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ABSTRACT Seismic monitoring has been instrumental in various domains such as natural earthquake
early warning, mineral mining safety assessment, and hydraulic fracturing impact evaluation. However,
the monitoring data often exhibit low signal-to-noise ratio (SNR) and large volume. Developing an effi-
cient, high-precision, and universally applicable seismic waveform automatic classification network model
becomes significant and practical. We propose a physical interpretable time-frequency deep convolutional
recurrent neural network (TF-DCRNN) model which consists of an integration of a time-frequency convo-
lutional (TFconv) layer and a convolutional recurrent neural network (CRNN). Subsequently, we evaluate
the classification performance by comparing five network models, including convolutional neural network
(CNN) and long short-term memory (LSTM), using Ricker wavelet datasets with varying SNR levels
(−15 ∼ 0 dB). Our findings verify the superiority of the TF-DCRNN model in the classification of strong
interference environment from both numerical and physical simulation. Moreover, integrating multiple
network models or incorporating a TFconv layer can moderately enhance the classification performance,
which provides the direction for network model optimization.

INDEX TERMS TFconv layer, TF-DCRNN, Ricker wavelet, waveform classification, physical simulation.

I. INTRODUCTION
Seismic monitoring is fundamental activity in the domains of
natural earthquake early warning, mining safety assessment,
and hydraulic fracturing monitoring [1], [2]. The huge num-
ber and variable quality of seismic monitoring data makes
it a challenging task to quickly and effectively differenti-
ate seismic signals from other interference signals. Seismic
waveform classification is currently done using a range of
automatic or semi-automatic methods. The most common
ones are the short term averaging / long term averaging
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algorithm (STA/LTA) [4], the Akaike Information Criterion
method (AIC) [5] and the waveform autocorrelation and
cross-correlation methods based on waveform similarity [6],
etc. These methods have some limitations in terms of recog-
nition accuracy and timeliness, and the quality of the data
greatly influences how well they work.

In recent years, deep learning [7], [8] based on feature
learning andmatching, such as convolutional neural networks
(CNNs) [9], recurrent neural networks (RNNs) [10] and gen-
erative adversarial networks (GANs) [11], have been widely
applied in the data processing field of seismic monitoring
with the rapid development of big data and artificial intel-
ligence. Perol et al. proposed ConvNetQuake model based
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on convolutional neural network, which realized the classi-
fication of a single seismic waveform, with several orders
of magnitude higher efficiency than traditional methods, and
it was successfully applied to induced seismic monitoring
in Oklahoma, USA [12]. Ross et al. used approximatively
300,000 seismic records in Southern California to build a
data set and trained them with CNN model. The obtained
model has strong generalization ability and has been effec-
tively tested in Kumamoto region of Japan [13]. Zhao et al.
realized automatic classification of seismic waveforms with
a 95% accuracy based on deep convolutional neural network
[14]. Zheng et al. applied deep recurrent neural networks to
the identification and extraction of microseismic or acoustic
emission events, and studied the accuracy and robustness of
the method when the SNR was higher than −5 dB [15].
Li et al. used a generative adversarial network to learn the
characteristics of seismic P-waves based on 300,000 seismic
data set and the experimental results showed that the network
model could identify 99.2% of seismic P-waves and 98.4%
of noise [16].

The traditional deep learning methods, such as CNNs
and RNNs, are typical black box models, although they
have strong feature extraction ability and high efficiency
and have been successfully applied in seismic data classi-
fication [17]. They are uninterpretable and difficult to find
the logical basis for feature extraction and classification,
which reduce the credibility of results. Seismic signals are
complex waveforms, which makes it extremely challenging
to extract feature variables that can fully represent seismic
waveforms. It is worth noting that seismic signals pos-
sess unique time and frequency domain features. And these
features can be extracted by applying the time-frequency
transformation algorithm to convert 1D time domain seis-
mic signals into 2D time-frequency spectral data. The 2D
time-frequency spectral identification is more suitable for
the feature extraction of seismic signals and has the physi-
cal significance of time-frequency features compared to the
direct identification of seismic signals in the 1D time domain.
Therefore, many researchers have integrated time-frequency
transformation techniques into deep learning network models
to boost interpretability and enhance network performance.
Zhang et al. proposed CWT-CNN signal classifier by combin-
ing continuous wavelet transform (CWT) and CNN, and the
experimental results show that the classification performance
of CWT-CNN is significantly better than that of basic depth
feedforward neural network through synthetic microseismic
data set and field microseismic data set (SNR in −5∼5 dB)
[18]. Dokht et al. integrated deep convolutional neural net-
work and wavelet transform for model training aiming at
incomplete seismic datasets with low SNR, and verified the
network performance with 99% recognition accuracy rate
based on the data set of more than 4900 earthquakes recorded
in western Canada [19]. Bi et al. proposed an interpretable
time-frequency convolutional neural network (XTF-CNN)
that allows the model to capture seismic signal characteristics

