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ABSTRACT Tunnel squeezing is a time-dependent significant deformation problem often occurring in
weak rock masses and areas with high horizontal in situ stress. This phenomenon can cause construction
delays, increased budgets, tunnel collapse, and additional problems. Therefore, accurately predicting tunnel
squeezing is crucial. The surrounding rock of the tunnel is uneven in hardness and softness, and changes
frequently due to the influence of geological structure, thereby rendering the prediction of extrusion
deformation highly uncertain. The belief rule base (BRB) is a rule-based modeling approach capable of
handling uncertain information. However, the performance of the BRB model is not only affected by the
combinatorial rule explosion caused by too many input attributes but also by the limitations of expert
knowledge. First, to solve the problem of the combinatorial rule explosion, a novel tunnel squeezing
prediction model using a hierarchical BRB structure based on the Random Forest (RF) attribute selection
method (H-RF-BRB) is proposed. Second, to avoid the limitations of expert knowledge, parameters of the
tunnel squeezing prediction model are determined by combining the expert knowledge and the information
gain ratio (IGR). The model effectively integrates qualitative knowledge with quantitative information,
addressing the issue of limitations in expert knowledge. Additionally, it overcomes the challenge of limited
datasets due to the difficulties in collecting tunnel squeezing samples, which enhances the accuracy of the
model’s predictions. Finally, the model’s effectiveness and superiority are validated through five-fold cross-
validation and several comparative experiments.

INDEX TERMS Belief rule base, tunnel squeezing, random forest, evidence reasoning.

I. INTRODUCTION
Tunnel squeezing is defined by the International Society
for Rock Mechanics (ISRM) as the time-dependent, large
deformation that occurs around the tunnel and is primarily
associated with creep due to exceeding limiting shear
stress [1]. Squeezing frequently occurs in weak rock masses
and tectonically active regions [2], [3]. Due to the substantial
deformation induced by squeezing, which can lead to
significant support damage, considerable economic losses,
and delays during tunnel construction, predicting tunnel
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squeezing remains a critical issue for ensuring tunneling
safety [4], [5]. Therefore, investigating the squeezing poten-
tial of tunnels is crucial.

Since the 1980s, extensive research has been conducted
on tunnel squeezing. Prediction models are typically cate-
gorized into two types: based on quantitative information
and based on qualitative knowledge. Prediction models
based on quantitative information are developed through
data-driven approaches utilizing observed data. For instance,
Sun et al. presented a multiclass SVM model for predicting
tunnel squeezing [6]. Huang et al. developed a combined
SVM-BP approach for classifying tunnel-surrounding rock
squeezing [7]. Ghasemi and Gholizadeh used k-nearest
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neighbors (KNN) and C5.0 classifiers to predict ground
status, i.e., (nonsqueezing or squeezing) in tunneling projects
[8]. Chen et al. utilized the decision tree (DT) method
to develop a multi-classification model that can predict
the intensity of tunnel squeezing [9]. Feng and Jimenez
presented a Naïve Bayes (NB) classifier to predict tunnel
squeezing [4]. Jimenez and Recio used a logistic regression
method to predict the occurrence of tunnel squeezing [5].
Zhang et al. employed a weighted collection of seven
classifiers, which include DT, NB, back propagation neural
network (BPNN), SVM, multiple linear regression, KNN,
and logistic regression to predict whether tunnel squeezing
occurs [10]. Bo et al. adopted and aggregated four typically
various-structured algorithms (LR, ET, Ada, and GBC)
to form a robust ensemble classifier to predict tunnel
squeezing [11]. Geng et al. employed a combination of the
Bayesian Optimization (BO) algorithm with the Entropy
Weight Method (EWM) to enhance the Extreme Gradient
Boosting (XGBoost) model, improving the accuracy of
tunnel squeezing intensity predictions [12]. The prediction
models based on quantitative information do not require
complex mechanism analysis. They only require analyzing
a large amount of data for modeling. However, a challenge in
the tunnel squeezing prediction field is that training data is
difficult to obtain because different researchers use different
parameters to predict tunnel squeezing [10].
Unlike the model based on quantitative information, the

model based on qualitative knowledge is constructed on
the squeezing mechanism. For instance, Fritz evaluated the
time-dependent strain and stress (for excavated tunnels)
based on an axisymmetric assumption [13]. Pan and Dong
calculated the time-dependent deformations of viscoelastic
rocks, considering the advancement rate [14]. Debernardi
and Barla evaluated the triaxial creep deformations using
a stress-hardening constitutive law [15]. Jiao et al. used
evidence theory to predict the tunnel squeezing intensity [16].
The prediction model based on qualitative knowledge relies
on expert knowledge, which makes their accuracy be affected
by the limitations of expert knowledge.

