. Theoretically, after applying
the quantum circuit of the proposed quantum approach (see
Fig. (2)), the estimated probability for the basis state |00⟩|00⟩
is 1, and the probabilities of the basis states |00⟩|11⟩, |11⟩|00⟩,
and |11⟩|11⟩ are 0. Therefore, according to Eq. (2), the
theoretical value of the virtual concurrence is Cth = 0.
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FIGURE 9. Experimental, theoretical, and simulation results for the Boolean function f (x0, x1) = x0.x1 to check whether the variable x0 is junta.

FIGURE 10. Experimental, theoretical, and simulation results for the Boolean function f (x0, x1) = x1 to check whether the variable x0 is not junta.

According to Step 8 of the proposed algorithm (see Algo. 2),
theoretically, x0 is not junta. The simulation results for the
average probabilities of the basis state |00⟩|00⟩ are 1, and

the probabilities of the basis states |00⟩|11⟩, |11⟩|00⟩, and
|11⟩|11⟩ are 0. According to Eq. (2), the simulation value of
the virtual concurrence is Csim = 0. According to Step 8 of
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FIGURE 11. Experimental, theoretical, and simulation results for the Boolean function f (x0, x1, x2) = x0x2 + x2 to check whether the variable x1 is not
junta.

FIGURE 12. Experimental, theoretical, and simulation results for the Boolean function f (x0, x1, x2) = x2x0x1 +x2 to check whether the variable x1 is junta.

the proposed algorithm, experimentally, x0 is not junta. The
results obtained from executing the proposed algorithm in this

experiment using a real quantum computer for the average
probabilities of the basis states, namely |00⟩|00⟩, |00⟩|11⟩,
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FIGURE 13. Experimental, theoretical, and simulation results for the Boolean function f (x0, x1, . . . , x11) = x0x9x11 + x11, giveh the input stats in the

form
∣∣X 〉 = ( 1

√
2

∣∣0〉+ 1
√

2

∣∣1〉)⊗12
to test if the variable x0 is junta or not with allowed error 0.125.

FIGURE 14. Experimental, theoretical, and simulation results for the Boolean function f (x0, x1, . . . , x11) = x0x9x11 + x11, giveh the input stats in the

form
∣∣X 〉 = ( 1

√
2

∣∣0〉+ 1
√

2

∣∣1〉)⊗12
to test if the variable x1 is junta or not with allowed error 0.125.

|11⟩|00⟩, and |11⟩|00⟩, are 0.93253, 0.02237, 0.01058, and
0.000265, respectively. Additionally, the sum of the average
probabilities for the basis states |0001⟩, |0010⟩, |0100⟩, and

|1000⟩ is 0.034255. Thus, the outcomes of the quantum
computer simulator and the actual quantum computer differ
slightly. According to Eq. (2), the value of the virtual
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FIGURE 15. Experimental, theoretical, and simulation results for the Boolean function f (x0, x1, . . . , x11) = x0x9x11 + x11, giveh the input stats in the

form
∣∣X 〉 = (√

0.7e
jπ
4
∣∣0〉+ √

0.3 e
jπ
3
∣∣1〉)⊗12

to test if the variable x0 is junta or not.

concurrence on the real quantum computer, denoted as Crc,
is calculated as Crc = 0.257. The statistical fidelity of the
simulation results and the real quantum computer results are
Fsim = 1 and Frc = 0.0.965675929.
In the third experiment, we assume that the number of