from both time and frequency features. Meanwhile, they also
evaluated network performance tests using low SNR data and
obtained better experimental results [20]. Not only in seis-
mic monitoring, but also in other fields such as mechanical
system fault detection, sound detection and so on, there are
a lot of relevant studies. Li et al. proposed a wavelet-driven
WaveletKernelNet (WKN), where the network is designed
with a physically meaningful continuous wavelet convolution
(CWConv) layer to replace the first convolutional layer of
the standard CNN, and the results of mechanical diagnostic
experiments showed that the WKN’s accuracy is improved
by more than 10% over the CNN [21]. Wei et al. con-
structed a time-frequency convolutional neural network based
on Hilbert-Huang transform and applied it to the automatic
classification of single-channel EEG sleep stage signals with
an average accuracy of 84.5% [22]. Chen et al. [23] proposed
a class of explainable time-frequency network (TFN) tak-
ing into account three typical time-frequency transformation
methods of short time Fourier transform (STFT), chirplet
transform (CT) [24] and wavelet transform (WT) to develop
the time-frequency convolutional layer and proved the net-
work effectiveness through three mechanical fault diagnosis
experiments. In addition, many researchers have carried out
multi-network fusion research in order to improve network
performance. Lim et al. combined the advantages of CNNs
and RNNs and proposed a convolutional recurrent neural
network, which won the first place in the Task 2 challenge
of DCASE2017 and verified the effectiveness of the method
[25]. Liu et al. designed the convolution recurrent neural
network blind equalizer (CRNNBE) by integrating CNN and
RNN. Simulation results showed that CRNNBE has faster
convergence and higher accuracy compared with the method
based on RNNs or CNNs [26]. Zhang et al. proposed a multi-
scale time-frequency convolutional recurrent neural network
(MTF-CRNN) for sound event detection, and verified the
network with strongly competitive in the DCASE2017 Task2
dataset and the DCASE2019 Task3 dataset (the SNR of data
is between −6 and 6 dB) [27]. Previous studies have shown
that the accuracy and reliability of signal classification can be
improved by integrating multi-network model or embedding
signal time-frequency characteristic information.

In summary, deep learning is widely used in automatic
classification of seismic signals and related fields. However,
previous studies have mostly focused on seismic data with
high SNR (>−5 dB), and the measured seismic signals are
often severely affected by interference, resulting in low SNR
[28], [29]. There is an urgent need to develop an efficient,
high-precision, and universally applicable network model,
and discussing the effectiveness of the model classification
in the context of low SNR data has practical significance.

STFT and WT are the most prevalently utilized
time-frequency analysis approaches. STFT boasts high
processing efficiency and acquires time-frequency spectra
with uniform time-frequency resolution. WT features time-
frequency windows of varying sizes at different times and
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frequencies. However, subject to the constraints of the prin-
ciple of uncertainty, the time resolution and the frequency
resolution cannot be optimally utilized in both directions.
Moreover, WT has a lower processing efficiency and cannot
obtain more information compared to STFT. Seismic signal
is a type of signal characterized by a continuous frequency
band, and the frequency range is distributed from a few Hz to
several thousand Hz (Requiring high resolution at both low
and high frequencies over a wide frequency range). At the
same time, seismic monitoring is a long-term monitoring
process that generates large amounts of data in the time
domain (Requiring algorithms with high efficiency). The
fundamental objective of this study is to screen the data and
improve the efficiency of data processing. Considering the
above influencing factors, the application of STFT is more
appropriate for the processing of seismic signals.

We integrate CRNN and STFT algorithms to propose
a TF-DCRNN architecture for seismic signal classification
in strong interference environments. We simulate seismic
signals using Ricker wavelet to establish seismic datasets
affected by different random noise interferences. Then, five
network models, including CNN, LSTM, CRNN, TF-CNN
and TF-LSTM, are used to compare the classification effect.
The reliability of TF-DCRNN is further verified by physical
simulation experiments of seismic monitoring in order to pro-
vide an efficient and reliable automatic classification model
architecture of seismic signals.

The main contributions of this study are summarized as
follows:

1) A novel TF-DCRNN architecture, which exhibits phys-
ical interpretability and is specifically designed for
efficient automatic classification of time series data,
is presented.

2) The classification effect of 6 kinds of network models
under different intensity noise interference is compared
and analyzed.

3) The reliability of TF-DCRNN is verified from both
numerical and physical simulation.

II. PRELIMINARY
A. RICKER WAVELET
Seismic wavelet is a signal with limited energy, short duration
and fixed time-frequency features. It can also be understood
as the real waveform record that is excited by the source and
received by the detector during the actual data collection.
Presently, geophysicists extensively agree that the Ricker
wavelet exhibits a high degree of similarity to the seismic
wavelet, rendering it a suitable and prevalent choice for use
as a seismic simulation source function.

The mathematical expressions of the time domain
and frequency domain of the Ricker wavelet are shown
in (1) ∼ (2).

r (t) =

(
1 − 2π2f 2m t

2
)

· exp
[
− (π fmt)2

]
. (1)

R (f ) =

[
2f 2/

(√
π f 2m

)]
· exp

[
− (f /fm)2

]
. (2)

where r (t) is the time domain, R (f ) is the frequency domain,
t is the time, f is the frequency, fm is the signal main fre-
quency.

