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ABSTRACT Substations, as critical components of the power system, are frequently exposed to various
external risks during operation. Without timely monitoring and effective evaluation, the risks caused by
anomalies can undermine the stability of the mining area’s power system, potentially leading to significant
production interruptions and safety accidents. However, current research mainly focuses on the substation
internal risks. Regrettably, there is currently a lack of implementable external risk assessment methods
for substations. To detect substation external risk level effectively, an external risk assessment method for
substations based on single and superimposed anomaly risks is proposed. First, the CAVF (Identification
credibility C, anomaly area proportion A, anomaly development velocity V and correction factor F) external
risk assessmentmodel is constructed, based on the improved PES (Probability, Exposure, Sequel) operational
risk assessment method. Next, the collaborative set pair analysis of uncertain AHP (Analytic Hierarchy
Process) is used to assign weights to the importance of different anomalies, addressing the differences
in the impact of each anomaly and the fuzziness of expert judgment. Then, the IDO (Identity Difference
Opposition) contact measure method is adopted to determine the substation external risk level under multiple
superimposed anomalies, with the importance weight vector of anomalies. Finally, the substation external
risk level is evaluated, comprehensively considering the risks of single andmultiple superimposed anomalies.
A case in an actual scenario shows the effectiveness of the proposed method, highlighting its significant
impact on optimizing maintenance configurations and ensuring the safe operation of substations.

INDEX TERMS Substation, state assessment, external risk levels, CAVF model, IDO contact measure
method.

I. INTRODUCTION
Adverse weather conditions such as heavy rain, storms,
or extreme temperatures bring several operational challenges
for substations in Shanxi Province, China [1], [2], [3],
[4], [5]. Meanwhile, geological conditions in mining subsi-
dence areas may lead to settlement and tilting [6], causing
stress concentration [7] and subsequently altering the exter-
nal state of equipment and components. Under a variety
of external harsh conditions, essential substation compo-
nents like insulators, bushings, fuses, and oil pillows may
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deteriorate [8], [9],which may affect power transmission and
potentially lead to risk incidents [10].

To understand and quantify the specific impacts of nat-
ural disasters, human errors, equipment failures, or other
anomalies on power systems, conducted extensive research
is carried out [11], [12], [13], [14], [15]. These studies can be
mainly divided into two directions. Firstly, the mechanisms
of power system risks under various weather conditions and
natural disasters are explored to determine the likelihood of
these risks [16], [17]. Second, various related risk factors
are considered to quantify the overall risk of power systems.
These methods provide theoretical guidance for manage-
ment, operation, maintenance, and safety decision-making
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processes [18], [19]. However, existing risk assessment meth-
ods for electrical equipment primarily focus on overhead
transmission lines, cables, and broader power system risks.

There is relatively little research on the risks of substations,
which is still in development. The standardized lightning
risk assessment process is supplemented by adjusting key
risk factors such as fire load function, environmental fac-
tors, and Lightning Protection Level (LPL) [20]. The main
risk components in substations are highlighted in [21]. The
minimal cut set algorithm is used to evaluate seismic risks in
substation systems [22], and two risk reduction strategies of
seismic reinforcement and adding redundant equipment are
proposed. The risk of substation under natural disasters is
studied but the influence of comprehensive risk on substation
is not fully considered. The external risk assessment of sub-
stations involves numerous factors. Substation components
interact with external weather and environmental factors,
complicating the integration of thesemulti-source factors into
the assessment model. Considering the influence of multiple
anomalies comprehensively and integrating them reasonably
into the assessment model are still challenges. Therefore, the
risks of substations are modeled and analyzed so that some
risk assessment methods can be proposed.

The fuzzy Bayesian classification method is used for
dynamic flood risk assessment in substations [23]. dynamic
risk assessment methods for substation based on the PES
risk assessment method are proposed [24], [25]. Furthermore,
the PES method lacks mechanisms to adjust risk values in
response to varying environmental impacts, leading to poten-
tial inaccuracies in risk evaluations [26]. There is currently
no clear and explicit method for quantifying values. These
methods address the simplicity and rigidity of previous safety
operation risk assessment methods. AHP (Analytic Hierarchy
Process) is combined with a system risk assessment method,
applying the Bellman-Zadeh method for decision-making in
fuzzy environments [27]. Additionally, a substation operation
risk assessment method based on the triangular fuzzy number
AHP method is proposed [28]. However, traditional AHP
relies on expert subjective opinions, failing to address the
fuzziness and uncertainty of subjective judgments.