Compared to models based on quantitative information,
semi-quantitative information models maintain accuracy
while reducing dependence on data samples. In contrast to
qualitative knowledge models, semi-quantitative information
models simplify the internal structure, enhance resistance to
interference, and improve the capacity to handle uncertain
information.

The BRB is a typical semi-quantitative information model
proposed by Yang et al. [17]. The model can effectively
combine qualitative knowledge with quantitative informa-
tion and handle the uncertainty in qualitative knowledge.
Currently, the BRB model has been widely used for bridge
risk assessment [18], security assessment [19], slope stability
evaluation [20], and various other fields. Therefore, this paper
proposes a tunnel squeezing prediction model based on BRB.

The complexity of the BRB model is related to the number
of rules. The number of rules in BRB is determined by the

Cartesian product algorithm. For instance, in the BRB model
with M attributes, where the number of referential points for
the ith attribute is Ai, the total number of rules is

∏M
i=1 Ai. As

the number of attributes increases, the number of rules grows
exponentially, resulting in combinatorial rule explosion. This
not only complicates the model but also significantly affects
its performance. Thus, a hierarchical BRB structure based
on the Random Forests (RF) attributes selection method is
proposed to predict tunnel squeezing. The model is structured
into two layers: the first layer has a main BRB, and the
second layer has several sub-BRBs.The output of the main
BRB represents the approximated classification between
confusable classes. Then, these samples were transmitted
to a certain sub-BRB for binary classification to make a
precise prediction. The RF is used for attribute selection in
the modeling process of each abovementioned BRB model.

Furthermore, the hierarchical BRB model’s accuracy is
significantly influenced by the main BRB in the first layer.
Only when the main BRB assigns samples to the correct
sub-BRB. The sub-BRB in the second layer can then further
classify the samples accurately. The accuracy of the BRB
model is influenced by its parameters. Currently, these
parameters are usually determined by experts. However, due
to the limitations of expert knowledge and the complexity of
tunnel squeezing mechanisms, accurately determining these
parameters remains challenging. Additionally, the number of
model parameters impacts both the accuracy and performance
of the model. For instance, When a BRB model has only two
attributes, eachwith four reference points, 16 rules (4×4) will
be generated; when each attribute has eight reference points,
64 rules will be generated. While fewer referential points
make the rule base more concise, they reduce the model’s
accuracy. Conversely, an excessive number of referential
points can lead to overly large rule base and over-fitting.
Therefore, the BRB model should be designed with a
reasonable number of referential points. This paper integrates
expert knowledge with the information gain ratio (IGR) to
determine the number of rules and the range of attributes,
providing a reasonable reference for rule origination.

The primary contributions of this paper are as follows:

1) This paper presents the H-RF-BRB tunnel squeezing
prediction model.

2) The hierarchical BRB structure based on RF attribute
selection method is used to address the problem of
combinatorial rule explosion.

3) Expert knowledge and IGR were introduced to deter-
mine model referential points so that more samples
could be sent to the correct sub-BRB in the first layer.
It can enhance the accuracy of the H-RF-BRB tunnel
squeezing prediction model.

II. PROBLEM FORMULATION
When developing a tunnel squeezing prediction model, the
following problems need to be considered to ensure the
model’s effectiveness and reliability:
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Problem 1: Given the large number of attributes affecting
tunnel squeezing, it is crucial to use an appropriate model
structure, select relevant input attributes, and determine
model parameters in the early stages of establishing the tunnel
squeezing prediction model to avoid the problem of high
complexity resulting from too many input attributes.

The first question is constructing a reasonable model
structure. The developed tunnel squeezing prediction model
can be represented as follows:

τ = ϕ[x1, x2, . . . , xM ] (1)

where xi = (i = 1, 2, . . . ,M ) represents the input
attributes for the tunnel squeezing prediction model. The
model structure is represented by the τ . The construction
process of the model is denoted by ϕ, which encompasses
the methods and steps involved in constructing the model.

