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ABSTRACT As resilience challenges evolve, namely in safety- and security-critical environments, the
demand for cost-efficient, automated and unattended fault and intrusion tolerance (FIT) grows. However,
current on-chip solutions typically target only accidental faults and rely on some form of application-specific
redundancy, a single-point-of-failure (SPoF) management software layer or synchrony-reliant protocols.
Plus, they are often performance heavy and costly for the emerging tightly-coupled systems in terms of area
and power consumption. In this paper, we investigate novel ways to apply high-performance FIT by using
replication of a lightweight agreement protocol, iBFT, executed with the aid of hardware trusted-trustworthy
memory tag accelerators, to avoid misuse of critical operations and SPoFs. We introduce an FPGA-based
implementation of iBFT under two fault models, evaluate their performance, area usage, and power
consumption on a Zynq ZC702 FPGA and compare it with other state-of-the-art protocols. Additionally,
we implement and evaluate a software-based emulation of a potential microcode implementation.

INDEX TERMS Fault and intrusion tolerance, hardware, resilience, systems architecture.

I. INTRODUCTION
Many application scenarios, including some that are dis-
tributed in nature, cannot tolerate individual nodes failing,
or worse, falling into the hands of adversaries. Consider
for example a swarm of drones, autonomously-driving
vehicles or satellite constellations. Full compromise and
hence adversarial control of an individual system already
grants hackers and cyber-terrorists the ability to mount
cyber-kinetic attacks and the means to cause damage to
the environment in which they act. A mission may still be
accomplished despite some units failing, but the very same
failures can lead, e.g., the affected drone to clash into others
or elsewhere in the surrounding area. In other environments,
humans operate in close proximity to such (cyber-physical)
systems, turning safety into a key requirement, in particular
during security incidents.

In many of the above scenarios, it is often not enough to
stop the digital control system of compromised individuals.
For example, the built up inertia of a vehicle often already
suffices to serve the adversaries’ purpose, namely to cause
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damage. In such settings, each individual systemmust be able
to tolerate intrusions [1] and fail operationally to constrain
adversaries in their attempt to gain full control, until it can
finally be recovered to a state at least as secure as its initial one
or stopped safely, even if under a degradedmode of operation.

Existing on-chip fault and intrusion tolerance (FIT)
solutions protecting individual systems or system nodes, tend
to be application- [2], [3], [4] or OS-specific [5], [6], [7],
[8] and target only accidental faults; rely on a low-level
management software layer or hardware components that
become a single point of failure [9], [10], [11], [12],
[13]; be based on synchrony-bound protocols [14]; have a
considerably large reliable computing base (RCB) [15]; or
have high complexity [16], [17], [18], [19], [20], [21], [22],
leading to a non-negligible statistical fault footprint [23].
Additionally, traditional replicated/redundant FIT designs,
common in the realm of distributed systems, tend to be costly
not only financially, but also in regards to performance and
SWaP (space, weight and power) metrics if implemented on
multiprocessor systems-on-chip (MPSoCs) or any other sort
of tightly-coupled environment.

In this work, we investigate a novel mechanism for
constructing highly-efficient on-chip FIT solutions out of
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independently failing cores, chiplets or sockets integrated in
a single board computer such as an MPSoC [24], [25], [26].
We highlight the design constraints for independent failure,
introduce an FPGA-based tagged-memory accelerator for
creating write-once memory as an abstraction, and argue
why such memories are trusted-trustworthy components.
In addition, we discuss how tagged memory can help prevent
a common issue in traditional FIT consensus protocols —
equivocation, i.e., the possibility of displaying inconsistent
information at different points in time to distinct readers
— without resorting to using costly cryptographic opera-
tions. Finally, we discuss and implement both a hardware
FPGA-based version of our solution and a software-based
emulation of a possible microcode implementation.

Our solution, albeit inspired by the classical FIT pro-
tocols from distributed systems, takes advantage of the
tight-coupling of cores to provide high-performance and to
minimize the safety/performance trade-off. Additionally, it is
designed to not rely on any software layer that can potentially
become a single point of failure. Instead, we aim at reducing
the reliable computing base (RCB) [27] as much as possible,
while balancing it with performance goals. We demonstrate
the use of write-once (wo) tagged memories in a novel agree-
ment protocol, called iBFT, and illustrate how a system can
safely execute critical operations (e.g., privilege escalation,
access to critical memory regions or I/O devices) that use
low-level software layers such as amicrokernel or hypervisor.

In this solution, low-level management software, which,
if compromised can grant an attacker access over the whole
platform and potentially infect all other parts of the system
(e.g.,), is replicated across different available cores and
each replica votes, in read-shared wo memory, whether to
execute an operation, similarly to the idea behind dual- and
triple-modular redundancy. In particular, our work is heavily
inspired by [28], presenting different trade-offs in terms
of RCB size, simplicity, overhead, voting, cacheability and
memory restrictions.

Our contributions are the following:
• A low-level agreement protocol, iBFT, used for agreeing
on executing critical operations, that matches the
performance requirements of an on-chip system;

• Two implementations of a write-once memory (wo)
device, that aids iBFT in avoiding equivocation (see
Section II);

• A proposed architecture supporting the use of iBFT and
wo;

• Sub-protocols for error handling of iBFT and resetting
of wo;

• Evaluation of a proof of concept and comparison
with a state of the art agreement protocol, MinBFT,
implemented over shared memory.

II. CHALLENGES
Numerous vulnerabilities have been reported in real-time
operating systems’ (RTOSs) source code, namely in IoT
devices (e.g., CWE-119, CWE-120, CWE-126, CWE-134,

CWE-398, CWE-561, CWE-563) [29]. Vulnerability anal-
ysis of virtualized environments and hypervisor security
have shown the various ways these can be attacked [1],
[30], [31], [32], [33], with works such as [34] and [35]
discussing privilege escalation attacks in hypervisors for full
compromise. Such evidence deems a low-cost and easily
verifiable solution necessary.