To address these problems, a mathematical model method
based on element analysis is adopted firstly in this paper.
The current threat elements are quantified based on domain
knowledge and establishes a mathematical model to assess
the substation external risk level. The method can be per-
formed in the absence of a large number of historical
accident records. Therefore, it is suitable for substations with
complex environments, frequent background changes, and
high requirements for information confidentiality. Then, the
improved PES operational risk assessment method by estab-
lishing the CAVF (Identification credibility C, anomaly area
proportion A, anomaly development velocity V and correc-
tion factor F) external risk assessment model is proposed.
Abnormal risk indicators are quantified, and an external
risk assessment model is established under multi-source data
interaction. Next, to account for the varying impact of each

anomaly and the inherent ambiguity in expert judgment, the
collaborative set analysis and uncertainty analytic hierarchy
process are employed to assign weights to the importance of
different anomalies. Then, the IDOmeasurement method and
weight vector determine the external risk state of substations
under multiple superimposed anomalies. Finally, by jointly
considering the highest external risk level corresponding to a
single anomaly, and the external risk level corresponding to
the combined impact of multiple anomalies, the final external
risk status of the substation is assessed.

II. EXTERNAL RISK ASSESSMENT MODEL
Leveraging extensive analysis of multifaceted factors and
incorporating insights from field experts, a comprehensive
external risk assessment model for substations is devel-
oped under the framework of multivariate data interaction.
Following this, a detailed external risk assessment index
system specific to substations is formulated. Subsequently,
a robust CAVF external risk assessment model is constructed
to systematically evaluate these risks. Finally, the risk levels
associated with individual anomalies are meticulously cate-
gorized to ensure precise risk identification.

A. ESTABLISH AN EVALUATION INDEX SYSTEM
PES operational risk assessmentmethod is a semi-quantitative
external risk assessment method proposed in the Techni-
cal Standard of Operational Hazard Identification and Risk
Assessment of China Southern Power Grid Company. The
assessment model of this method is shown in (1).

RF = PF × EF × SF (1)

where, RF represents the external risk value of the evaluated
electrical equipment. PF denotes the likelihood of accidents
caused by threat factors. EF stands for the frequency of
personnel exposure to threat factors. SF indicates the varying
degrees of severity of accidents caused by threat factors.

For the external risk assessment of substations, it is defined
as a combination of four types of visible anomalies: casing
cracking, insulator string drop, oil pillow oil seepage, and
fuse tube drop. Various factors, including weather condi-
tions, the interaction of external damage sources, and fault
elimination time intervals, are considered. Additionally, the
experience of field experts is incorporated for a more com-
prehensive analysis. The substation external risk assessment
index system is illustrated in Fig. 1.

B. CAVF EXTERNAL RISK ASSESSMENT MODEL
1) IDENTIFICATION CREDIBILITY C
A confidence score is generated for each boundary box and
mask is generated. The identification credibility C for each
type of anomaly is defined as the confidence score produced
by the MSAI++ framework. If the framework identifies an
anomaly with a high confidence score, it is considered likely
that the anomaly will occur in the substation. When the con-
fidence level of the critical anomaly bounding box is greater
than 0.6, it is selected as the identification result of the fuse
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FIGURE 1. Substation external risk assessment index system.

tube drop anomaly. Then, the corresponding confidence score
is generated. For bounding boxes with overlapping anomalies
after filtering, Non-Maximum Suppression (NMS) is used to
eliminate redundancy. Constrained by the confidence thresh-
old (0.6) and the Intersection of Union (IoU) threshold of
NMS (0.5), the confidence scores of various anomaly identifi-
cation results are converted into corresponding identification
credibility C in the form of intervals, as shown in Table 1.

TABLE 1. Score quantification table of identification credibility C .

2) ANOMALY AREA PROPORTION A
The anomaly area proportion A is used to quantify the impact
of the anomaly area at a specific time point on the external
risks of the substation. For three types of warning anomalies,
the identified pixel mask area can reflect the actual severity
of the anomaly to some extent. The larger the area, the more
serious the potential safety hazard in the substation. Cas-
ing cracking and insulator string drop may cause flashover
in humid weather, leading to immediate electrical failures.
Therefore, even if the area is small, it should be considered
a higher risk. Oil pillow oil seepage is usually a gradual
accumulation process. Small areas of oil leakage may not

immediately cause malfunctions, but large areas of oil leak-
age can lead to fires. The anomaly area proportion A score is
quantitatively divided based on the risk impact of three types
of anomalies. For fuse tube drops, precise pixel-level identifi-
cation is unnecessary. When such anomalies are detected, the
power supply may be temporarily interrupted, and a higher
value should be assigned in the A-score quantification. Based
on the opinions of on-site experts, the quantitative results of
the anomaly area proportion A are shown in Table 2.