The next question is how to reduce the size of the
tunnel squeezing prediction model without compromising
its accuracy by selecting appropriate input attributes. The
selection of attributes can be represented as follows:

{x1, x2, . . . , xM } = f (x1, x2, . . . , xC ) (M < C) (2)

where {x1, x2, . . . , xM } is selected input attribute set.
The final problem is to determine the parameters of the

tunnel squeezing prediction model while maintaining its
accuracy without losing interpretability. The parameters of
the model can be determined as follows:

{{r11 , r21 , . . . , rm1 , } . . . , {r1M , r2M , . . . , rmM }} = e(h(D)) (3)

where {r1N , . . . , rmN } represents the set of referential points
to be determined of the Nth attribute. D represents samples.
h(�) represents parameters obtain algorithm. e(�) represents
the adjustments to referential points by experts.
Problem 2: How can the inference process of the tunnel

squeezing prediction model be designed reasonably? The
inference process is represented as follows:

y = g(x1, x2, . . . , xM , 8) (4)

where y denotes the output results of the model, and 8

represents the set of parameters of the inference process.
Problem 3:How can the tunnel squeezing predictionmodel

be optimized to reduce the impact of limitations in expert
knowledge? The optimization process can be illustrated as
follows:

8best = op(8) (5)

where 8 represents parameters during the optimization
process. 8best represents the optimized parameters.

III. H-RF-BRB TUNNEL SQUEEZING PREDICTION MODEL
This section defines the modeling approach for the H-
RF-BRB tunnel squeezing prediction model, by analyzing
the problems discussed above. Section III-A describes
the model’s basic structure. Section III-B utilizes the RF
algorithm to select suitable attributes for the H-RF-BRB

tunnel squeezing prediction model. Section III-C determines
referential points of the tunnel squeezing prediction model.
Section III-D explains the inference process of the model.
Section III-E details the model optimization process. Sec-
tion III-F summarizes Sections III-A to III-E and outlines
the entire process of constructing the H-RF-BRB tunnel
squeezing prediction model.

A. THE BASIC STRUCTURE OF THE H-RF-BRB TUNNEL
SQUEEZING PREDICTION MODEL
BRB is composed of a series of belief rules, and the kth IF-
THEN belief rule is expressed as follows:

Rk : IF x1 is Ak1 ∧ x2 is Ak2 ∧ . . . ∧ xM is AkM
Then y is {(D1, β1,k ), . . . , (DN , βN ,k )}

with rule weight θk
with attribute weights δ1, δ2, . . . , δM (6)

where xi represents the ith input attribute of samples, Aki refers
to the referential points of ith attribute, and βj,k represents the
belief degree of the jth result Dj for the kth rule.

Based onBRB, the hierarchical BRB structure is composed
of several sub-BRBs. Each BBR uses different attributes
based on the different tasks. This structure can well address
the rule explosion issue when excessive input attributes
are used in BRB model [21]. The H-RF-BRB tunnel
squeezing prediction model is structured into two distinct
layers. The main BRB in the first layer is used for
approximate classification. It is designed to send samples
to the appropriate sub-BRB based on their utility outputs.
In the second layer, each sub-BRB distinguishes between
two adjacent categories, further accurately classifying the
samples received from the main BRB. By decomposing
the complex task into simpler binary decisions, the model
achieves greater accuracy and reliability. The comprehensive
structure of the H-RF-BRB tunnel squeezing prediction
model is depicted in Figure 1.

FIGURE 1. Structure of the H-RF-BRB tunnel squeezing prediction model.

B. ATTRIBUTE SELECTION FOR THE H-RF-BRB TUNNEL
SQUEEZING PREDICTION MODEL
The RF attributes importance analysis method is used for
attribute selection in this paper. RF, an ensemble learning
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technique, operates by constructing multiple decision trees
and combining their outputs to generate the final estima-
tion value. This method offers reasonable computational
costs and ease of interpretation. If there are C attributes
X1,X2, . . . ,XC , the detailed steps to calculate the importance
of each attribute Xj are as follows:
Step 1: Using the bootstrap method, K samples are

randomly extracted from the dataset and selected as the
decision tree’s root nodes.
Step 2: From the C attributes, m attributes (m ≪ C) are

randomly extracted. One of these m attributes is chosen as
the split attribute of the node using the Gini-coefficient gain
method. The Gini-coefficient gain method can be represented
as follows:

1IG = IG(nq) − ql ∗ IG(nl) − qr × IG(nr ) (7)

where IG(n) = 1 −
∑|s|

s=1. qc is the proportion of class c
samples in nodeN , and q2s is the Gini index o f nodeN . These
steps are repeated to build K decision trees to form a random
forest.
Step 3: Currently, the out-of-bag (OOB) data error method

is commonly employed to calculate attribute importance. The
OOB data error is obtained using the corresponding OOB
data and is denoted as errOOB1r . The OOB data error is
recalculated after randomly introducing noise interference to
attribute Xi in all the OOB data samples, which is represented
as errOOB2r,i . The importance of attribute Xi for the K trees is
shown as:

Vi =
1
K

R∑
r=1

(
errOOB1r − errOOB2r,i

)
(8)

If noise is randomly added to an attribute. In that case,
the accuracy of the OOB data is greatly reduced, indicating
that this attribute significantly influences the classification
results of the sample and is of high importance. The top two
most important attributes are used to construct each BRB
classifier.

C. REFERENTIAL POINTS DETERMINATION FOR THE
H-RF-BRB TUNNEL SQUEEZING PREDICTION MODEL
Referential points are the foundation of constructing the
H-RF-BRB tunnel squeezing prediction model [22], [23].
Generally, these points are provided by experts. However,
due to the complex mechanism involved in tunnel squeezing,
the referential points provided by experts are limited. The
quantity and quality of these points significantly influence
the model’s accuracy. Consequently, this paper integrates
expert knowledge and the IGR to determine the referential
points.

It is well known that, by using the IGR, several decision
variables are sequentially selected in C4.5 for decision tree
building, effectively mitigating the influence of sample size
across different categories. However, the referential points
generated by the IGR do not include boundary points. Lack
of boundary points can disrupt the completeness of the

BRB [24]. This lack of boundary points may result in the
input data not belonging to any referential points, making it
impossible to activate any rules. To address this issue, this
paper integrates the IGR algorithm and expert knowledge to
determine referential points. First, the referential point set is
determined using the IGR. Then, experts add boundary points
and significant points to this referential point set. The detailed
steps of this integrated approach are outlined below:
Step 1: Discretize each attribute to obtain the correspond-

ing discrete values [25], denoted as S = {ani | 1 ≤ i ≤

mn, 1 ≤ n ≤ N }. N represents the quantity of attributes
and mn represents the quantity of discrete values for the nth
attribute.
Step 2: Divide the sample set into subsets, using the

discrete value alj in S, denoted as {Dv | v ∈ {1, 2}}.
D1 includes only data where the lth attribute value is less than
alj , while D

2 contains the residual data. The corresponding
IGR is calculated as follows:

IGR(D, alj) =
IG(D, alj)

H (alj)

H (alj) = −

2∑
v=1

|Dv| log2
(

|Dv|
|D|

)
|D|

IG(D, alj) = Ent(D) −

2∑
v=1

|Dv| Ent(Dv)
|D|

Ent(D) =

N∑
n=1

|Cn|
|D|

log2(pn) (9)

where H (alj) represents the information entropy computed
with the value alj , IG(D, alj) denotes the information gain, | · |
indicates the number of sample sets.
Step 3: The referential point is determined by the highest

IGR value.
Step 4: Replacing D with subset Dv that is obtained with

alj and repeating Steps 2 and 3, until it is no longer possible
to divide D into two nonempty subsets.
Step 5: Reduced-error pruning technology [26] is

employed to eliminate the over-subdivided branches to
improve the generalization ability of referential points. This
is achieved by systematically evaluating the impact of each
branch on the model’s overall accuracy. Branches that do not
contribute significantly to improving accuracy are pruned.
As such, a group of referential points is generated.
Step 6: Based on expert knowledge, boundary points and

other significant points are added to the set of referen-
tial points. These points are derived from empirical data
and expert observations to ensure they are accurate and
meaningful. For example, the IGR provides an initial set
of referential points: {a1, a2}. Experts then add boundary
points and significant points to this set, resulting in the final
referential point set of {b1, a1, c1, a2, b2}. Here, {b1, b2} are
boundary points, and {c1} is regarded as a significant point by
experts.
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D. THE INFERENCE PROCESS OF THE TUNNEL
SQUEEZING PREDICTION MODEL
The evidential reasoning approach is used to implement
evidence fusion, which is proposed based on the decision the-
ory and the Dempster-Shafer(D-S) theory of evidence [27],
[28]. This approach is particularly powerful for handling and
fusing uncertain and nonlinear information, which is often
encountered in complex predictive models. The following
steps are utilized for the model inference:
Step 1: The degree to which the input attributes match the

belief rule can be determined as follows:

αti =


H j+1
i − xi

H j+1
i − H j

i

, t = j,H j
i ≤ xi ≤ H j+1

i

1 − αti , t = j+ 1
0, t = 1, 2, . . . ,L, t ̸= j, j+ 1

(10)

where αti is the matching degree of the ith attribute to the
tth rule, xi denotes the input value of the ith, and H

j
i is the

referential point of the ith attribute.
Step 2: The rule activation weight can be calculated using

the following formula:

ωt =
θt
∏M

i=1(α
t
i )

δi∑P
j=1 θj

∏M
i=1(α

j
i)

δi
(11)

where ωi is the activation weight for the tth rule.
Step 3: The activated rules are integrated using the ER

parsing algorithm to produce the result. The detailed process
is shown below:

βk =

∏l
t=1(ωtβk,t + (1 − ωt )

∑N
k=1 βk,t )

µ −
∏L

t=1(1 − ωt )

−

∏L
t=1

(
1 − ωt

∑N
k=1 βk,t

)
µ −

∏L
t=1(1 − ωt )

(12)

µ =

N∑
k=1

L∏
t=1

(
ωtβk,t + (1 − ωt )

N∑
k=1

βk,t

)

− (N − 1)
L∏
t=1

(
1 − ωt

N∑
k=1

βk,t

)
(13)

where βk represents the belief degree of the kth squeezing
degree.
Step 4: The final output of the model is as follows:

Z =

N∑
i=1

u(Dn)βi (14)

where u(Dn) denotes the utility of Dn, and Z represents the
actual output results.

E. THE OPTIMIZATION PROCESS OF THE H-RF-BRB
TUNNEL SQUEEZING PREDICTION MODEL
Due to its advantages of high convergence speed and high
accuracy, the projection covariance matrix adaptive evolution
strategy (P-CMA-ES) algorithm is employed to optimize the

H-RF-BRB tunnel squeezing prediction model [24]. The P-
CMA-ES algorithm generates solutions within the scope of
the allowable region and conforms to the specified equality
constraints. Adherence to these constraints is essential for
maintaining the validity and applicability of the results. The
optimization objectives and constraints for the H-RF-BRB
tunnel squeezing predictionmodel are represented as follows:

Lossmain =
1
N

∑
i

(y′i − yi)2 × Z (15)

Z =

{
0, |y′i − yi| ≤ 1
1, |y′i − yi| > 1

(16)

Losssub =
1
N

∑
i

(y′i − yi)2 (17)

minLoss(θk , βk,t , δi)

s.t.
N∑
k=1

βk,t = 1 t = 1, 2, . . . ,W

0 ≤ θt ≤ 1 t = 1, 2, . . . ,L

0 ≤ δi ≤ 1 i = 1, 2, . . . ,T

0 ≤ βk,t ≤ 1 n = 1, 2, . . . ,N k = 1, 2, . . . ,L

(18)

where yi represents the actual result, y′i represents the
predictive result, θt represents the weight of the tth rule is
between 0 and 1.

The procedure of the P-CMA-ES algorithm is illustrated in
Figure 2, and the detailed steps are outlined below:

FIGURE 2. Optimization process of the P-CMA-ES algorithm.

Step 1: Parameters initialization. The set of parameters
needed to be optimized can be expressed as follows:

�0
= {θ1, . . . , θL , δ1, . . . , δT , β1,1, . . . , βN ,L} (19)

Step 2: Sampling operation. The output of each generation
can be generated through the sampling operation shown by
the following formula:

�
(d+1)
i ∼ ωd

+ ϵdN (0,Cd ), i = 1, 2, . . . ,λ (20)

where �d+1
i denotes the solution of the ith individual in the

d + 1th generation, while ωd represents the mean of the dth
generation search distribution, and ϵd represents the step size
of the dth generation, respectively.
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Step 3: Projection operation. Project the potential solution
into the allowable region to adhere to the specified equality
constraints. This process can be described as follows:

�
(d+1)
i (1 + ne × (k − 1) : ne × k)

= �
(d+1)
i (1 + ne × (k − 1) : ne × k)