Redundancy is often useful to build resilience against
benign or arbitrary faults [36], [37], [38], [39]. It can come in
the form of DMR, TMR, or generally in configurations where
n >= f +1 replicas detect and n >= 2f +1 replicas mask the
behavior of faulty replicas which, in the case of cyber attacks,
can be arbitrary, i.e., Byzantine. Redundancy can also come
in the form of validating executions at a fine-granularity, e.g.,
by executing programs in lock-step or TMR and comparing
the results of every instruction; or by comparing progress at
a coarser scale with the increased benefit that replicas can
diverge in between comparison points [40], which improves
fault independence. The redundancy and performance costs,
however, need to match the intended platform, in this case,
on-chip platforms. This means cryptographic operations,
traditionally used for ensuring transferable authentication
in FIT, become prohibitively high in terms of performance
metrics. Furthermore, power consumption should be close to
the cost of handling no replication. Area and power efficiency
of replication, e.g., in the TMR scenario was addressed
in [41]. Our work shall focus on performance.

Considering the on-chip environment, communication
between replicas presents itself as a crucial point in keeping
performance costs low. The performance of shared-memory
operations (246 cycles for 256 byte and 2331 cycles for
4096 byte transfers, measured with x86’s rep; movsq
rep; cmpsq instructions on an AMD Ryzen 7 3700X
8-Core CPU, 2 threads per core, running at 2.2GHz) as well
as their suitability for tightly-coupled systems, encourages
consensus to be performed by means of shared memory
instead of some form of message passing, like IPC.

Furthermore, to perform as optimal as possible, reaping
benefit of the tight coupling of replicas, one must minimize
reads and writes, meaning replicas should be able to just read
a memory region whenever they desire, without having to
request that information and wait for it to arrive.

A final consideration is that of equivocation, i.e., the
possibility of changing shared memory contents and, thus,
presenting different contents at different points in time in
the protocol, leading replicas to read different information.
This is a problem orthogonal to that of authentication and
impersonation. To deal with such issues we use write-once
tagged memory to prevent replicas from changing their
consensus decisions, which we explain in Section V. For
the sake of flow and clarity, we shall explain the details of
equivocation later in Section XIII-E.

III. CONCEPT
iBFT implements fault tolerance through light-weight con-
sensus on critical operations executed by low-level software
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(e.g., privilege escalation, access to critical memory regions,
handling of CPS I/O device), requiring n = 2f +1 replicas to
tolerate up to f faults of an arbitrary kind without requiring a
trusted kernel. The fault threshold f is application-dependent
and can be decided by the designer/developer. As other FIT
algorithms, iBFT’s aim is to reach agreement on the order of
client operations to execute. In the context of iBFT, clients are
replicas of low-level software, e.g., an hypervisor, wanting to
execute a critical operation that, if performed single handed
by a malicious replica, could lead an attacker to gain control
over the platform. In essence, iBFT is an accelerated form of
on-chip consensus that takes advantage of the low overhead of
operations like memcpy and memcmp to achieve an efficient
form of fault and intrusion tolerance.

In a summed up manner, when a critical operation
needs to be executed it triggers a system call. However,
instead of being immediately executed, the low-level software
instead must write the request for execution as a proposal.
Replicas must achieve agreement on whether to execute the
operation, based on a majority decision. Since some can
be compromised and, thus, faulty, a lightweight consensus
protocol, iBFT, must handle the agreement to guarantee only
benign requests are executed.

Due to performance goals, instead ofmessage exchange for
communicating votes and agreement progress, replicas shall
leverage shared local memories hardened with write-once
tags (further discussed in Section V) for communicating with
other replicas.

Fig. 1 gives a general overview of an iBFT-supporting
architecture. Shown are the abstract containment domains
(tiles), including a core and a (shared) write-once (wo)
tagged memory whose write ports are exclusively connected
to this core. Other cores should be connected through the
Network-on-Chip (NoC), or other adopted bus system, only
to the read ports of this memory so that they cannot modify
their contents. Since each replica receives restricted write
access (rw∗) to its wo memory (t-mem in Fig. 1) and
read-only access to the wo memories of other replicas,1 each
buffer can be written by exactly one replica. Thus, we have
implicit writer authentication, but this authentication is not
transferable.

FIGURE 1. iBFT architecture overview.

1Write access is restricted in the sense of allowing values to be written
exactly once in between resets

IV. SYSTEM AND THREAT MODEL
Before diving into iBFT protocol details and write-once
tagged memories let us further elaborate on iBFT’s system
and fault model, as well as its synchrony-related properties.

A. SYSTEM MODEL
iBFT is built for scenarios where a number of tightly-coupled
nodes operate in consensus, i.e., vote to reach agreement on
a critical operation to execute. We consider hosted as well as
bare-metal implementations, e.g., with replicas executing in
a single chip on the cores of a multi- or many-core system.
In the remainder of this paper, we shall primarily refer to a
bare-metal execution of iBFT. For bare-metal configurations,
we consider tightly-coupled systems to be comprised of
sufficiently many cores (as is often the case with MPSoCs)
to execute all n replicas N = {s0, . . . , sn−1} concurrently,
such that n = 2f + 1. We follow a model with architectural
hybridization [42], where trusted-trustworthy components
and other parts of the RCB [27] follow a distinct fault model.

B. SYNCHRONY
Tightly-coupled systems naturally tend to higher degrees of
synchrony, but are also susceptible to time-domain attacks,
e.g., overheating cores to throttle neighboring ones or denial-
of-service attacks in the network-on-chip [43], which makes
perfect synchrony assumptions brittle. We therefore assume
only partial synchrony [44], i.e., bounded execution and
transmission times during ‘good’ periods, which we assume
occur frequently and last long enough to make progress.

C. FAULT MODEL
We tolerate up to f arbitrary faults at hardware or software-
level, as long as the physical effects of faults remain confined
to the core or the data it produces, including bitflips in local
state, wrong computations, compromised software code,
hardware trojans a minority of the cores, among others.