TABLE 2. Score quantification table of anomaly area proportion A.

3) ANOMALY DEVELOPMENT VELOCITY V
The anomaly development velocity V measures the trend of
this anomaly over a period. Considering that 24 hours is a
relatively complete cycle, the development and changes of
anomalies can be observed within a certain period. Thus, the
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anomaly development velocity can be assessed by comparing
the abnormal area growth ratio 1A24h, which reflects the
change in the warning abnormal area in the current image
compared to the image from 24 hours prior. If the area of the
same warning anomaly in the substation expands by a suf-
ficient proportion within one day, the development velocity
of such anomaly is considered fast enough, and the corre-
sponding threat to the overall mobile substation is also higher.
Based on the opinions of experts, the quantitative results of
the anomaly development velocity V are shown in Table 3.

TABLE 3. Score quantification table of anomaly development velocity V.

4) CORRECTION FACTOR F
a: METEOROLOGICAL CORRECTION FACTOR Fqx

The influence of temperature and humidity on flashover of
dusty insulating bushings and insulators is determined in [29],
as shown in (2).

Vfo =
0.386 · 760(273 + 20)100 · Vsl

(273 + Twd )2(100 − Hsd )
(2)

where, Vfo is the flashover voltage under current condi-
tions (kV), Vsl is the flashover voltage under standard
conditions (kV), Twd is the current ambient temperature (◦C),
and Hsd is the current relative humidity (%).

From the perspective of the impact of temperature and
humidity on flashover voltage, the meteorological correction
factor Fqx is introduced to adjust the final risk value of sub-
station. The meteorological correction factor Fqx is defined
as in (3):

Fqx = δ(Vav − Vfo)/Vav (3)

where, Vav is the flashover voltage (kV) under the conditions
of average annual temperature and average annual relative
humidity, and δ is the conversion coefficient from flashover
voltage to anomaly development, taking 0.1. By substituting

the corresponding value, equation (4) is obtained. Temper-
ature Twd ∈ [−25, 40] (◦C), relative humidity Hsd ∈

[0, 70] (%), and meteorological correction factor Fqx ∈

[−11.40, 5.97] (%) are taken as constraint conditions.

Fqx = 0.1 −
5∗(273 + 8)2

(273 + Twd )2(100 − Hsd )
(4)

b: EXTERNAL BREAKAGE CORRECTION FACTOR Fwp

Referring to the ‘‘Guidance for electrical safety risk assess-
ment and risk reduction in multiple application workplace’’
(GB/T 41092-2021) and the ‘‘National safety technical code
for electric equipment’’ (GB 19517-2023), the external break-
age correction factor Fwp is specifically quantified, as shown
in Table 4. If there is an external breaking source in the early
warning area with a radius of 200 pixels, the external break-
age correction factor Fwp is 5%. If no anomaly is detected,
the radius will be expanded to 300. If an external breaking
source is identified in the newly defined warning area, the
external breakage correction factor Fwp will be 4%. Each
time the two types of anomalies of oil pillow oil seepage
and fuse tube drop are identified, the radius of the warning
area is successively expanded according to the first column
in Table 4, and the value of the external failure correction
factor Fwp is assigned. If no external break source appears
after the traversal is complete, the two types of exceptions are
considered unaffected by external interference, and the value
of Fwp is 0.

TABLE 4. Score quantification table of external breakage correction
factor Fwp.

5) DEFECT CLEARANCE INTERVAL CORRECTION FACTOR FXQ
The defect clearance interval correction factor Fxq for the
defect clearance interval is determined using the defect clear-
ance time interval as the benchmark, based on the opinions
of the on-site operation and inspection members, as shown
in Table 5. In areas with short gap elimination intervals, the
time for anomaly development is relatively limited, allowing
the risk to be controlled in a timely manner. A small defect
clearance interval correction factor Fxq should be assigned to
constrain the final risk value, about 0.6. On the contrary, for
the region with a long interval, the timeliness of risk control
is not as good as the former, and the correction factor Fxq is
too large, about 0.8.
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TABLE 5. Score quantification table of defect clearance interval
correction factor Fxq.