The Ricker wavelet, characterized by its single peak and
brief temporal extent, can be divided into minimum phase
wavelet (wavelet energy is concentrated in the front), mixed
phase wavelet (wavelet energy is concentrated in the middle),
maximum phase wavelet (wavelet energy is concentrated
in the tail) and zero phase wavelet (a special mixed phase
wavelet, symmetric at the time origin, phase spectrum is
zero) according to the phase of the wavelet. The zero-phase
Ricker wavelet is frequently employed in seismic numerical
simulations. TABLE 1 shows the time-domain waveform and
spectral characteristics of a zero-phase Ricker wavelet with a
main frequency of 60 Hz.

FIGURE 1. Time domain waveform and frequency spectrum of 60Hz
Ricker wavelet [30]. (a) Time domain waveform. (b) Frequency spectrum.

It is readily observable that the wavelet main frequency,
maximum peak amplitude, and wavelet width are the key
feature variables representing seismic wavelet. For instance,
in Fig. 1, the main frequency of the Ricker wavelet is 60 Hz,
the maximum peak amplitude is 1, and the wavelet width is
0.1 s. Nevertheless, the seismic wavelet is a kind of complex
waveform, and it is extremely challenging to extract the
feature variables that can fully represent the seismic wavelet
waveform. This is mainly because seismic wavelets possess
both time and frequency domain features, and also exhibit
the features of amplitude and frequency decay in the time
domain. Utilizing the three feature variables of ‘‘wavelet
main frequency, maximum peak amplitude, and wavelet
width’’ can generally describe the wavelet waveforms, but it
is not feasible to finely compound the wavelets.

B. TIME-FREQUENCY TRANSFORM AND TFconv LAYER
Most signals in nature are non-stationary, such as seismic
signals, which are typical non-stationary signals. Fourier
transform (FT) has a unique advantage in analyzing stationary
signals. However, FT can only transform the time domain
signal to the frequency domain as a whole for non-stationary
signals. The transformed signal acquires frequency resolution
but lacks time resolution, thus failing to accurately repre-
sent the signal’s temporal features at different frequencies.
Therefore, it becomes essential to conduct a comprehensive
time-frequency analysis of the signals to effectively capture
the time-frequency features of non-stationary signals.

The time-frequency analysis methods for non-stationary
signals mainly include STFT, WT, etc. STFT is one of
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the most commonly used time-frequency analysis methods,
as shown in (3), where a function is multiplied by a window
function and then a 1D Fourier transform is performed, and
a series of Fourier transform results are obtained by slid-
ing the window function, which are lined up vertically to
obtain a 2D spectrum. WT is actually still a sliding window
STFT, except that the window size is taken to be shorter
at high frequencies and longer at low frequencies, making
high frequencies more accurate in the time domain and low
frequencies more accurate in the frequency domain. We can’t
measure both the frequency and time domains of a signal,
either the frequency domain is inaccurate or the time domain
is inaccurate, both of which are constrained by the principle
of inaccuracy. Thus, WT doesn’t really get more accurate
information than Fourier.

STFT(t, ω) =

∫
∞

−∞

h(τ )g(τ − t)e−iωτdτ . (3)

where STFT(t, ω) can be regarded as the spectrum at time t ,
h(t) is the analyzed time domain signal, g(t) is the window
function and e−iωt is the trigonometric basis function.
Fig.2 illustrates the time-frequency windows of a

time-domain signal obtained through FT, STFT, and WT,
respectively. In this representation, each small square sym-
bolizes a distinct time-frequencywindow, with the side length
along the time axis indicating time resolution and the side
length along the frequency axis denoting frequency reso-
lution. The time domain signal lack frequency resolution
and the frequency domain signal derived through FT can
offer superior frequency resolution but lacks time resolution.
STFT provides a certain level of resolution in both time and
frequency domains, with consistent time-frequency resolu-
tion across the entire spectrum. WT employs time-frequency
windows of varying sizes at different time and frequency
points.

FIGURE 2. Time-frequency resolution of FT, STFT and WT [31], [32].
(a) Time domain signal. (b) FT. (c) STFT. (d) WT.

As is well known, the feature extraction effect of the
convolutional layer has a great influence on the result of

the whole model. In the CNNs model, a set of time domain
convolution between the input signal and the convolution ker-
nel of randomly initialized weights can automatically extract
high-dimensional features from the original sample and effi-
ciently complete classification and prediction. However, the
convolution operation cannot accurately extract the key influ-
ential components of the signal because the decision logic
is not clear enough and the feature extraction does not have
practical physical significance. While the time-frequency
transformation method allows for leveraging time-frequency
information for interpreting physical signals, it may face limi-
tations in actively filtering and adaptively extracting essential
time-frequency features.