Cores may fail arbitrarily, even at hardware level, but not in
a way where such a hardware failure brings down other cores,
e.g., no power glitches that bring down neighboring cores and
also no faults in the power distribution and clock networks,
which are often shared and span large areas of the chip.
Of course, conventional multi- and manycore designs retain
the possibility of common mode failures in central hardware
components like the clock or power distribution network,
which must be addressed differently. Resilient clocks [45]
mitigate some of these common-mode faults and the recent
trend towards interconnected chiplets further improves the
physical decoupling of tiles and, therefore, the possibilities
for fault containment. Plus, core diversity has become easier
with (1) the use of FPGAs, which can create soft cores using
off-the-shelf IPs from different vendors or from open-source
implementations like RISC-V, (2) dynamic reconfiguration
of FPGA partitions through, e.g., Xilinx’s Dynamic Function
Exchange (DFX), and (3) the emergence of chiplets and their
possibility of assembling diverse IPs in a single platform.
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Implementations of the trusted-trustworthy component,
write-once taggedmemory (wo for short), may follow distinct
fault models of which we consider two flavors, orthogonal to
the question of which parts of the hardware to trust:

• Write-once memory implementations that do not fail.
• Write-once memory implementations that can fail, but
only by crashing and in a detectable manner.

For the former, we assume these memories to eventually
complete read and write operations and to report the last
value written. Moreover, they prevent overwriting values
that have been tagged (explanation in Section V). In this
setting, no further progress guarantees can be conveyed
once a write-once memory crashes. Our second trust model
considers such crashes. We aim to continue guaranteeing
progress unless more than a total of f replicas become
faulty or their memories crash. We further assume these
memories crash only in a detectable manner. As long as
memory value errors build up slowly, the combination
of ECCs, memory scrubbing, IPs like Xilinx’s Soft Error
Mitigation (SEM) core and deliberate crashing2 (once ECC
detects more errors than correctable) ensures safety despite
crashes. Also notice that we only bound the total number of
faults, not distinguishing replicas with a crashed write-once
memory from compromised replicas. This aspect will become
important for the safety of our approach, since with c
write-once memories crashed, we will assume that the
remaining system has to cope only with up to f − c
compromised replicas. One added benefit of this fault model
is that intrusion detection systems may deliberately crash a
write-once memory to silence a suspected faulty replica.

V. WRITE-ONCE MEMORY
To deal with the possibility of replicas changing their shared
memory contents at will, we need a means to prevent
overwriting information once a decision has been made.
As such, we introduce write-once (wo) tagged memory,
a trusted-trustworthymemory abstraction, which leaves reads
unconstrained, but prevents successfully written values from
being overwritten until the location holding this value is
reset (see Section IX). Reset, being a critical operation itself,
equally requires voting and agreement from a majority of
replicas.

The concept of tagged memory, first introduced in [46]
stores values as unions of data and type, making it dependent
on the type which operations can be executed on the data.
Similarly, we shall use two types of data for wo tagged
memory:

• Write-once tri-state bitfields - tags, whose bits can
be set, but not cleared until reset. Bits are split into
agreement and error bits, forming together the tri-state.

2The main reason a write-once memory would crash itself is when its
correction ability for memory faults is exhausted. Deliberate crashing is
an additional mechanism, which requires consensus among replicas and is
applied only after a replica revealed itself as Byzantine, which cannot be
known initially.

Setting an agreement bit, prevents the corresponding
error bit to be set and vice versa.

• Fixed-size character strings - requests, for requests,
which cannot be overwritten once the string is marked
‘‘ready’’ (e.g., by setting a bit in a corresponding
write-once bitfield).

VI. iBFT PROTOCOL
In iBFT, a leader replica encodes client requests in a character
string, stores it in its wo memory buffer and marks it
as ‘ready’. Reading this buffer and observing this status,
peers detect this proposal and know from its status that the
proposing replica can no longer change what is suggested,
which prevents equivocation. Therefore, because follower
replicas read the same location as the leader, the leader cannot
lie inconsistently about the client or its request. Note, it is
still possible for a leader to make up a request. Followers
express their agreement/disagreement in a similar manner by
setting the corresponding bits in a write-once bitfield, which
prevents equivocation during this protocol step as well (i.e.,
a replica indicating agreement toward one of its peers and
disagreement to others).

Fig. 2 shows the basic setup of shared memory buffers
between the server replicas and local clients. Each client ci
has a request buffer (req) mapped writable to its address
space and read-only to the address space of all other replicas.
Conversely, service replicas (s1, s2, s3 for f = 1 and n =

3) use per-client writable reply buffers, which are mapped
read-only into the client address space.

FIGURE 2. Setup and permissions of shared and memory buffers and
internal structure of the protocol buffers in wo memory.

The wo memories are organized in slots. Each slot is
comprised of one wo character string, used by the leading
replica to record the client request m to execute, a client
sequence number seq and the identifier ci of the client, and of
n wo bitfields (tri-state status flags) for each replica used to
store status information and to express agreement. As shown
in Fig. 2 there are n prepare (P), n commit (C) and one
accept (A) flags, which can also take the form of PE , CE
and AE , respectively, to indicate errors (e.g., mismatch). The
tagged-memory device ensures that the wo string is sensitive
to the wo bitfield of the leader and ensures that no further
modification of the string are possible once a bit is set in the
bitfield.
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P flags denote a resemblance to the prepare phase in
PBFT [47], MinBFT [48] and other BFT protocols and serve
the purpose of making sure replicas compared the leader’s
proposal with the client request. C flags correspond to the
commit phase and ensure at least f +1 replicas prepared. A is
set to mark the request ready to execute, i.e., after seeing f +1
C flags. The error form of each flag (PE , CE and AE) denote
a mismatch or timeout in each phase of the protocol and
trigger error handling, being then also used to skip requests.
AE is the final tri-state value of A and ensures the A flag is no
longer modifiable in case of error, preventing faulty replicas
from tricking others into executing requests.

FIGURE 3. Client code.

In iBFT only the software replicas running the protocol (on
different cores) and the write-once memories are replicated,3

as redundancy of other components is not mandated by the
protocol. However, communication between the cores and
all write-once memories and reset devices is needed, but,
since NoCs are now a common means of having all-to-all
communication between cores and certain peripherals like
memories, this is not an issue.

Let us then describe the behaviour of all involved parties
in each phase of the protocol.

A. CLIENTS
Clients ci store requests in their request buffer (Line 1 in
Figure 3) and coordinate with the server replicas by setting
the client sequence number4 ci.req.seq to a value larger
than the previously processed requests. After executing the
request, the replicas si will reply with this sequence number
to indicate that they have completed this request. In particular,
this ensures that servers will not confuse requests that remain
in the client’s request buffer as new, since these requests will
have a client sequence number ci.req.seq that is smaller than
or equal to the client sequence number of requests that the
server has already processed (Line 11 in Figure 4).