C. SINGLE ANOMALY RISK CLASSIFICATION
Based on the CAVF external risk assessment model, the
external risk value RF corresponding to each type of anomaly
is determined as shown in (5).

RF = C × A× V × (1 + F) × Fxq (5)

where, C represents the identification credibility, A denotes
the anomaly area proportion, V signifies the anomaly devel-
opment velocity, and Fqx is the fault elimination interval
correction factor. When casing cracking or insulator string
drop anomalies occur, F is the meteorological correction
factor Fqx ; when oil pillow oil seepage or fuse tube drop
anomalies occur, F is the external breakage correction Fwp.
Based on the calculation of the single anomaly external

risk value obtained from (4) and combined with field experts’
opinions, using the method of percentile segmentation, the
external risks of substations with single anomalies occurring
under various circumstances can be divided into five levels:
a, b, c, d, e. These respectively correspond to ‘‘extremely
dangerous,’’ ‘‘highly dangerous,’’ ‘‘moderately dangerous,’’
‘‘low-level danger,’’ and ‘‘relatively safe’’ severity levels.

III. ANALYZE THE IMPORTANCE OF DIFFERENT
ANOMALIES IN SUBSTATIONS
In the actual scenario, multiple anomalies may arise, and
different anomalies have different impacts on the whole sub-
station. To comprehensively evaluate the external risks facing
the substation, it is necessary to assign importance to all
kinds of anomaly first-level indicators first. To comprehen-
sively evaluate the external risks facing the substation, this
paper uses the uncertain AHP method of cooperative set pair
analysis to assign weight to the importance of four types
of anomalies, enabling a more precise determination of the
relative significance of each anomaly type.

A. BUILD HIERARCHY
To ensure that substation external risks are fully assessed,
a hierarchical structure model is constructed in this paper.
The model can characterize the level of substation external
risks based on the measurability and comprehensiveness of
evaluation criteria, including the destination layer, criterion
layer, and scheme layer. Among them, the criterion layer

consists of four types of anomalies that affect the substation
external risks. The hierarchical structure model is shown in
Fig. 2.

B. DETERMINISTIC JUDGMENT MATRIX
To deeply analyze the operational anomalies or power supply
incidents of substations caused by various anomaly situa-
tions, four experts were invited for detailed discussion and
analysis. These experts include the Director of the Opera-
tion and Inspection Center of the Power Supply Company,
the Chief and Technician of the Substation Operation and
Inspection Team, theDeputy Chief, and the Safety Production
Manager. They independently rated the importance of four
anomaly indicators: casing cracking, insulator string drop,
oil pillow oil seepage, and fuse tube drop. This resulted in
the uncertain interval judgment matrix A(K )(k = 1,2,3,4),
as shown in (6)

A(1) =


[1, 1] [3, 4] [

1
7
,
1
6
] [

1
8
,
1
7
]

[
1
4
,
1
3
] [1, 1] [

1
8
,
1
6
] [

1
9
,
1
8
]

[6, 7] [6, 8] [1, 1] [
1
3
,
1
2
]

[7, 8] [8, 9] [2, 3] [1, 1]

 ,

A(2) =


[1, 1] [2, 4] [

1
5
,
1
4
] [

1
8
,
1
6
]

[
1
4
,
1
2
] [1, 1] [

1
7
,
1
5
] [

1
8
,
1
7
]

[4, 5] [5, 7] [1, 1] [
1
4
,
1
3
]

[6, 8] [7, 8] [3, 4] [1, 1]



A(3) =


[1, 1] [2, 3] [

1
6
,
1
5
] [

1
7
,
1
6
]

[
1
3
,
1
2
] [1, 1] [

1
7
,
1
6
] [

1
8
,
1
6
]

[5, 6] [6, 7] [1, 1] [
1
3
,
1
2
]

[6, 7] [6, 8] [2, 3] [1, 1]

 ,

A(4) =


[1, 1] [2, 4] [

1
7
,
1
6
] [

1
8
,
1
6
]

[
1
4
,
1
2
] [1, 1] [

1
7
,
1
6
] [

1
8
,
1
7
]

[6, 7] [6, 7] [1, 1] [
1
2
, 1]

[6, 8] [7, 8] [1, 2] [1, 1]

 (6)

C. CALCULATE INDEX WEIGHT
The weight of experts is assessed based on their credibility,
due to differences in engineering experience. Expert cred-
ibility is determined by both overall similarity and local
differences [30].