The TFconv layer represents a fusion of the strengths
of CNNs and time-frequency transform methods, where
the time-frequency transform is integrated within the con-
volutional layer. Each convolution kernel comprises two
components during the execution of the TFconv layer: a
real-part convolution kernel and an imaginary part convolu-
tion kernel. These components perform convolutions on the
input sample along the length dimension, extracting real-part
and imaginary part features, respectively. Subsequently, the
extracted real and imaginary features are combined through
modulation to generate the feature map, which serves as the
output of the TFconv layer, as depicted in (4).

yreal = ψreal ∗ x
yimag = ψimag ∗ x

y =

√
y2real + y2imag

ψreal, ψimag ∈ R

(4)

where x is the input signal, y is the final output data (instan-
taneous frequency feature distribution). ψreal and ψimag are
the real kernel and imaginary kernel, respectively, and the
internal kernel function is equivalent to the inner product
window function in the time-frequency transform. yreal and
yimag are the feature maps of the real and imaginary parts,
respectively.

C. CONVOLUTIONAL RECURRENT NEURAL NETWORKS
CRNNs represent sophisticated deep learning architecture
that combine components fromCNNs and RNNs. This fusion
equips the model with the collective strengths of both CNNs
and RNNs. CNNs, a type of feedforward neural network,
consist of layers such as convolutional layer, pooling layer,
and fully connected layer, etc. CNNs excel in extracting
features from input data through the stacking of convolutional
and pooling layers, with the fully connected layer facilitating
tasks like classification and prediction, particularly in image
processing applications. Notably, CNNs typically possess
fewer parameters compared to traditional artificial neural
networks, and increasing the network’s depth can enhance
its feature extraction capabilities. RNNs set themselves apart
from traditional neural networks with their recurrent cell
structure that includes memory capabilities and parameter
sharing. This design enables RNNs to store past information
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in an internal state and utilize it for current tasks, provid-
ing a significant advantage in processing time series data.
Traditional RNNs often only consider the most recent input
data state, leading to challenges such as gradient vanishing
or explosion. Specialized RNN variants like LSTMs address
this issue by selectively retaining or forgetting information
through the introduction of cell states, enhancing the struc-
tural stability of RNNs when handling long sequences and
making LSTMs a widely adopted technique in the RNN
domain.

CRNNs leverage the strengths of both CNNs and RNNs
architectures. In this model, the convolutional layer extracts
local features that are then integrated and memorized by
the recurrent layer. This integration allows weight sharing
among convolutional kernels, reducing the need for exten-
sive hyperparameter training and mitigating overfitting risks.
Additionally, CRNNs can process data of various dimensions,
effectively capturing the multi-dimensional features of input
data and expanding the network’s applicability. Fig.3 offers a
succinct overview of a typical CRNN structure [33], demon-
strating the incorporation of LSTM modules into the CNN
architecture, with the flexibility to use single or multiple
LSTM units.

FIGURE 3. The overall structure of CRNN.

III. METHODOLOGY
In traditional networks, including CNNs, RNNs, CRNNs, and
others, direct recognition of 1D time series often exhibits
inadequate feature extraction, which is compounded by a
lack of physical meaning in the extraction process. Such a
deficiency can give rise to less-than-optimal performance,
particularly in circumstances where time series signals are
severely disturbed. CRNN integrates the advantages of CNN

and RNN and possesses good universality, nonetheless, it still
suffers from the aforementioned problems.

Seismic wavelet constitutes a distinctive type of time
series featuring both time and frequency domain features.
Capitalizing on this physical information, a TFconv layer
is incorporated into the network architecture. This incor-
poration converts 1D time-domain seismic signals into 2D
time-frequency spectral data. Subsequently, a CRNN is uti-
lized to conduct in-depth extraction and classification of the
time-frequency data, thereby improving the overall perfor-
mance of the network.

This study proposes a TF-DCRNN architecture for the fast
automatic classification of seismic signals. TF-DCRNN inte-
grates the CRNN and TFconv layer. Since CNN and LSTM
network models have many variants (e.g., GRU, BLSTM,
etc.), we consider TF-DCRNN model construction using
standard CNN and LSTM networks. Therefore, TF-DCRNN
is mainly composed of input layer, TFconv layer, standard
convolutional layer, pooling layer, flatten layer, LSTM layer,
fully connected layer and output layer. The basic network
architecture is shown in Fig.4, and the network design follows
the following strategies:

1) The input layer is 1D time series data with an unfixed
length, which can be used for multi-channel data syn-
chronization input.

2) The TFconv layer is directly connected to the input
layer. When considering the existence of seismic mon-
itoring with huge amount of raw data, wide signal
bandwidth and high timeliness, it is obvious that it is
more suitable to construct TFconv using STFT than
other time-frequency transform algorithms. Therefore,
we constructed a TFconv layer using STFT. 2D data
with time-frequency characteristics is obtained by per-
forming time-frequency convolution on the input time
series signal.

3) The standard convolutional layer is a 2D convolution
kernel. Convolutional kernels with larger scales have
larger local receptive fields, and stacking multiple lay-
ers of convolution kernels can improve the non-linear
processing ability. Therefore, we can constructmultiple
standard convolutional layers for signal feature depth
extraction, mapping time-frequency feature maps to
hidden layer feature spaces. In this study, we set three
layers of convolution kernels with sizes of 5 × 5, 4 ×

4 and 3 × 3, with 10 kernels per layer.
4) The pooling layer can reduce the feature dimension

and computational complexity. Seismic signal features
occupy a lower proportion comparing with noise data,
so it is more appropriate to use maximum pooling
for feature extraction. We constructed four maximum
pooling layers with sizes of 5 × 5, 4 × 4, 3 × 3 and
2 × 2 to further extract signal features.