B. NORMAL PHASE
iBFT draws inspiration from [49] and implements a rotating
leader scheme, while recording proposals and agreement
status in womemory. We start by discussing the iBFT pseudo
code for error-free cases (shown in Figure 4), before we
consider error handling and the code in Figure 5. We have

3Replication of the reset device is also possible and, in fact, recommended.
4We shall use standard C notation for accessing arrays and structures,

but allow whole structure copy and compare. For example, buf l [x].P[l] in
Line 17 in Figure 4 refers to slot x in the buffer of replica l, accessing the
P flag array in the message data structure at position l. That is, we set the P
flag of replica sl in this replica’s buffer at the current request slot x.

marked in both figures the introspection operations poll,5

copy and compare in green. Lines marked with ’*’ are
required only to cope with crashing wo memories.

Replicas take turns as leaders for a configurable number of
slots_per_leader (Line 9). As long as unused slots are
available, leaders insert pending client requests6 from ci.req
in the next free slot x they control,7 copying the message m,
the client sequence number seq and the client number ci into
their buffer buf l[x] (Lines 10–16) and marking it as complete
by setting their P flag (Line 17), which in turn instructs wo
memory to prevent further writes to this character string.

Followers maintain a timeout for pending client requests
to avoid indefinite waiting for a faulty leader not proposing
pending requests.8 To find out when the leader has proposed,
they poll the P flag of the leader sl in the leader’s buffer (i.e.,
buf l[x].P[l]), possibly using sleep/wake techniques to limit
contention and to reduce energy consumption (Line 22).

Finding P[l] set, followers know that the proposed request
can no longer be changed by the leader. They therefore copy
the leader proposal to their buffer (Line 25) and compare
it against the proposal made by the client (Line 27). Upon
match, they indicate their agreement, by setting the leader’s
P flag P[l] in their buffer (i.e., buf k [x].P[l]) (Line 28),
otherwise, in case of mismatch (or timeout), they set this flag
as PE (remember flags are tri-state).

Lacking transferable authentication, replicas cannot distin-
guish whether (1) the leader is faulty and made up a request,
(2) the client is faulty and tricked the leader into proposing
a wrong message,9 or (3) both client and leader are faulty.
Leaders therefore copy the request into their womemory and
followers copy the leader request into their wo memories to
prepare for the case when the womemory of the leader might
crash. Followers si compare the leader proposal against the
client request and confirm this by setting P[i]

After that, leader and followers alike wait for f +1 replicas
sj to set their P flag P[j] (Lines 32–36), after which they set
theirC flag (Line 37) (orCE in case of timeout) andwait until
f + 1 replicas have done the same before they consider the
request as ready to execute, by setting the A flag (Line 43).
In particular, they confirm before setting P-flags that remote
copies match their copy as received from the leader.

Waiting for f + 1 C-flags set in f + 1 replicas ensures for
the case when c ≤ f wo memories crash that f − 1 replicas

5The operation poll refers to repeated polling until the target is found.
6iBFT supports multiple clients. The leader, when searching for new client

requests, polls different clients, for instance in a round-robin fashion.
7In Figure 4, buffer_length refers to the number of slots and not the size

of the slot.
8In a bare metal implementation, both the leader and its followers

have no other means than polling to learn about new requests, cycling
through all clients in the process. Naturally, this can be quite inefficient
as the number of local clients grows. For this reason, we recommend
complementing sleep/wait techniques with some way of informing about the
source, triggering thewake up. Hosted setups provide this source information
with the replica-invoking inter-process communication.

9The word ‘‘wrong’’ here relates to equivocation, i.e., making other
replicas believe the leader is in the wrong when, in fact, the client changed
the request.
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FIGURE 4. Normal phase, checkpoint and buffer reset.

confirmed the copies in the f −c+1 remaining womemories
of replicas that participated in this operation. This third round
is not required when no further guarantees are given upon wo
memory crash.

Ready requests are executed by the code (Lines 45–48)
once previous slots are executed (or skipped as a result of
error handling). Replicas reply by writing both the response
and the client sequence number to the reply buffer, which is
mapped read-only to the client (Lines 50–51). The consensual
reply resets the client buffer.10

First marking slots by comparing proposals and by setting
P flags accordingly, but then delaying execution until all
previous slots are executed or skipped, allows for some
out-of-order processing without sacrificing linearizability.

10Multiple buffers can be used for each client to amortize reset costs.

FIGURE 5. Error handling.

We shall return in Section VIII, to checkpoints and the reset
operation required to clear the buffer when wrapping around
and discuss now how iBFT handles errors.

VII. ERROR HANDLING
Once healthy replicas time out they no longer modify
their acceptance flags. Instead, they set the error flags
corresponding to all acceptance flags (AE flags) not yet
set in all slots y that have been proposed, but not yet
completed, including in all slots for which the current leader
is responsible. We denote the latter by [x]. The wo memory
detects if the A-flag or its corresponding error flag AE is set in
f + 1 replicas and will trigger the equivalent of the operation
from Line 63 in all wo-memories to ensure replicas can no
longer change flags after the majority timed out. Replicas will
not engage into actually processing this timeout before either
f +1−c replicas have prepared the request or f +1−c reached
an error state where the tri-state nature of flags prevent them
from preparing it later. Here, c is the number of womemories
that have crashed.

Similar to MinBFT, we define as necessary condition for a
replicas to have prepared a request that it has set f + 1 of its
P-flags, which resembles iBFT’s notion of having received
f + 1 prepare messages. However, we consider a replica as
prepared only if it either completed executing the request (i.e.,
if it has f +1 C−flags and the A-flag set as well, respectively
only theA-flag for the no-crash case), or if it has timed out and
set all error flags for the agreement flags that remained unset
and if in this state it has set at least f + 1 P-flags. If replicas
set a P-flag, the trusted womemory implementation prevents
them to also set the E-flag. It is important to require replicas
to have timed out before considering them to be prepared in
a state less advanced than all flags set that are required for
execution since replicas need to independently reach the same
conclusion whether or not a request should be processed.