Boolean variables is n = 3, and the oracle Uf3 implements
the Boolean function f (x0, x1, x2) = x0x2 + x2. The quantum
circuit for this oracle is illustrated in Fig. 6. The objective is to
determine whether the variable x1 is a junta or not. The results
obtained for the theoretical, simulation, and real quantum
computer outcomes are presented in Fig. 11. Theoretical
calculations indicate that after applying the quantum circuit
of the proposed quantum approach (see Fig. 2), the estimated
probability for the basis state |00⟩|00⟩ is 1, and the estimated
probabilities for the basis states |00⟩|11⟩, |11⟩|00⟩, and
|11⟩|11⟩ are 0. Thus, according to Eq. (2), the theoretical
value of the virtual concurrence isCth = 0. Based on Step 8 of
the proposed algorithm (Algorithm 2), since Cth theoretically
vanishes, it implies that x1 is not a junta. The simulation
results for the average probabilities of these basis states,
|00⟩|00⟩, {|0011⟩, |11⟩|00⟩, |1111⟩}, are obtained as 1 and
0, respectively. According to Eq. (2), the simulation value of
the virtual concurrence is Csim = 0. According to Step 8 of
the proposed algorithm, since Csim is 0, experimentally, x1 is
not a junta. The results obtained from executing the proposed
algorithm in this experiment using a real quantum computer
yield the following average probabilities for the basis states:
|00⟩|00⟩, |00⟩|11⟩, |11⟩|00⟩, and |11⟩|11⟩ with values of
0.679825, 0.08959, 0.11443, and 0.015325, respectively.

Furthermore, the sum of the average probabilities for the basis
states |0001⟩, |0010⟩, |0100⟩, and |1000⟩ amounts to 0.10083.
Thus, the outcomes of the quantum computer simulator and
the actual quantum computer differ slightly. The statistical
fidelity of the simulation results, and real quantum computer
results are Fsim = 1, and Frc = 0.824515. In the fourth
experiment, we assume that the number of Boolean variables
is n = 3, and the oracle Uf4 implements the Boolean function
f (x0, x1, x2) = x2x0x1 + x2. The quantum circuit for this
oracle is illustrated in Fig. 7. The objective is to determine
whether the variable x1 is a junta or not. The results obtained
for the theoretical, simulation, and real quantum computer
outcomes are presented in Fig. 12. Theoretical calculations
indicate that after applying the quantum circuit of the
proposed quantum approach (see Fig. 2), the estimated prob-
abilities for the basis states |00⟩|00⟩, |00⟩|11⟩, |11⟩|00⟩, and
|11⟩|11⟩ are 0.765625, 0.109375, 0.109375, and 0.015625,
respectively. Thus, according to Eq. (2), the theoretical value
of the virtual concurrence is Cth = 0.661437828, indicating
that Cth > 0. According to Step 8 of the proposed algorithm
(see Algo. 2), since Cth is greater than 0, theoretically, x1 is a
junta. The simulation results for the average probabilities of
these basis states, |00⟩|00⟩, |00⟩|11⟩, |11⟩|00⟩, and |11⟩|11⟩,
are obtained as 0.76385498, 0.109204102, 0.110974121,
and 0.015966797, respectively. According to Eq. (2), the
simulation value of the virtual concurrence is calculated as
Csim = 0.663593585, indicating that Csim > 0. Following
Step 8 of the proposed algorithm, since Csim is greater than
0, it can be experimentally concluded that x1 is a junta. The
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FIGURE 16. Experimental, theoretical, and simulation results for the Boolean function f (x0, x1, . . . , x11) = x0x9x11 + x11, giveh the input stats in

the form
∣∣X 〉 = (√

0.7e
jπ
4
∣∣0〉+ √

0.3 e
jπ
3
∣∣1〉)⊗12

to test if the variable x1 is junta or not.

results obtained from executing the proposed algorithm in this
experiment using a real quantum computer for the average
probabilities of the basis states, namely |00⟩|00⟩, |00⟩|11⟩,
|11⟩|00⟩, and |11⟩|11⟩, are 0.47937, 0.171275, 0.17527, and
0.059475, respectively. Additionally, the sum of the average
probabilities for the basis states |0001⟩, |0010⟩, |0100⟩, and
|1000⟩ is 0.11461. According to Eq. (2), the value of the
virtual concurrence on the real quantum computer, denoted as
Crc, is calculated asCrc = 0.83252027. The statistical fidelity
of the simulation results and real quantum computer results
are Fsim = 0.999973 and Frc = 0.9116298180885183,
respectively.