5) The flatten layer is responsible for flattening the 2D
feature data into 1D feature data. In this study, a TFconv
layer is employed to transform 1D data into a 2D data,
thereby facilitating the extraction of features from the
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2D data. Consequently, the flatten layer plays a pivotal
role and is deemed indispensable.

6) The LSTM layer receives and outputs 1D data. There
can be multiple LSTM layers, but the more the number,
the higher the computational complexity. According
to previous experience [27], [33], as shown in Fig.4,
we set up 2 long short-term memory layers.

7) The fully connected layer introduces the full con-
nection operation at the last layer of the network to
transform the feature mapping extracted from the upper
layer into the final classification.

8) The output layer is responsible for the output of cate-
gory labels. This paper set up four categories of labels,
‘‘0’’, ‘‘1’’, ‘‘2’’ and ‘‘3’’ as shown in Fig.4.

In addition, the TF-DCRNN also includes four BN lay-
ers, three ReLU layers and three dropout layers and a
softmax layer, for a total of twenty-five layers. It is partic-
ularly noteworthy that the TF-DCRNN architecture proposed
in this paper boasts significant flexibility. The number of
convolutional layer, pooling layer, or LSTM layer can be
appropriately augmented to facilitate deeper feature extrac-
tion. Nonetheless, it is not advisable to simply increase the
number of network layers, as this would elevate the model’s
computational complexity and heighten the risk of overfit-
ting. The design of the network layer count is grounded in
the outcomes of extensive prior research in the field.

FIGURE 4. The architecture of TF-DCRNN.

IV. DATASET AND COMPARISON MODELS
A. DATASET CONSTRUCTION
In seismic exploration, the high-frequency component of
the broad-frequency spike pulse generated by the source is
significantly attenuated due to formation absorption, while
the medium to low-frequency components are preserved.
As the reception distance increases, the frequency component
decreases. The seismic signal is inherently unsteady, repre-
senting a minute fraction time of the overall lengthy time
series, and is frequently plagued by random noise or noise
from other frequency bands, resulting in a low SNR in the

collected data. Fig.5 illustrates the time-domain waveforms
of 60Hz Ricker wavelet under different SNR.

Previous studies have mostly focused on seismic data
with high SNR (>−5 dB), and actual seismic signals are
often severely affected by interference, resulting in low SNR.
Therefore, datasets comprising Ricker wavelet data and pure
noise data are generated using Ricker wavelets at different
SNR to assess the signal classification performance of the
TF-DCRNN network under diverse noise interferences. The
dataset constructed in this study includes four types of SNR
and each dataset consists of four categories:

1) Category ‘‘1’’: including pure and noise-containing
signals, wavelets main frequency 1∼60 Hz, maximum
peak amplitude 0.1∼1, wavelets width 0.05∼0.2s.

2) Category ‘‘2’’: including pure and noise-containing sig-
nals, wavelets main frequency 61∼150 Hz, maximum
peak amplitude 0.1∼1, wavelets width 0.05∼0.2s.

3) Category ‘‘3’’: including pure and noise-containing sig-
nals, wavelets main frequency 151∼250 Hz, maximum
peak amplitude 0.1∼1, wavelets width 0.05∼0.2s.

4) Category ‘‘0’’: pure random noise, no fixed main fre-
quency, amplitude −0.5∼0.5.

Each type of SNR dataset comprises 80,000 samples, with
each label type containing 20,000 samples. Half of the signals
are noise-free within categories ‘‘1’’, ‘‘2’’, and ‘‘3’’, while
the other half are signals corrupted by varying levels of
random noise (with SNR values of 0 dB, −5 dB, −10 dB,
and −15 dB).

FIGURE 5. The time-domain waveform of 60Hz Ricker wavelet under
different SNR. (a) Noiseless signal. (b) SNR = 0 dB. (c) SNR = −5 dB.
(c) SNR = −10 dB. (d) SNR = −15 dB.

B. COMPARISON MODELS
In order to conduct a comprehensive evaluation of the net-
work’s classification performance, this study introduces five
comparative network models with the main architecture
shown in Fig. 6, and the networks design is as follows:

155210 VOLUME 12, 2024



F. Li et al.: Time-Frequency Depth Convolutional Recurrent Network

FIGURE 6. The main architecture of five comparative network models. (a) CNN. (b) LSTM. (c) CRNN. (d) TF-CNN.
(e) TF-LSTM.

TABLE 1. The mean and variance of classification accuracy of different network models.

1) CNN, a traditional 1D CNN, has 14 network layers,
including 2 convolutional layers and 3 maximum pool-
ing layers. The number of convolution kernels in each
convolutional layer is 10, and the size of convolution
kernels is 5 × 1 and 4 × 1, respectively.

2) LSTM, the number of network layers is 10, includ-
ing 2 LSTM layers.

3) CRNN, a combination of CNN and LSTM, has 18 net-
work layers, including 2 convolutional layers, 3 maxi-
mum pooling layers and 2 LSTM layers.