Replicas execute those requests for which they find that
f +1−c replicas having prepared this request (Lines 70–74).
They skip executing this slot if f + 1 − c replicas have
reached an error state from which they cannot later prepare it
(Line 75). Since the leader’s womemory might have crashed,
this request may reside as a copy in another replica’s buffer.
Lines 71–72 identify this request.
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VIII. CHECKPOINTS AND RESET
Once all slots are used up, replicas have to reset the buffer
before they can proceed. Without such a reset, slots, which
now have flags set, would not be writable due to wo memory
preventing overwrites. However, there are three inherent race
conditions when resetting buffers:

1) A faulty replica may prematurely agree to reset the wo
memories before the checkpoint is stable;

2) A replica may vote to reset a buffer that has just been
reset; and

3) A lagging, but otherwise healthy, replica may resume
in a slot after the other replicas have reset all wo
memories. In this case a faulty replica may exploit the
lagging replica to replay an old request that the lagging
replica was about to handle.

We avoid the first by requiring healthy replicas to first
agree on a checkpoint and wait for this checkpoint to stabilize
before agreeing to reset the wo memories. Checkpoints are
written to write-once memory as well, using double buffering
to always have a valid checkpoint in place. Checkpoints
include a version number to denote which of the buffers holds
the most recent checkpoint. Like for requests, wo memory
prevents modification of completed checkpoints by setting a
correspondingPflag (Line 57). Once a healthy replica detects
f + 1 matching checkpoints, it agrees to reset the buffers in
all replicas, including the now old checkpoint.

The second race is in fact an instance of the first since,
without further precautions, agreeing to reset after the reset
already happened translates into prematurely agreeing to the
reset in the next round. We shall use the same mechanism
to prevent the second and third race condition: We use one
additional flag RF in the bitfields to denote that a reset has
just happened. RF is checked when writing wo memory or
when setting flags to prevent any modification of the tag-
based womemory device due to ongoing operations. Instead,
these operations will fail, leaving the device in the state after
reset, which allows the replica to recover from this situation.
Moreover, RF is checked when agreeing to reset womemory.
The agreement is ignored when RF is set.

In consequence of the above, after each wo memory write
or set flag operation and after reset in Line 57, the replica
checks whether the device has just undergone reset and reacts
to this by clearing all RF flags, loading the most recent
checkpoints and resuming from this checkpoint and an empty
buffer. We have omitted these checks from the pseudo code
for better readability. RF flags are the only flags that can be
reset by the writing replica, but only by this one. As indicated
above, the most recent checkpoint is the one that received
f + 1 agreement and that has the higher version number of
the two checkpoint slots.

IX. RESET
Obviously, replicas consume wo memory space over time as
they use it to handle requests. Therefore, once the available
buffer space is used up, replicas have to reset wo memory
to clear all tags before they can resume processing requests.

We shall align this reset with the writing of a checkpoint
and store the latter as well in wo memory. Double buffering
alternates between checkpoint buffers and ensures that the
latest checkpoint always remains intact.

Single handed or premature reset would allow replicas
to equivocate, by resetting and overwriting a field after
another replica has introspected it. We therefore make reset
a consensus operation and require f + 1 replicas to agree
before tags are cleared. The fact that a reset has just happened
is recorded by setting reset flags RF , which are checked
together with the remaining bits of the bitfield, but which can
be cleared by the replica to continue writing to the device.
We shall return to the necessity to synchronize checkpoints
and resets in Section VIII.

Several implementations of the above reset functionality
are conceivable. For example, replicas could enter a trusted
execution environment (TEE), e.g., enclaves, and implement
reset by waiting for f + 1 replicas to enter their TEE before
clearing wo bitfields and strings through normal writes or
through a dedicated interface. Obviously, the permission to
perform these operations must be restricted to the TEE.

Alternatively, reset could be implemented as a second
device, similarly to write-once memories, collecting the
intention to reset in a bitfield with one bit per replica. The
device resets all wo memories (clearing bits and making
strings writable again), as described above, after f +1 replicas
agree by setting their reset bit. Naturally, reset must as well
be part of the RCB. We have implemented this option for
our evaluation, due to the high costs of entering and leaving
TEEs.

It is of course possible to implement a reset device per
core, capable of only resetting this core’s write-once memory
instead of a general one, to avoid a single point of failure.

X. TRUSTED COPY
iBFT allows reaching consensus on an operation, but does not
perform this operation by itself. However, to act in a consen-
sual manner, state must be updated, including configurations
and privileges, as described in Gouveia et al. [28]. In the
following, we introduce a mechanism, which complements
iBFT to safely reconfigure privileges and update critical data
through a trusted copy operation.
iBFT reaches consensus out of place, that is in the

write-once memories and not in the place where the
platform expects the data (e.g., in the processor’s page
tables or page-table base register). To update these locations,
we introduce trusted copy as an operation to transfer data
from write-once memories to such a location, but only if (1)
all replicas have agreed on the operation, (2) if all previous
operations are applied or have been skipped since agreement
was not reached for them, and (3) only once (that is, once the
data is copied, no further copy operations are allowed for the
slot containing this data until wo memory is reset).

To perform the copy, we now interpret the message m in
a slot slightly differently and introduce an additional tag to
mark if data was already copied. Unlike the previous tags,
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this tag is only writable by the copy operation and remains
set until reset. For trusted copy, we dividem into a destination
address, a size field and a data field with the semantics that
data of the mentioned size should be copied to the mentioned
destination. Replicas agree on this triplet and then leave it to
any replica to perform the copy, which will succeed under the
above mentioned conditions.

FIGURE 6. Trusted copy operation.

FIGURE 7. Representation of the trusted copy mechanism, copying an
agreed-upon request to the designated destination address.

Figure 6 lists the simple pseudo code for this procedure.
After checking whether agreement has been reached (i.e., the
ready-to-execute flag is set by f + 1 replicas for a given
slot l) or whether the previous slot is ultimately skipped,
since no agreement is reached, the copy operation validates
that the previous slot is marked as executed. It then marks
l as executed and if agreement has been reached copies the
data to the mentioned address. Note that this entire operation
must be executed atomically with regard to other trusted copy
operations, since otherwise faulty replicas could force out-of-
order updates. Hardware implementations can achieve that
by performing only one trusted copy operation at a time.
Figure 7 illustrates the trusted copy mechanism, copying an
agreed-upon request to the designated destination address.