1) CALCULATE OVEROLL SIMILARITY
The uncertain interval judgment matrix A(k) is decomposed
into row vectors (a11, · · ·, an1, a12, · · ·, an2 · · · a1n, · ·

·, ann, b11, · · ·, bn1, b12, · · ·, bn2, · · ·, b1n, · · ·, bnn)1×2n2 . The
decomposed row vectors of A(l), and A(k) are ∂ = (∂i) and
ℓ = (ℓi) respectively. The similarity between the two vectors
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FIGURE 2. Hierarchical structure model of substation external risk assessment.

is inversely proportional to the cosine of the angle between
them, as shown in (7).

γlk = cos θ =

2n2∑
i=1

∂iℓi√
2n2∑
i=1

∂2i

√
2n2∑
i=1

ℓ2i

(7)

In (7), 0 ≤ γlk ≤ 1, when ∂i = ℓi, γlk = 1.

γk =

q∑
l=1,l ̸=k

γlk (8)

where γk is the sum of similarities between A(k) and other
uncertain interval judgment matrices. The overall similarity
λk between the k-th expert decision and those of other expert
can be obtained post-normalization, as shown in (9).

λk =
γk
q∑

k=1
γk

(9)

2) CALCULATE LOCAL DIFFERENCE
The total difference between the k-th expert decision and
the mean of all expert decisions is obtained, by equating the
decomposed row vector of A(k) to (hj)1×2n2 = (h1, h2, · ·

·, h2n2 ), as shown in (10).

σk =

2n2∑
j=1

∣∣∣∣∣h(k)j −
1
q

n∑
i=1

h(i)j

∣∣∣∣∣ (10)

The local difference between the k-th expert decision
and other expert decisions is obtained post-normalization,
as shown in (11).

δk =
σk
q∑

k=1
σk

(11)

3) CALCULATE COMPREHENSIVE RELIABILITY
The comprehensive reliability αk of experts is dynamically
weighted, by integrating both the overall similarity and local
difference, as shown in (12).

αk =


λk

q∑
i=1

λiδi = 1

λk (1 − δk)

1 −

q∑
i=1

λiδi

q∑
i=1

λiδi ̸= 1
, k = 1, 2, · · ·, q

(12)

Based on (7)-(12), the overall similarity, local difference
and comprehensive reliability for the four experts are com-
puted. The results are shown in Table 6.

TABLE 6. Comprehensive reliability calculation results.

As is shown in Table 6, the overall similarity and local
difference among the four experts are similar, indicating the
reliability of the results. Therefore, the final weight assigned
to each expert is as follows:

αk = (α1, α2, α3, α4) = (0.2436, 0.2325, 0.2722 , 0.2517 )

(13)

IV. ASSESS SUBSTATION EXTERNAL RISK LEVEL BASED
ON IDO CONNECTIVITY MEASUREMENT
The substation may be affected by multiple superimposed
anomalies, with anomalies interacting and escalating risks.

VOLUME 12, 2024 159207



J. Feng et al.: External Risk Assessment for Substations Based on Single and Superimposed Anomaly Risks

However, accurately accounting for these interactions is chal-
lenging, and the highest risk level of single anomaly is often
overlooked. Therefore, the IDO correlation measurement is
adopted to assess the comprehensive correlation of substa-
tion external risks under multiple superimposed anomalies,
enabling an accurate assessment of the substation external
risk level.

A. DETERMINATE SINGLE ANOMALY CORRELATION
DEGREE
Multiple anomalies often occur simultaneously in practical
scenarios. The substation external risk level under multi-
ple superimposed anomalies is categorized into five distinct
levels in this paper: A, B, C , D, and E, representing
‘‘extremely dangerous’’, ‘‘highly dangerous’’, ‘‘moderately
dangerous’’, ‘‘low-level dangerous’’, and ‘‘relatively safe’’,
respectively. To encompass all single anomalies, the global
minimum and maximum values are calculated based on the
risk classification of each single anomaly. Consequently, the
critical value of the single anomaly comprehensive risk is
obtained.