4) TF-CNN, which adds TFconv layer on the basis of
traditional CNN, has 16 network layers, including
2 convolutional layers and 3 maximum pooling layers.
Since the TFconv layer converts 1D time series data
into 2D time-frequency feature maps, the convolution
kernels used in the later convolution layers are 2D, with
sizes of 4 × 4 and 3 × 3, respectively, and the number
of convolution kernels in each convolution layer is 10.

5) TF-LSTM, which adds TFconv layer on the basis
of traditional LSTM, has 12 network layers, includ-
ing 2 LSTM layers and 1 maximum pooling layer.

V. RESULT OF CLARIFICATION
As we all know, the selection of hyperparameters affects
the training speed, convergence, generalization ability and
other aspects of the model, e.g., the learning rate, the number
of iterations, and the regularization parameter are common
hyperparameters. The selection of hyperparameters is usually
a trial-and-error process, which needs to be adjusted based
on experience and relevant data features. We have set the
main common hyperparameters of all network models as
follows in the previous period through a large number of
tests, when we conducted the comparison experiments of this
paper: The maximum number of cycles is 30, the MiniBatch-
Size of data used in each iteration is 256, and the initial
learning rate InitialLearnRate is 0.001. The optimization
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algorithm adopted random optimization with high computa-
tional efficiency ADAM [34]. And the proportion of training
set, validation set and test set data is 60%, 20% and 20%,
respectively.

The final classification result was determined by averaging
the results from 50 experimental groups during the exper-
iment. Then this study compared the average classification
accuracy and variance across different networks, as pre-
sented in Table 1. It reveals that CNN outperforms LSTM
in terms of classification effectiveness, and integrating CNN
with LSTM or adding a TF-conv layer can improve net-
work classification performance. Among the various network
models examined, TF-DCRNN demonstrates superior clas-
sification effectiveness, exhibiting high accuracy and robust
stability. Specifically, all network models achieve classifica-
tion performance exceeding 90% with higher quality data
(SNR ≥ −5 dB). TF-DCRNN achieves classification accu-
racies of 98.14% and 97.15% respectively for SNR values
of 0 dB and −5 dB. However, the classification perfor-
mance of all network models decreases as the SNR decreases.
When SNR = −10 dB, only CRNN and TF-DCRNN achieve
classification accuracy greater than 90%. When the data is
disturbed by strong noise (SNR = −15 dB), the classifi-
cation performance of traditional CNN and LSTM models
deteriorates. The accuracy drops to 85.40% for CNN and
75.73% for LSTM, respectively, and the network stability
decreases (the variance of LSTM exceeds 1). In contrast, the
TF-DCRNN model can still maintain a better classification
effect, with an accuracy of 90.26% and a variance of less than
0.1. Then, we calculated the mean and standard deviation of
the model accuracy under different SNRs based on the data
in the table, and plotted the box plots (Fig. 7) in order to fur-
ther demonstrate the performance of the different models for
the comprehensive classification of the data under different
SNRs. The green line in the figure is the median value of
accuracy, and the box represents the centralized location of
the data, which contains 50% of the intermediate data, and its
upper and lower boundaries represent 25% of the high-value
data and 25% of the low-value data, respectively. According
to the box plot characteristics of different models, we further
validate the classification performance of the TF-DCRNN
model.

The convergence curve during a training process at
SNR = −10 dB is presented in Fig. 8. The results dis-
tinctly indicate that the TF-DCRNN model exhibits superior
convergence characteristics compared to traditional models.
Notably, the TF-DCRNNmodel demonstrates the fastest rate
of loss value reduction, achieving the smallest loss value with
a stable curve that converges close to the optimal point within
100 iterations. Conversely, the traditional CNN and LSTM
models show lower convergence efficiency with unstable
curves even after 1,000 iterations, and LSTMmodel is easy to
fall into local optimization. The comparison reveals that the
convergence performance of the TF-CNN model surpasses
that of the CNN model. Similarly, the TF-LSTM model
exhibits superior convergence compared to the LSTMmodel,

and the CRNN model outperforms both the CNN and LSTM
models in terms of convergence. Therefore, the network per-
formance can be enhanced through the following approaches:
1) integrating TF-conv layers into conventional networks like
TF-CNN, TF-LSTM, etc.; 2) combining multiple network
models, such as the CRNN formed by combining CNN and
LSTM.

FIGURE 7. Comparison of mean accuracy and standard deviation of six
models at different SNRs.

FIGURE 8. The convergence curves of different network models.

In addition, we used confusion matrixes to evaluate the
classification performance of the models. The confusion
matrixes can visually examine the classification of the test
set, with values on the diagonal representing the number of
correct classifications of the model for that category, and
non diagonal elements representing the number of incorrect
classifications for that category. At the same time, we calcu-
lated the Precision, Recall and extended F1 scores of each
category in order to further demonstrate the effectiveness,
as depicted in (4) ∼ (6). It is worth noting that the larger the
values of parameters Precision, Recall and F1, the better the
performance of the network model.