In the fifth experiment, we assume that the number of
Boolean variables is n = 12, and the oracle Uf7 implements
the Boolean function in the form of f (x0, x1, . . . , x11) =

x0x9x11+x11. The quantum circuit for this oracle is illustrated
in Figure 8. Additionally, we assume that the state of these

inputs is |X⟩ =

(
1

√
2

|0⟩ +
1

√
2

|1⟩
)⊗12

. In this experiment,
we need to determine whether the variable x0 is a junta
with a predetermined error ϵ = 0.125. This requires
invoking the oracle 128 times according to Eq. (19). Thus,
the number of shots performed in both the simulator and the
real quantum computer is 128. The results obtained for the
theoretical, simulation, and real quantum computer outcomes
are presented in Fig. 13. Theoretical calculations indicate that
after applying the quantum circuit of the proposed quantum
approach (see Figure 2), the estimated probabilities for the
basis states |00⟩|00⟩, |00⟩|11⟩, |11⟩|00⟩, and |11⟩|11⟩ are
0.765625, 0.109375, 0.109375, and 0.015625, respectively.

Thus, according to Eq. (2), the theoretical value of the
virtual concurrence is Cth = 0.661437828, indicating that
Cth > 0. According to Step 8 of the proposed algorithm
(see Algo. 2), since Cth is greater than 0, theoretically,
x0 is a junta. The simulation results for the average
probabilities of these basis states, |00⟩|00⟩, |00⟩|11⟩, |11⟩|00⟩,
and |11⟩|11⟩, are obtained as 0.74609375, 0.11640625,
0.11875, and 0.01875, respectively. According to Eq. (2),
the simulation value of the virtual concurrence is calculated
as Csim = 0.685793, indicating that Csim > 0. Following
Step 8 of the proposed algorithm, since Csim is greater than
0, it can be experimentally concluded that x0 is a junta.
The results obtained from executing the proposed algorithm
in this experiment using a real quantum computer for the
average probabilities of the basis states, namely |00⟩|00⟩,
|00⟩|11⟩, |11⟩|00⟩, and |11⟩|11⟩, are 0.5671875, 0.13203125,
0.13828125, and 0.03203125, respectively. Additionally, the
sum of the average probabilities for the basis states |0001⟩,
|0010⟩, |0100⟩, and |1000⟩ is 0.13046875. According to
Eq. (2), the value of the virtual concurrence on the real
quantum computer, denoted as Crc, is calculated as Crc =

0.735272058. The statistical fidelity of the simulation results
and real quantum computer results are Fsim = 0.996432 and
Frc = 0.9267478422371156, respectively. In the sixth
experiment, we assume that the number of Boolean variables
is n = 12, and the oracle Uf6 implements the Boolean
function in the form of f (x0, x1, . . . , x11) = x0x9x11 + x11.
Furthermore, we assume that the state of these inputs is

|X⟩ =

(
1

√
2

|0⟩ +
1

√
2

|1⟩
)⊗12

. In this experiment, the goal is
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to determine whether the variable x1 is a junta with the same
error value as in the previous experiment. Thus, the same
number of shots, 128, are performed in both the simulator
and the real quantum computer. The results obtained for the
theoretical, simulation, and real quantum computer outcomes
are presented in Figure 14. Theoretical calculations indicate
that after applying the quantum circuit of the proposed
quantum approach (see Figure 2), the estimated probabilities
for the basis states |00⟩|00⟩, |00⟩|11⟩, |11⟩|00⟩, and |11⟩|11⟩
are 1, 0, 0, and 0, respectively. Therefore, according to
Eq. (2), the theoretical value of the virtual concurrence is
Cth = 0. Following Step 8 of the proposed algorithm (see
Algo. 2), it can be theoretically concluded that x1 is not a
junta. The simulation results for the average probabilities of
the basis states |00⟩|00⟩, |00⟩|11⟩, |11⟩|00⟩, and |11⟩|11⟩ are
also 1, 0, 0, and 0, respectively. According to Eq. (2), the
simulation value of the virtual concurrence is Csim = 0.
Following Step 8 of the proposed algorithm, since Csim =

0, it can be experimentally concluded that x1 is not a
junta. The results obtained from executing the proposed
algorithm in this experiment using a real quantum computer
for the average probabilities of the basis states, namely
|00⟩|00⟩, |00⟩|11⟩, |11⟩|00⟩, and |11⟩|11⟩, are 0.54921875,
0.1140625, 0.1703125, and 0.04375, respectively. Addition-
ally, the sum of the average probabilities for the basis
states |0001⟩, |0010⟩, |0100⟩, and |1000⟩ is 0.12265625.
Thus, the outcomes of the quantum computer simulator and
the actual quantum computer differ slightly. The statistical
fidelity of the simulation results and real quantum computer
results are Fsim = 1 and Frc = 0.7100915433942302,
respectively.