The IDO correlation measurement method is used to
determine the set pair correlation between the actual risk
values of each single anomaly and their respective risk lev-
els. The method enables a more in-depth assessment of the
external risk posed by multiple superimposed anomalies.
The values range between −1 and 1. A value of 1 indi-
cates identity when the anomaly is at a specific level.
A value of −1 indicates opposition when the anomaly
spans two or more levels. A value in the range (−1, 1)
indicates a difference when the anomaly is at an adjacent
level.

The set pair connectivity of the substation external risk
level under multiple superimposed anomalies for each single
anomaly, is as follows:

Level E - relatively safe:

τi[E] =


1 RFi ∈ [0,RFt1]

1 −
2(RFi − RFt1)
RFt2 − RFt1

RFi ∈ (RFt1,RFt2]

−1 RFi ∈ (RFt2,RFt5]

(14)

Level D - low-level dangerous:

τi[D] =



1 −
2(RFt1 − RFi)
RFt1 − RFt0

RFi ∈ [0,RFt1]

1 RFi ∈ (RFt1,RFt2]

1 −
2(RFi − RFt2)
RFt3 − RFt2

RFi ∈ (RFt2,RFt3]

−1 RFi ∈ (RFt3,RFt5]

(15)

Level C - moderately dangerous:

τi[C] =



−1 RFi ∈ [0,RFt1]

1 −
2(RFt2 − RFi)
RFt2 − RFt1

RFi ∈ (RFt1,RFt2]

1 RFi ∈ (RFt2,RFt3]

1 −
2(RFi − RFt3)
RFt4 − RFt3

RFi ∈ (RFt3,RFt4]

−1 RFi ∈ (RFt4,RFt5]

(16)

Level B - highly dangerous:

τi[B] =



−1 RFi ∈ [0,RFt2]

1 −
2(RFt3 − RFi)
RFt3 − RFt2

RFi ∈ (RFt2,RFt3]

1 RFi ∈ (RFt3,RFt4]

1 −
2(RFi − RFt4)
RFt5 − RFt4

RFi ∈ (RFt4,RFt5]

(17)

Level A - extremely dangerous:

τi[A] =


−1 RFi ∈ [0,RFt3]

1 −
2(RFt4 − RFi)
RFt4 − RFt3

RFi ∈ (RFt3,RFt4]

1 RFi ∈ (RFt4,RFt5]

(18)

where τi[A]∼ τi[E] are the connection degree between the
i-th anomaly and the substation external risks categorized as
A-E level under multiple superimposed anomalies. RFti is the
critical value of the single anomaly comprehensive risk. RFi is
the risk value calculated by the CAVF assessment model for
the i-th anomaly.

The correlation degree of the substation external risk level
under multiple superimposed anomalies are shown in Table 7,
where n is the number of anomalies in the scenario to be
assessed.

TABLE 7. Correlation degree of substation external risk levels under
single anomalies relative to multiple anomalies.

B. ASSESS EXTERNAL RISK LEVEL
Firstly, the importance weight vectors w∗ for the multiple
superimposed anomalies are filtered. Secondly, the impor-
tance weight vectors w∗∗ for each anomaly in the current
assessment scenario are obtained. Thirdly, these vectors are
normalized to w∗∗

avg. Using the correlation degree in Table 7
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and the obtained w∗∗
avg, the comprehensive correlation degree

of substation external risk level for multiple superimposed
anomalies is calculated:

τ [ζ ] =

n∑
i=1

w∗∗
avgτi[ζ ] (19)

where τ [ζ ] is the comprehensive correlation degree of the
substation external risk level for all anomalies in the current
assessment scenario, ζ = A, B, C, D, E.

Based on the principle of maximum connectivity, the
substation external risk level under multiple superimposed
anomalies is determined by the level for the maximum value
of τ [ζ ].

τ [k] = max {τ [ζ ]} (20)

The final substation external risk level is determined by
assessing both the highest external risk level of the single
anomaly and the external risk level of the multiple super-
imposed anomalies. The risk levels are conducted using a
four-level method, as shown in Fig. 3. The arrow indicates
the increasing severity of risk levels. The vertical direction
indicates the highest external risk level of the single anomaly,
whereas the horizontal direction indicates the external risk
level of the multiple superimposed anomalies. The risk lev-
els are color-coded as follows: Red indicates an extremely
high-risk level (I), necessitating urgent monitoring and imme-
diate inspection of anomalies. Yellow indicates a high hazard
level (II), requiring intensive supervision and prompt reso-
lution of detected anomalies. Blue indicates a medium risk
level (III), requiring periodic inspections and enhanced safety
management. Green indicates a low risk level (IV), and rou-
tine monitoring is deemed adequate. Cases Ae, Ad, Ac, and
Be are non-existent based on the calculations. Therefore, they
are left blank in the figure.