Precision =
TPi

TPi + FPi
. (5)

Recall =
TPi

TPi + FNi
. (6)
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F1 =
2 × Precision × Recall
Precision + Recall

. (7)

where TPi, FPi, and FNi are the number of True Posi-
tive, False Positive, and False Negative for category Classi,
respectively.

FIGURE 9. Classification effect when SNR = 0 dB. (a) CNN. (b) LSTM.
(c) CRNN. (d) TF-CNN. (e) TF-LSTM. (f) TF-DCRNN.

Fig. 9 to Fig. 12 present the classification perfor-
mance of all network models across different SNR, where
the 4×4 grid data is the confusion matrix in each sub-figure,
the bottom row of data represents the model’s Precision in the
corresponding category, and the right-most column of data
represents the model’s Recall in the corresponding category.
Fig. 12 shows the comparison of the F1 scores comparison
of the different network models under the same test set. The
analysis of the figures reveals that all network models exhibit
a commendable classification performance concerning ran-
dom noise, particularly when the data SNR equals or exceeds
−5 dB, enabling precise identification of random noise. And
there is a slight decline in recognition accuracy as the noise
level escalates, with most models maintaining a rate of 99%.
Nevertheless, conventional CNN and LSTM models demon-
strate subpar classification efficacy when confronted with
noise from neighboring frequency bands. Even at an SNR of
−5 dB or higher, the error rate in identification surpasses 10%
for the traditional LSTM model, escalating to over 30% at an
SNR of −10 dB or lower. It is evident that the F1 score for
the LSTM model is the lowest when compared to all other
models under evaluation. This score notably diminishes as
the level of noise escalates. Specifically, the F1 score drops

FIGURE 10. Classification effect when SNR = −5 dB. (a) CNN. (b) LSTM.
(c) CRNN. (d) TF-CNN. (e) TF-LSTM. (f) TF-DCRNN.

FIGURE 11. Classification effect when SNR = −10 dB. (a) CNN. (b) LSTM.
(c) CRNN. (d) TF-CNN. (e) TF-LSTM. (f) TF-DCRNN.

to only 0.81 when the SNR is at −15 dB. In contrast to
LSTM, the CNN model demonstrates superior classification
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FIGURE 12. Classification effect when SNR = −15 dB. (a) CNN. (b) LSTM.
(c) CRNN. (d) TF-CNN. (e) TF-LSTM. (f) TF-DCRNN.

efficacy in handling interference from adjacent frequency
bands, with recognition error rates ranging from 10% to
30% and the F1 score approximately ranging from 0.88 to
0.89 under substantial random noise interference (SNR <

−5 dB). The CRNN model exhibits enhanced classification
performance comparing to the traditional CNN and LSTM
model, which showcases a reduction of approximately 5%
and 15% in error rates for adjacent frequency band identi-
fication and the F1 score approximately rangs from 0.89 to
0.92 at SNRs of −10 dB or −15 dB. The incorporation of the
TF-convolutional layer enhances the network model’s ability
to recognize interference from adjacent frequency bands,
resulting in a reduction of 5% to 10% in recognition error
rates. Furthermore, this enhancement is clearly evidenced by
the F1 score, which demonstrates a marked improvement
for the model equipped with the TF-convolutional layer,
as compared to the network model without this layer. The
enhancement in F1 score varies between 0.01 and 0.05. TF-
DCRNN model has the best classification effect compared
with CNN, LSTM and other comparison models, especially
when the data is interfered by adjacent frequency bands, the
model can still maintain a good recognition effect. Notably,
the TF-DCRNN model achieves an error rate of approxi-
mately 5% for noise recognition in adjacent frequency bands,
with the F1 score approximately ranging from 0.97 to 0.98,
when SNR is equal to or greater than −5 dB. At SNRs of
−10 dB or −15 dB, the error rate for noise recognition in

adjacent frequency bands reaches around 15%, the F1 score
approximately rangs from 0.90 to 0.94, thereby confirming
the reliability of the TF-DCRNN model proposed in this
study.

FIGURE 13. F1 scores comparison of the different network models under
the same test set.

VI. EXPERIMENT
In order to further verify the reliability of the classification
effect of TF-DCRNN model, we carried out a physical simu-
lation experiment of source monitoring by using small-scale
explosion source. The experimental model is shown in
Fig. 14. We used a plastic pipe with a length of 1.5 m
and a diameter of 18 cm to simulate the wellbore. Then
24 high-precision single-component (vertical component)
seismometers were set up on the surface to receive seismic
signals based on the layout of the star observation system, and
the measuring stations were spaced 10∼20 m apart. During
the experiment, 50 focal points were positioned at the shaft’s
base, with continuous injection of 80 ◦C high-temperature
water to induce focal point rupture through heat, facilitating
seismic signal acquisition.

FIGURE 14. Physical model. (a) Seismic source monitoring of physical
simulation. (b) Observation system deployment.