As with wo memory, the implementation of the trusted
copy is simple enough and can be trusted not to fail (supported
for example through formal verification). It can further be
provided in a redundant manner to guarantee continued
operation in the case of a crash and the memory itself (plus
the memory controller) may as well have some form of
redundancy depending on the desired fault model. Recall that
the failure of a wo memory simply means the associated
replica is now considered faulty. The trusted copy is not
implemented for each replica, but instead an instance that
collects results. Therefore, its level of redundancy is not
dependent on the value of n.

XI. IMPLEMENTATION DETAILS
To further clarify iBFT and wo tagged memory, we shall
describe in this Section the implementation details of the
latter in 1) the ZC702 FPGA board and 2) emulation version,
for our proof-of-concept.

FIGURE 8. Implementation of wo memory as a combination of an AXI
slave tag-mem device and a standard BRAM block.

We turn blocks of memory into wo tagged memory by
using sticky tags implemented as a hardware accelerator
slave device that ANDs the write enable signal of a memory
controller, with the devices tag verification, allowing writing
tags only if they are clear and allowing writes to memory only
if tags indicate to the iBFT protocol that agreement has been
reached.

We consider and evaluate two implementations of
write-once memory:

• 1. Using taggedmemory hardware devices (implemented
on an FPGA for proof-of-concept);

• 2. Using an emulation of microcode-based atomic
operations to conditionally set bits in bitfields or write
parts of the string, provided the string is not marked read.

A. HARDWARE-BASED
To evaluate the first variant, we have implemented wo
memory as a combination of a standard per-replica block
RAM (BRAM) area to hold wo strings and an AXI Lite11

slave device for implementing wo bitfields (one per buffer),
as shown in Fig. 8. The slave device interposes writes and
prevents overwriting strings that are marked as ready by
setting any one of the bits in the corresponding bitfield.
Moreover, it prevents the replica from clearing bits by
AND-ing updates to the inverse of the bits that are already
set (both error and agreement bits), prior to OR-ing them to
the stored value. We denote this in the figures as restricted
read/write permissions (rw∗). Peer replicas obtain direct
read-only access to the bitfields and string buffers.

Write enabling writes in the memories is still done by
the regular memory controller, however, the enable signal
is and-ed (logic-wise, with no code) with an enable signal
produced by the tagged-memory accelerator upon receiving
(from the memory controller) the address that is to be written.
This hardware logic will evaluate the bitfields set for that
address and determine whether the write is allowed. If it is
not, it will output a write enable signal of 0, which and-ed
with the 1 from the memory controller will still prevent the
write. The write-once memory concept is not merely a block
of memory (e.g., BRAM), but a simple hardware abstraction

11The Advanced eXtensible Interface (AXI), part of the ARM Advanced
Microcontroller Bus Architecture 3 (AXI3) and 4 (AXI4) specifications,
is a communication interface for on-chip communication. AXI interface IP
blocks are common in block designs for Xilinx FPGAs, such as the one we
use in our implementation (Zynq ZC702).
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that contains memory space (e.g., BRAM) and an associated
logic for checking flags (tags) and storing them (t-mem in
Fig. 1) for an incoming address that will determine the write
enable output for writing on the memory block. Alternatively,
the tags could be implemented in a custom memory
controller.

B. SOFTWARE-BASED
This variant is a trivial microcode exercise by constraining
the operations that can write the otherwise read-only
memory pages used for wo-memory. In fact, aside from this
enforcement, contemporary architectures, such a Intel x86,
can already emulatewomemory in a performance-preserving
manner. Write-once bitfields are written exclusively by bit
set operations (e.g., a generalized lock; bts as in x86,
i.e., atomic bit test and set, but for tri-state flags). Write-once
character strings are written by atomic compare and swap,
where compare checks for a specific value reserved to denote
an empty buffer. Of course, full microcode access would
also allow for cache-lock protected multi-address conditional
writes, checking the bitfield and writing conditionally to the
bits being clear.

By restricting which operations can be executed on
write-once memory blocks (e.g., through a memory type
or page permission flag), it is possible to utilize standard
memory subsystems for implementing wo memory. The wo
bitfields can be constrained to only allow atomic bit-set
operations (again, a generalized bit_test_and_set),
checking both error and agreement bits, and the wo
strings can be realized by reserving one value (e.g.,
exp = ∼ 0UL) to denote writable words, and by writ-
ing with atomic compare_exchange(dest, exp,
value). Cache locks are one common way to implement
atomic read-modify-write instructions in modern processor
architectures. More fine-grain control over these locks
opens further, more direct ways of implementing write-
once semantics. For example, one could make writes to
strings conditional to tags in the bitfield being clear.
The above mechanisms do not prevent caching write-once
memory locations. Aside from requiring atomic operations
to write these locations, microcode-based implementations
therefore incur no extra overhead. However, the RCB of
this variant necessarily includes all hardware components
that are required to execute instructions atomically (i.e., all
processors, caches and the used fragment of the memory
subsystem). Our hardware-based variant further reduces the
RCB.

XII. EVALUATION
iBFT’s goal is efficient FIT for on-chip systems. As briefly
discussed in earlier sections, we envision MPSoCs, chiplets,
or a combination of both, enhanced with FPGA fabric for
custom, simple and easily-verifiable accelerators such as,
in this case, tagged memory.

As proof-of-concept of our solution we have implemented
the architecture depicted in Fig. 8 on a Xilinx Zync

ZC702 FPGA configured with 3 MicroBlaze cores (running
at 100MHz) and AXI busses to connect to the memory
controller and our tagged memory and reset devices. We run
iBFT on each of the MicroBlaze cores (in a final solution,
it could instead run on hard cores, as part of the MPSoC) and
measured its performance in an f = 1 setting. For this variant
(FPGA), we evaluated exclusively the setting f = 1 due
to FPGA resource constrains.12 We used an AXI Timer and
Interrupt Controller for time measurement and the Vivado
post-implementation reports to analyse area and power.

Our measurements focus on two scenarios: i) agreement
with all replicas participating and ii) catch-upwith one replica
remaining unresponsive while the remaining replicas reach
agreement to then catch up with the progress they made.
Replicas do not write checkpoints or wrap around buffers in
this scenario. We evaluate both wo failure by crashing and
the case where no further guarantees are provided in case wo-
memory fails.