− ATe × (Ae × ATe )
−1

× �
(d+1)
i (1 + ne × (k − 1) : ne × k) × Ae (21)

Ae�d
i (1 + ne × (k − 1) : ne × k) = 1 (22)

where equation (22) is the hyperplane expression, ne
represents the number of variables of the equality constraint
in the solution, Ae represents the parameter vector, and k
denotes the number of equality constraints.
Step 4: Update the mean of the next generation. The mean

of the next generation can be calculated by the below formula:

ωd+1
=

τ∑
i=1

hi�
d+1
i:λ (23)

where hi represents the weighting factor. τ represents the
progeny population size.
Step 5: Update the covariance matrix. The covariance

matrix is described as follows:

C (d+1)
= (1 − c1 − c2)Cd

+ c1Pd+1
c (Pd+1

c )T

+ c2
s∑
i=1

hi

(
Bd+1
i:λ − ϕd

ρd

)(
Bd+1
i:λ − ϕd

ρd

)T
(24)

where K d+1
i:λ represents the ith parameter vector of vector λ in

the (d + 1)th generation, c1 and c2 represent the learning rate.

F. THE DEVELOPMENT PROCESS OF THE H-RF-BRB
TUNNEL SQUEEZING PREDICTION MODEL
Based on Section III-A to Section III-E, the modeling process
of the H-RF-BRB tunnel squeezing prediction model is
illustrated in Figure 3. The process is outlined in detail below:

FIGURE 3. Flowchart of the modeling process.

Step 1: Parameters determination.
The main BRB and sub-BRBs utilize the RF algorithm

to select two attributes for each BRB in Section III-B. The

appropriate referential points are determined by using expert
knowledge and the IGR, as proposed in Section III-C.
Step 2:Model construction.
The H-RF-BRB tunnel squeezing prediction model is

constructed using the referential point set. The modeling
process follows the overall structure defined in Section III-A.
The inference process is described in Section III-D.
Step 3:Model optimization.
The P-CMA-ES algorithm is used to improve the accuracy

of the H-RF-BRB tunnel squeezing prediction model. The
details and steps are shown in Section III-E.

IV. CASE STUDY
A. DATASET
Through literature research and data collection, the paper
collected 139 samples about tunnel squeezing [9], [16].
Among the 139 samples, 20% were tunnels with nonsqueez-
ing deformation, 27% were slightly squeezing, 23% were
moderately squeezing, 19% were severely squeezing, and
11% were extremely heavily squeezing. In this paper, four
key attributes were used as input attributes to predict tunnel
squeezing. These attributes are Strength Stress Ratio (SSR),
Rock Mass Quality Index in the BQ system ([BQ]), Tunnel
diameter (D), and Support Stiffness (K). The selection of
these attributes was based on their relevance and impact on
tunnel squeezing. The experimental development environ-
ment includesWindows 11 and a 7th Gen Intel (R) Core (TM)
i7-8750H processor, and the experiment was conducted using
Matlab.

B. H-RF-BRB TUNNEL SQUEEZING PREDICTION MODEL
CONSTRUCTION
First, the H-RF-BRB tunnel squeezing prediction model is
structured into two layers, comprising five belief rule bases.
The first layer comprises a main BRB. The second layer
comprises four sub-BRBs. The specific structure of themodel
is illustrated in Figure 4.

FIGURE 4. The herarchical structure of tunnel squeezing prediction
model.
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TABLE 1. Selected attributes of each BRB model.

TABLE 2. Main BRB referential points for input attributes.

TABLE 3. Sub-BRB 1 referential points for input attributes.

TABLE 4. Sub-BRB 2 referential points for input attributes.

TABLE 5. Sub-BRB 3 referential points for input attributes.

TABLE 6. Sub-BRB 4 referential points for input attributes.

The RF attribute selection method selects two critical
attributes for each BRB, which can effectively reduce the
number of rules. Table 1 shows the selected attributes for each
BRB model. The referential points determined by combining
expert knowledge and the IGR are shown in Tables 2 to 6. Due
to the distinct tasks of each sub-BRB, the referential points for
each sub-BRB are different. In Tables 2 to 6, L, M, H, and VH
represent low, medium, high, and very high, respectively. The
referential points of the output results are shown in Table 7.
In the table, N , SI , M , SE , and E represent no squeezing,
slight squeezing, moderate squeezing, severe squeezing, and
extremely heavy squeezing, respectively.