The experimental monitoring spanned a total duration of
1 hour. Fig. 14a depicts the schematic illustration before and
after the source explosion. As illustrated in Fig. 14b, the
distances between the source and measuring stations No.8, 6,
4, and 2 were sequentially 10 m, 20 m, 30 m, and 40 m. The
signal strength diminishes with increasing distance, resulting
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TABLE 2. Comparison of classification effect of measured data.

in lower data SNR. Fig. 15 showcases the time-domain wave-
formsmeasured at the aforementioned four stations. The SNR
of the data obtained at measuring station No.8 is the highest,
enabling clear identification of the source signal. Measuring
station No.6 exhibits a lower SNR compared to No.8, yet
both the source signal and environmental noise remain dis-
tinguishable. However, the data SNR collected at measuring
stations No.4 and No.2 is considerably low, hindering easy
identification of the source signal.

Subsequent to the initial analysis, a time-frequency trans-
form using FT and FFT of measuring station No. 8 was
conducted, yielding the time-frequency characteristics of
both the source signal and environmental noise, as depicted
in Fig. 16. Inspection of the figure reveals that the noise
pervades the entire duration, predominantly exhibiting low-
frequency characteristics, with energy primarily concentrated
within the 0 to 50 Hz range. Conversely, the source sig-
nal exhibits brief durations (< 1s) and is characterized by
frequencies ranging from 60 to 150 Hz. Consequently, data
falling within the frequency bands below 60 Hz and above
150 Hz can be classified as noise.

FIGURE 15. Time domain waveforms with different SNR. (a) Station 8.
(b) Station 6. (c) Station 4. (d) Station 2.

The one-hour duration of measured data was uniformly
segmented into 1-second intervals, resulting in 3600 sub-
data sets. Subsequently, signal classification was executed
utilizing the previously constructed Ricker wavelet data set
and the time-frequency characteristics of the source signal.

FIGURE 16. Signal and noise time-frequency characteristics.

The classification outcomes for measuring stations No.2, 4,
6, and 8 are presented in Table 2. The results indicate that
the TF-DCRNN model demonstrates superior classification
performance, achieving an accuracy exceeding 96% when
utilizing data from stations No. 8 and No. 6. Moreover, the
accuracy rates for stations No. 4 and No. 2 are 90% and
82%, respectively. Conversely, the accuracy of alternative
network models falls below 80% at station No. 2. Notably,
the TF-DCRNN model exhibits heightened resilience to
interference, rendering it particularly suitable for signal
recognition within environments characterized by substan-
tial interference, outperforming other network models in this
regard.

Utilizing the classification results from TF-DCRNN, the
waveforms containing source signals are extracted. Sub-
sequently, the source location algorithm [35], based on
waveform stacking, is employed to determine the source
location. The results of the source location are illustrated in
Fig. 17 (with vertical scaling), where the blue plane represents

FIGURE 17. Source location based on waveform stacking.
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the imaging effect map of the locating. It is evident that the
focal point of the imaging plane is centrally positioned. The
yellow five-pointed star denotes the source location derived
from the location algorithm, while the red five-pointed star
signifies the actual source location. The proximity of the
source location to the actual position, with an absolute error
of less than 5m, serves as validation for the efficacy of the
source signal classification.

VII. CONCLUSION
This paper introduces an interpretable TF-DCRNN model
that integrates TFconv layer and CRNN. The model’s per-
formance is evaluated by constructing Ricker wavelet data
sets with different SNR and training it alongside five network
models including CNN and LSTM. The classification effec-
tiveness of each network model across different SNR data
sets is compared and analyzed. The results of the numerical
simulations demonstrate that the TF-DCRNNmodel exhibits
superior classification performance compared to other mod-
els. Moreover, the incorporation of multiple network models
or the incorporation of TFconv layer can enhance the clas-
sification efficacy of the network models to a certain extent.
However, the recognition efficacy of network models dimin-
ishes in environments characterized by intense random noise
interference, with a limited ability to differentiate noise
across adjacent frequency bands. The classification accuracy
of the TF-DCRNN model exceeds 90% with an approximate
15% recognition error rate for interference signals in adja-
cent frequency bands when SNR is −15 dB. In contrast, the
accuracy rates of the other five networks are below 90%, with
recognition error rates for interference signals in adjacent
frequency bands ranging from 20% to 40%. These findings
underscore the reliability of the TF-DCRNN model. Further-
more, the network model is validated using 3600 measured
data samples obtained from physical simulation experiments,
affirming the TF-DCRNN model’s efficacy in seismic signal
classification.

Our work provides a direction for network model opti-
mization and an effective network model for seismic signal
identification in strongly disturbed environments. However,
we have only shown one of the models with a specific number
of layers, and there are some differences in the performance
of the models with different numbers of layers, which are not
sufficiently analyzed in this regard. In the model comparison
experiments, the model parameters have not been analyzed
in a more detailed way, which is one of the directions for the
follow-upwork. Furthermore, seismicmonitoring poses chal-
lenges due to the intricate signal characteristics influenced
by source type and propagation medium. The utilization of
a simplified Ricker wavelet for seismic source simulation
lacks universality. Hence, our future endeavors aim to curate
datasets encompassing diverse source types (e.g., natural
earthquakes, blasting, rock rupture-induced earthquakes, etc.)
and further refine network design. These efforts are geared
towards advancing the intelligent evolution and application
of seismic signal detection methodologies.
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