FIGURE 3. The final substation external risk level.

C. ASSESS FOR SUBSTATION EXTERNAL RISK LEVEL
COMBINED SINGLE AND SUPERIMPOSED ANOMALIES
The assessment process for the substation external risk level
involves several key steps, as shown in Fig. 4. Firstly,
an external risk assessment model is developed, incorporating

meteorological conditions, interaction with external sources,
and time intervals for defect elimination. Secondly, the uncer-
tain AHP with collaborative set pair analysis is used to assign
weights to the importance of the four anomalies. Next, the
comprehensive correlation degree of external risks across
all levels under multiple superimposed anomalies is calcu-
lated using the IDO correlation measure. Finally, the highest
external risk level of a single anomaly and the external risk
level under multiple superimposed anomalies are integrated
to assess the substation external risk level.

V. EXAMPLE VERIFICATION ANALYSIS
To validate the effectiveness of the external risk assessment
method proposed in this paper, a randomly selected image
sample with anomalies is analyzed. The sample, captured
at 8:30 am on October 8, 2022, is shown in Fig. 5 (a).
The monitoring location is situated along a connecting road
within a transportation area. Fig. 5 (b) shows the anomaly
identification results of the sample.

A. DETERMINE THE EXTERNAL RISK VALUE OF A SINGLE
ANOMALY
1) CALCULATE THE SCORE OF IDENTIFICATION
CREDIBILITY C
In this sample, three types of anomalies are identified: casing
crack, insulator string drop, and oil pillow oil seepage. A total
of four electrical components are involved. The anomalies are
sequentially numbered 1 through 4, from left to right. The
identification results are shown in Table 8.

TABLE 8. Identification results of the sample to be assessed.

According to Table 1, the score of identification
credibility C for each single anomaly is as follows: C1 = 7,
C2 = 7, C3 = 8, C4 = 7.

2) CALCULATE THE SCORE OF ANOMALY AREA
PROPORTION A
The overall mask segmentation results for the anomaly cor-
respond to the area of each mask, are shown in Table 9.

According to Table 2, the score of anomaly area proportion
A for each single anomaly is as follows: A1 = 3, A2 = 6,
A3 = 3, A4 = 6.

3) CALCULATE THE SCORE OF ANOMALY DEVELOPMENT
VELOCITYV
The current scene and the anomaly identification results for
the substation are shown in Table 10, including the anomaly
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FIGURE 4. The assessment process for substation external risk.

FIGURE 5. Graph of the sample to be assessed.

mask area 24 hours ago (8:30 am on October 7, 2022) and the
24-hour anomaly area growth ratio 1A24h.
According to Table 3, the score of anomaly development

velocity V for each single anomaly is as follows: V1 = 4,
V2 = 9, V3 = 2, V4 = 9.

TABLE 9. Areas of each mask and the anomaly area proportion.

TABLE 10. Areas of each mask and the growth ratio of anomaly area.

4) CALCULATE THE SCORE OFCORRECTION FACTOR F
For casing crack and insulator string drop, the meteorolog-
ical correction factor Fqx is adjusted based on temperature
and humidity impacts on flashover. According to the local
meteorological department’s website, the weather conditions
on October 8, 2022 are 3.5 ◦C and 31% relative humidity.
Substituting these values into (4), the meteorological correc-
tion factor Fqx is calculated to be 2.52%, indicating Fqx1 =

Fqx2 = Fqx3 = 2.52%.
For oil pillow oil seepage, the external breakage correction

factor Fwp is applied, considering interference from exter-
nal sources. With a warning area radius of 400 pixels, the
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pixel difference between the front and rear images is 6788,
which exceeds 5625. It indicates external damage within the
warning area. According to Table 4, the external breakage
correction factor Fwp is 3%, that is, Fwp4 = 3%. Given
that the assessment sample is situated along a transportation
area connecting road, the defect clearance interval correction
factor Fxq is 0.6.

5) DETERMINE THE RISK VALUE OF A SINGLE ANOMALY
According to (5), the calculated values are as follows: RF1 =

51.67, RF2 = 232.52, RF3 = 29.53, RF4 = 233.60. The results
are shown in Table 11.