TABLE 7. Referential points for output results.

TABLE 8. Main BRB optimized parameters.

C. EXPERIMENTAL CASE ANALYSIS
The H-RF-BRB tunnel squeezing prediction model was
optimized using the P-CMA-ES algorithm, as detailed in
Section III-E. The main BRB was used as a representative
example to illustrate the optimization process. The optimized
parameters for the main BRB are shown in Table 8.

To validate the effective improvement of Section III-C
on the accuracy of the main BRB, this paper designed a
comparative experiment using two different sets of referential
points. A is the set of referential points generated by the
method described in Section III-C. The specific points of A
are listed in Table 2. B is the other set of referential points in
the comparative experiment, defined as follows:

B : [0.008, 0.525, 1.043, 1.55], [70, 193.8, 317.6, 441]

Figure 5 shows the misclassification rate of the main
BRB using two different sets of referential points, A and B.
The lower misclassification rate indicates that the referential
points are better at guiding the main BRB to send samples
to the correct sub-BRB, thus improving the overall model
accuracy. In 20 comparative experiments, A consistently
achieved a lower misclassification rate, indicating that the
main BRB using A was able to direct more samples to the
correct sub-BRB. Figure 6 presents the detailed classification
results of themain BRBusingA andB in the 15th experiment.

Each circle in Figure 6 represents a sample. The circles
below the red line indicate samples sent from the main
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FIGURE 5. Misclassification rate obtained by different referential points
on 20 repeats.

FIGURE 6. Classification results of the main BRB based on different
referential points.

BRB to the correct sub-BRB, where they have the potential
to be classified correctly. In contrast, the circles above the
red line represent samples sent to the wrong sub-BRB by
the main BRB, which will never be correctly classified in
that sub-BRB. Figure 6 shows that the main BRB using
A has only two misclassified samples, while the main
BRB using B has five misclassified samples. Combining
the results from Figure 5 and Figure 6, using referential
points determined by combining expert knowledge and IGR
effectively improves the classification accuracy of the main
BRB, thereby enhancing the overall model accuracy.

In this paper, the five-fold cross-validation approach
was employed to assess the H-RF-BRB tunnel squeezing
prediction model performance. First, the original dataset of
139 samples was split into five groups. Second, four of
the five groups were utilized to train the model, while the
remaining group was used to test the model. The training and
testing processes were repeated five times, ensuring that each
sample in the dataset was predicted once. Cross-validation
accuracy was defined as the proportion of correctly classified
samples. The confusion matrix is shown in Figure 7. After

five-fold cross-validation, the model’s average accuracy is
87.77%. This rigorous cross-validation process ensures the
robustness and reliability of the model.

Figure 8 presents the experimental results of the Group
No.1 test set. The accuracy achieved was approximately
92.9%. Notably, the model achieved a prediction accuracy
of 100% for samples categorized as no squeezing, slight
squeezing, and severe squeezing.

D. ABLATION EXPERIMENT
To validate the effectiveness of each module in the pro-
posed H-RF-BRB model for tunnel squeezing prediction,
an ablation experiment was conducted using the same training
and testing datasets. The basic BRB model was established
as the baseline. Subsequently, three modules were added
sequentially: a hierarchical structure module, an attribute
selection module based on RF, and a referential points
determination module based on expert knowledge and the
IGR.

The hierarchical structure module employs a divide-and-
conquer strategy to decompose the complex multi-class
classification task into several simpler binary classification
tasks. By reducing the problem size, this approach simplifies
the model training process, thereby enhancing the overall
efficiency and accuracy of themodel. In the attribute selection
module, the RF algorithm is employed to assess the impor-
tance of attributes and select the two most relevant attributes
for each BRB. This method reduces the number of rules and
avoids performance degradation caused by an excessively
large rule base. The referential points determination module
combines expert knowledge and the IGR to overcome the
limitations of relying on single expert knowledge. Referential
points can be determined more accurately, significantly
enhancing the model’s accuracy.

Subsequently, four models are designed to analyze the
effectiveness of each module. The specific settings of these
models were as follows:

• Model 1: This model served as the baseline, which was
the basic BRB model.

• Model 2: This model added the hierarchical structure
module into Model 1.

• Model 3: This model incorporated the attribute selection
module into Model 2.

• Model 4: This model introduced the referential points
determination module into Model 3. It also represents
the H-RF-BRB tunnel squeezing prediction model
proposed in this paper.