In the seventh experiment, we assume that the number of
Boolean variables is n = 12, and the oracle Uf5 implements
the Boolean function in the form of f (x0, x1, . . . , x11) =

x0x9x11 + x11. The quantum circuit for this oracle is
illustrated in Figure 8. Additionally, we assume that unknown
given inputs are obtained through the quantum teleportation
protocol or a quantum communication channel [40]. The state

of these inputs is |X⟩ =

(√
0.7e

jπ
4 |0⟩ +

√
0.3 e

jπ
3 |1⟩

)⊗12
,

which is only known to the experiment’s creator and unknown
to everyone else. The objective of this experiment is to
determine whether the variable x0 is a junta or not. The
results obtained for the theoretical, simulation, and real
quantum computer outcomes are presented in Figure 15.
Theoretical calculations indicate that after applying the
quantum circuit of the proposed quantum approach (see
Figure 2), the estimated probabilities for the basis states
|00⟩|00⟩, |00⟩|11⟩, |11⟩|00⟩, and |11⟩|11⟩ are 0.912, 0.043,
0.043, and 0.002, Thus, according to Eq. (2), the theoretical
value of the virtual concurrence is Cth = 0.414728827.
According to Step 8 of the proposed algorithm (see Algo. 2),
since Cth is greater than 0, it can be theoretically concluded
that x0 is a junta. The simulation results for the average
probabilities of the basis states |00⟩|00⟩, |00⟩|11⟩, |11⟩|00⟩,
and |11⟩|11⟩ are obtained as 0.9119, 0.04338, 0.04274, and

0.00198, respectively. According to Eq. (2), the simulation
value of the virtual concurrence is calculated as Csim =
√
2(P0011 + P1100) = 0.415018072, indicating that Csim >

0. Following Step 8 of the proposed algorithm, since Csim
is greater than 0, it can be experimentally concluded that
x0 is a junta. The results obtained from executing the
proposed algorithm in this experiment using a real quantum
computer for the average probabilities of the basis states
|00⟩|00⟩, |00⟩|11⟩, |11⟩|00⟩, and |11⟩|11⟩, are 0.463385,
0.16389, 0.157545, and 0.05639, respectively. Additionally,
the sum of the average probabilities for the basis states
|0001⟩, |0010⟩, |0100⟩, and |1000⟩ is 0.15879. According
to Eq. (2), the value of the virtual concurrence on the real
quantum computer, denoted as Crc, is calculated as Crc =

0.80179. The statistical fidelity of the simulation results and
real quantum computer results are Fsim = 0.999979 and
Frc = 0.9267478422371156. In the eighth experiment,
it is assumed that the number of Boolean variables is n =

12, and the oracle Uf6 implements the Boolean function
in the form of f (x0, x1, . . . , x11) = x0x9x11 + x11. The
quantum circuit for this oracle is illustrated in Figure 8.
Moreover, it is assumed that unknown given inputs are
obtained through the quantum teleportation protocol or a
quantum communication channel [40]. The state of these