TABLE 11. Quantitative summary of indicators and single anomaly risk
value.

B. DETERMINE THE EXTERNAL RISK STATE UNDER
MULTIPLE SUPERIMPOSED ANOMALIES
According to (14) to (18), the correlation degree of substation
external risks from levels A to E under multiple superimposed
anomalies for each single anomaly, is calculated. The results
are shown in Table 12.

TABLE 12. Matrix of set pair association degrees for various anomalies.

According to (13), the final accurate weight vector for the
importance of various anomalies is w∗

= (0.0946, 0.0497,
0.3430, 0.5127). For the current assessment scenario, the
importance weight vector is w∗∗

= (0.0497, 0.0946, 0.0946,
0.3430) and normalized to w∗∗

avg = (0.0854, 0.1626, 0.1626,
0.5894). Using the set pair connectivity matrix in Table 12
andw∗∗

avg, the comprehensive connectivity of substation exter-
nal risks across all levels is calculated following (19),
as shown in Table 13.

Based on the principle of maximum connectivity, the sub-
station external risk level under the multiple superimposed
anomalies is determined to be D-level. It belongs to low-level
danger.

TABLE 13. Comprehensive correlation degree when multiple anomalies
are superimposed.

C. DETERMINE THE FINAL EXTERNAL RISK STATE OF THE
SUBSTATION
The external risk levels corresponding to anomalies 1, 2, 3,
and 4 are ‘‘e’’, ‘‘c’’, ‘‘ e’’, and ‘‘c’’, respectively. For a single
anomaly, the highest risk level is ‘‘c’’, indicating moderate
danger. Based on the D-level obtained previously, and Fig. 3,
the final substation external risk level is III. This level belongs
to the medium risk level, requiring periodic inspections and
enhanced safety management.

According to the investigation of equipment accident
records, a power supply interruption occurred on the trans-
portation area connecting road on October 16, 2022. The
incident is attributed to oil pillow oil seepage based on
consultations with on-site experts. It resulted in a decrease
in oil levels, transformer overheating, and activation of the
protective device. Through the verification and analysis of the
above examples, the real-time substation external risk level is
determined effectively by the proposed method. By imple-
menting risk management and response measures based on
these assessment results, malignant power supply accidents
can be prevented, thereby enhancing power supply safety,
optimizing resource allocation, and improving operation and
maintenance plans.

VI. CONCLUSION
Currently, substations are still exposed to various internal and
external risks, and assessing the substation external risk level
remains challenging. To address this problem, an external
risk level assessment method for substations is proposed by
integrating both single and superimposed anomaly risks in
this paper. The conclusions are as follows:

1) The improved PES risk assessment method is proposed,
along with the establishment of the CAVF external risk
assessment model. This model encompasses: identification
credibility C , anomaly area proportion A, anomaly devel-
opment velocity V , meteorological correction factor Fqx ,
external breakage correction factor Fwp, and defect clear-
ance interval correction factor Fxq. The concept of external
anomaly risk in substations is clarified, and the correction
of risk values by environmental factors is considered. Risk
values are standardized quantitatively.

2) The collaborative set pair of uncertain AHP to assign
weights the importance of different anomalies is used in
this paper. This method effectively addresses the weight-
ing of various anomalies, quantifies the impact of multiple
superimposed anomalies and handles the inherent uncertainty
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in expert judgments, and significantly enhances the accuracy
of risk assessments.

3) The IDO connection measurement method is adopted
to comprehensively assess the interconnections between mul-
tiple anomalies. This method effectively couples the risk
levels of both single and superimposed anomalies, ultimately
determining the substation external risk level. The case shows
that the substation external risk level based on the proposed
method aligns with accident ledger records, validating its
effectiveness. This method is significant for ensuring power
supply safety, optimizing operation and maintenance config-
uration.

The external risk assessment for substations is a rela-
tively challenging topic and should be closely integrated with
engineering practice. The proposed method in this paper
combines on-site expert experience, considers external envi-
ronmental influences, quantifies various anomalies, reduces
subjectivity in judgment, and improves the accuracy of
assessment. Through case verification, it can be deployed in
actual on-site production, providing robust technical support
for efficient and precise substation operation and mainte-
nance. Monitoring data on electrical parameters, construction
personnel activity records, and equipment interaction data
will be further combined to enhance the applicability and
accuracy of the assessment plan, thereby improving opera-
tional safety in complex environments.
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