For the second variant, the emulation of microcode-
based wo memory modifies wo bitfields with atomic OR
instructions (lock; orq) and wo strings with atomic com-
pare exchange instructions (lock; cmpxchgq), which
check for ∼ 0UL. The implementation always writes the
complete string buffer for a single slot to prevent faulty
replicas from appending to shorter prefixes. Reads are
through arbitrary instructions. The emulation described
above exhibits correct performance characteristics, but does
not prevent writes through other instructions or unaligned
writes. This behaviour can be easily retrofitted through
microcode instructions. We evaluated performance on the
cache-based x86 emulation, with up to n = 2f + 1 = 13,
to tolerate up to f = 6 faults.

A. PERFORMANCE
1) PERFORMANCE OF MICROCODE EMULATION
All figures plot the mean latency of request handling in cycles
as experienced by clients (i.e., the time between issuing a
request and receiving f + 1 matching responses) (y-axis),
for an increasing number of tolerated faults (x-axis). Cycles
can be converted into microseconds by dividing cycles by
the used frequency (100MHz). For instance, 1000000 cycles
corresponds to 10000 microseconds or 0.01 seconds.

Fig. 9 shows the time to agreement (Scenario 1), i.e.,
normal case execution, whereas Fi. 10 shows the two cases
of Scenario 2, that is, normal-case operation of n− 1 replicas
and time for the late replica to catch up. The figures
identify the graph bars corresponding to the iBFT cache-
based version of wo memory on x86 in the situation where
wo memories can crash, side-by-side with the corresponding
FPGA hardware implementation (which we shall discuss

12Note that we refer specifically to Zynq ZC702 resource constraints,
where we could only instantiate up to 4 MicroBlaze cores plus the
corresponding tagged memory devices, block memories and AXI interfaces,
bringing the maximum possible f to 1 (n = 3). Other, modern FPGA boards
will allow for more replicas to coexist.
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FIGURE 9. Latency of normal-case operation (in cycles), comparing
cache-based and the tag-mem variant of iBFT against MinBFT on the
same platform. wo memories can crash.

FIGURE 10. Latency of normal case operation (N) with one late replica
and catch up (C) of this replica. wo memories can crash.

next). These results are as well compared with a shared
memory-based implementation of MinBFT.

Catch up in MinBFT is implemented as the lagging replica
receiving the messages sent by the other replicas (by reading
their message buffers) and processing the request as usual.

As can be seen, iBFT is roughly 10 times faster than
MinBFT when reaching agreement (16, respectively if wo
memories do not crash), which we attribute mostly to
the costs of HMAC computation and validation, but in a
significantly smaller part also to the larger message sizes
that origin from having to transmit up to two HMACS
(for commit). The optimization of iBFT, which allows
lagging replicas to catch up to the progress of the leading
ones, proved effective, by requiring only 1019 cycles on
average for f = 1 (324 respectively for the no-crash
version), with a linear increase for higher f . We con-
sider also a model where wo memories do not crash.
Figs. 11 and 12 represent a comparison of both environ-
ments: where memories can crash and where memories do
not crash.

In an environment with no wo crashes, the reader may
notice a stabilization of the latency with the increasing
number of replicas participating. The ratio of reads (to
introspect peers) versus writes (to update replicas’ own
state) increases. The cache coherence protocol executes these
reads in parallel, which leads to the smoother slope in the

FIGURE 11. Comparing normal case iBFT when wo memories can crash
vs. when they are assumed not to not crash.

FIGURE 12. Comparing normal case iBFT plus catch up when wo
memories can crash vs. when they are assumed not to not crash.

graph. Cross hyper-thread13 pre-fetching further improves
performance.

It is also relevant to mention latency numbers can slightly
vary depending on which replicas are late. Since replicas can
proceed once they find f + 1 occurrences of the information
sought after, and since introspected replicas start sequentially
from the replica with the lowest ID to the onewith the highest,
if there is no late replica in the first f + 1, latency will not
be affected by non-consecutive reads of late replicas’ state.
For the shown evaluation we let the late replica always be
the one with highest ID, meaning it does not interfere with
normal-case operation. Giving late replicas low IDs would
slightly increase latency by a few cycles corresponding to
introspecting the late replica.

2) PERFORMANCE OF FPGA IMPLEMENTATION
For the following discussion, let us notice that writing a
tag-mem device register (i.e., a 32-bit word) in the shared
BRAM block requires 65 cycles. This corresponds roughly
to the time required to reach the shared cache (L3) on x86.
This translates into 99 cycles for setting flags and 106 cycles
for reading.

13Cores can support hyper-threading, the implementation of which would
be assumed part of the RCB in our cache-based variant. In our second variant,
the core as a whole is considered the fault containment domain. That is, even
though the core may have multiple hardware threats, there can only be one
replica on this core.
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FIGURE 13. Mean values (bars) together with the 5% and 95%
percentiles for both versions of the wo memory in iBFT.

Like above, Figs. 9 and 10 show the performance for the
two scenarios (normal-case only and normal-case plus catch
up) for iBFT, and Figs. 11 and 12 represent the no-crash case.
As can be seen, the previous results from the emulation-

based wo memory implementation are confirmed. With a
factor of 23.24 (83.09 respectively if wo memories do not
crash), iBFT is, on average, almost one order of magnitude
faster than shared-memory MinBFT and almost two orders
of magnitude faster in the no-crash version. However,
the percentiles are much closer to the average times (see
Figure 13), which on one side is due to the higher determinism
of tightly-coupled memory accesses over coherent caches,
with frequent bounces when polling shared data for state
changes. However, it also indicates higher best case costs due
to the inability to cache state. Catch up remains relatively fast
with a 5927 cycle latency on average (1972 respectively for
the no-crash version).
iBFT’s latency clearly demonstrates the benefit of con-

structing hybrid BFT-SMR protocols specifically for tightly
coupled systems. The value of introspection is confirmed,
in particular when replicas have to catch up to the progress of
their peers. Of course, we are naturally introducing overhead
in comparison to non-replicated operation, but with added
fault tolerance and resilience. Considering the costs of fully
replicating the whole system (e.g., ECU), iBFT offers a safety
advantage without greatly increasing replication costs.