inputs is |X⟩ =

(√
0.7e

jπ
4 |0⟩ +

√
0.3 e

jπ
3 |1⟩

)⊗12
, which

is only known to the experiment’s creator and unknown to
everyone else. The objective is to determine whether the
variable x1 is a junta or not. The results obtained for the
theoretical, simulation, and real quantum computer outcomes
are presented in Figure 16. Theoretical calculations indicate
that after applying the quantum circuit of the proposed
quantum approach (see Figure 2), the estimated probability
for the basis state |00⟩|00⟩ is 1, and for the basis states
|00⟩|11⟩, |11⟩|00⟩, |11⟩|11⟩ is 0. Thus, according to Eq.
(2), the theoretical value of the virtual concurrence is
calculated as Cth = 0. Following Step 8 of the proposed
algorithm (see Algo. 2), it can be theoretically concluded
that x1 is not a junta. The simulation results for the average
probability for the basis state |00⟩|00⟩ is 1, and the estimated
probabilities for the basis states |00⟩|11⟩, |11⟩|00⟩, |11⟩|11⟩
are 0. According to Eq. (2), the simulation value of the
virtual concurrence is calculated as Csim = 0. Following
Step 8 of the proposed algorithm, since Csim = 0, it can
be experimentally concluded that x1 is not a junta. The
results obtained from executing the proposed algorithm in this
experiment using a real quantum computer for the average
probabilities of the basis states, namely |00⟩|00⟩, |00⟩|11⟩,
|11⟩|00⟩, and |11⟩|11⟩, are 0.488855, 0.150655, 0.2021, and
0.064995, respectively. Additionally, the sum of the average
probabilities for the basis states |0001⟩, |0010⟩, |0100⟩, and
|1000⟩ is 0.093395. Thus, the outcomes of the quantum
computer simulator and the actual quantum computer differ
slightly. The statistical fidelity of the simulation results and
real quantum computer results is Fsim = 0.999979 and
Frc = 0.9267478422371156.
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The outcomes of experiments 1 − 8 show a disparity
between the results obtained from the real quantum computer
and both the theoretical outcomes and simulation results.
This disparity can be attributed to the susceptibility of real
computers to various types of noise and errors, including
decoherence and environmental interference. These factors
remain open challenges in the research field [41]. On the other
hand, it is evident that both the theoretical predictions and
simulations of the proposed algorithm on quantum computers
align with the initial expectations and preparations made
by the experiment’s designer. This confirms the successful
experimental realization of the proposed algorithm. Table 1
presents both the advantages and disadvantages of the
proposed algorithm compared to other current approaches
for testing whether a given variable is a junta or not. The
proposed algorithm achieves a time complexity of O(ϵ−2)
and a memory cost of 2n + 6. In experiments 5 − 6, it is
clear that the proposed algorithm efficiently decides whether
the variable underpinning is a junta or not for an oracle of
n = 12 Boolean variables by recalling with a time complexity
of 128 times when the inputs are represented in the uniform
complete superposition. When testing the same variables for
the same oracle using the classical approach, it requires a
time cost of 2n+1

= 212+1 (see Section VI). Thus, the
proposed algorithm achieves a quantum supremacy ratio of
( classical approach time
quantum approach time − 1) × 100 = ( 2

n+1

2ϵ−2 − 1) × 100 =

( 213

2ϵ−2 −1)×100 = 6300% in terms of time cost. Furthermore,
experiments 7 − 8 cannot be implemented using classical
computers, and the current quantum approaches [28], [30],
[31], [32], [33] also cannot solve the issues conducted in
experiments 7 − 8 by the proposed algorithm. However,
the proposed approach successfully accomplished these
experiments.

Overall, it is evident that the proposed algorithm can not
only outperform the classical approach in terms of time
complexity and memory space, but also it addresses a form of
the junta problem that cannot be solved using current classical
or other existing quantum approaches.

VIII. CONCLUSION
This study investigated a new quantum approach to determine
whether a given variable is a junta or not given an
unknown oracle. The proposed approach has a time cost of
2ϵ−2, achieving exponential speed up compared to classical
approaches as the number of Boolean variables increases.
Additionally, the memory cost of the presented approach
scales linearly with the number of variables compared to
the classical approach, which scales exponentially. Moreover,
the proposed quantum approach can solve the same problem
with the same memory space and time cost when both the
oracle is unknown and the inputs are incomplete andweighted
superposition of some basis states. This task is intractable
for both classical computers and the state-of-the-art quantum
approaches but achievable using the proposed approach.
Eight experiments were conducted using IBM’s real quantum

computer and the Qiskit simulator to practically realize the
suggested algorithm.
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