In Figure 9, it is evident that each addedmodule contributes
effectively to model performance. Model 2, compared to
Model 1, achieves higher accuracy and fewer rules by
adding a hierarchical structure module. Model 3, compared
to Model 2, not only achieves higher accuracy but also sig-
nificantly reduces the number of rules by adding the attribute
selection module. Model 4, compared to Model 3, achieves
higher accuracy by adding the referential points selection
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FIGURE 7. Five-fold cross-validation experiment results.

FIGURE 8. Predictive outcomes for Group No.1 of the H-RF-BRB tunnel
squeezing prediction model.

module. Overall, each module added to the model improves
its performance without redundancy or deterioration in model
performance.

E. COMPARISON TEST
To prove the superiority of the proposed H-RF-BRB tunnel
squeezing prediction model, Interval BRB [29], BPNN [30],
BO-XGBoost [31], KNN [32], and RF [33] were selected for

FIGURE 9. Ablation experiment results.

comparison. All models were validated using the five-fold
cross-validation approach to ensure a comprehensive evalu-
ation. The experimental results are presented in Figure 10.
To provide a clearer visual representation of the data in
Figure 10, a bar chart comparing the average accuracy of
each model based on five-fold cross-validation is shown in
Figure 11.
As illustrated in Figure 11, the average accuracy of the

H-RF-BRB tunnel squeezing prediction model is 87.77%,
which is significantly higher than that of the other models.
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FIGURE 10. Comparative results of different models.

FIGURE 11. Model performance comparison.

This indicates that the H-RF-BRB tunnel squeezing predic-
tion model has a significant advantage. In contrast, the KNN
model performs poorly. The average accuracy of the KNN
model is only 46.76%. Although these models show some
predictive capability, none match the accuracy of the H-RF-
BRB tunnel squeezing prediction model. This indicates its
superior performance in predicting tunnel squeezing.

Although the H-RF-BRB tunnel squeezing model
has demonstrated excellent performance in experiments,

deploying it in the field may encounter issues such as
inaccurate data collection, delays in real-time predictions,
and incompatibility with existing construction monitoring
systems. To address these challenges, we recommend
establishing a data validation mechanism to ensure data
accuracy, developing efficient data processing algorithms
to enable rapid response to real-time data, and using
standardized data exchange formats and interface protocols
to achieve effective integration with current construction
monitoring systems.

Furthermore, when developing the tunnel squeezing pre-
diction model, it is essential to analyze its complexity to
ensure efficiency and practicality. This paper compares the
complexity of six different models used in the experiment.
The complexity analysis focuses on two main aspects: train-
ing complexity and spatial complexity. Training complexity
is defined as a measure of the algorithm’s performance
speed relative to the input scale. It evaluates how quickly
an algorithm can process data and converge to an optimal
solution as the input data size increases. The memory needed
to perform a machine learning algorithm is referred to as
spatial complexity. The analysis results are shown in Table 9.
In this table, d represents the number of parameters that
need to be optimized, λ represents the population size, and T
represents the number of iterations. a signifies the number of
training samples in the experiment. rule denotes the number
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TABLE 9. Computation complexity analysis.

of rules in the model. q denotes the number of nodes in the
decision tree for models that use a decision tree. p indicates
the data dimension. s represents the quantity of decision trees
used in the RF. k refers to the quantity of nearest neighbors.

V. CONCLUSION
In this paper, a H-RF-BRB tunnel squeezing predictionmodel
is proposed. One significant problem addressed by the model
is the combinatorial rule explosion, which is effectively
simplified through a hierarchical structure and RF attribute
selection method. Another problem is that to overcome the
limitations of single expert knowledge. By integrating expert
knowledge with the IGR to determine referential points, the
main BRB can send samples to the correct sub-BRB, thereby
improving the accuracy of the tunnel squeezing prediction
model. The five fold cross validation experiment with other
models further verify the superiority of the model.

The H-RF-BRB tunnel squeezing prediction model dis-
cussed in this paper demonstrates exceptional performance.
It benefits from the integration of expert knowledge and
quantitative information achieving superior results with small
sample datasets. Therefore, this method can be widely used
in fields with small sample datasets. In the future, we will
also explore the potential applications of this model in other
fields. As the current dataset we used is small-scale, we plan
to collect more tunnel squeezing samples to train the model
to improve its accuracy.
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