B. COMPARISON WITH MinBFT
To further exemplify why simply implementing a SotA BFT
protocol on-chip can be too costly, we have created a shared
memory implementation of the seminal MinBFT [48] and
evaluated its performance in the same design setting as iBFT.
iBFT is, on average, almost one order of magnitude faster

than shared-memory MinBFT and almost two orders of
magnitude faster in the no-crash version.

C. AREA USAGE
Tab. 1 shows the FPGA resources of the (post-synthesis)
implementation of the tagged memory and reset devices.
For the tagged memory device we present two values,
the resources for tagged memory logic (i.e., the logic

TABLE 1. FPGA resources required by the tagged memory device
(without / with AXI interface) and the reset device.

TABLE 2. Total on-chip power in watts (W) of a baseline design with
1 core, iBFT architecture design with 3 cores but without the tag and reset
devices, and iBFT with the tag and reset devices.

implementing the flags and their write-once property) alone
and for tagged memory logic with AXI interface included.
Since taggedmemory is implemented in our proof-of-concept
as anAXI bus slave, it requires logic to interface with this bus,
thus consuming further resources. As expected, the hardware
overhead, in terms of resources, of tag-based wo memory is
dominated by the resources required for the BRAM block
itself. Costs for the tag-mem IP are negligible.

D. POWER ANALYSIS
Tab. 2 shows the total on-chip power required by an
implementation with and one without the tag and reset
IPs. This is the power analysis reported by Xilinx Vivado,
based on simulation and constraint files, with default
settings, upon implementation of the design. The additional
power consumption added by tagged memory is negligible,
representing only a 0.2 W increase in relation to the whole
FPGA design with the 3 MicroBlaze cores. We compare also
with a baseline design of only 1 core, to show the increase in
power consumption by using replication is only of 0.146 W.

All designs include the core plus AXI interconnect, BRAM
controller, BRAM and PS Core. The PS core is not needed
for the protocol and is just used in the proof-of-concept
for interacting with the programmable logic (FPGA) and
initializing it. The core is, however, responsible for 96% of
the total predicted power consumption.

E. DISCUSSION
In Section II we presented the challenges both in applying
redundancy at low-level, where performance costs need to
match on-chip requirements; and in circumventing equivo-
cation when using shared memory.
iBFT successfully addressed these challenges. By allowing

replicas to read each others’ shared memory contents
without requesting first and by not requiring the use
of expensive cryptographic operations, we managed to
keep the overhead of consensus to a minimum. Addi-
tionally, the use of the write-once memory device,
as described in Sections V and XI, prevents overwriting
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protocol information once a decision has been made,
therefore avoiding equivocation.

XIII. BACKGROUND
A. FAULT-TOLERANCE
Fault tolerance (i.e., constructing a system in such a way that
it retains the ability to sustain correct operation despite the
presence of faults) has been used for years, commonly in the
form of dual (DMR) or triple modular redundancy (TMR)
to replicate, e.g., critical control tasks. Modular redundancy
refers to the multiplication of system components, providing
redundancy should one fail. These ‘cloned’ components
usually work in parallel (often in lockstep) with the same state
so as to make sure at least one keeps operating and achieves
the correct result. However, the lack of flexibility limits the
extension to general systems, namely as it usually translates
to replicating whole subsystems. Additionally, component
isolation and diversity is not always taken into consideration,
leading to fault propagation and common mode failures.

More complex solutions target low-level management
software, such as operating systems or hypervisors with
the intent of improving their fault resilience. However,
typically they protect applications [2], [3], [4] or specific
OS subsystems [5], [6], [7], [8] and/or only from accidental
faults [40], not malicious attacks or arbitrary behaviour.
Efforts for providing whole-OS fault tolerance include [16],
[17], [18], [19], [20], [21], [22]. Nevertheless, the complexity
of these recovery kernels is comparable to that of a small
hypervisor. This complexity makes the likelihood of residual
faults or vulnerabilities non-negligible and turns this software
layer into a single point of failure.

Byzantine fault-tolerant state machine replication
(BFT-SMR) [47], [48], [50], [51], paired with rejuvena-
tion [52], [53] and diversification [54], [55], [56], [57],
[58], [59], although traditionally applied in client-server
setups, is one combination of techniques that bears the
promise of automatic and unattended resilience against both
faults and intrusions also in on-chip scenarios. However,
while extensive FIT work has been done in the traditional
distributed systems realm, little effort has been put into the
emerging (multiprocessor) systems-on-chip (MPSoCs) or
chiplet architectures that, having their own on-chip network,
are starting to resemble tightly-coupled, single-die distributed
systems, as pointed out in [28], [60], and [61]. Moreover, the
costs of BFT-SMR solutions are prohibitive on the latter due
to the use of costly, yet necessary, cryptographic operations
for transferable authentication of a replica’smessages, and for
the amount of messages exchanged. Both hinder performance
and increase power consumption.

B. ARCHITECTURAL HYBRIDIZATION
Architectural hybridization [48], [50], [51], [62], [63] utilizes
the inclusion of trusted-trustworthy components, which fall
under a distinct fault model from the rest of the system
and which are considered more resilient. Examples include

MinBFT’s USIG [48] and CheapBFT’s CASH [63], both
implementing trusted counters, and A2M [64] and TrInc [65],
which provided a trusted message log or its hash. In the realm
of BFT, this allows reducing the number of required replicas
to safely reach agreement from n = 3f + 1 to n = 2f + 1,
where f is the fault threshold.

C. TIGHTLY-COUPLED SYSTEMS
FIT solutions have been designed for tightly-coupled systems
before. For example, replica coordination support was first
incorporated into a hypervisor in [66] and the crash-fault tol-
erant protocol Paxos [67] was implemented as a Linux kernel
module in [68]. Support for replication in microkernel-based
systems was achieved in [69] and [70] uses non-blocking
consensus to tolerate up to one crash fault.More recently, [40]
explored tightly-coupled redundant execution on replicated
hardware in the context of accidental faults.

In a different approach, [71] leverages RDMA in the crash
fault-tolerant system Mu to bring SMR performance down
to microsecond scale, and also for BFT [72]. Nevertheless,
Mu relies on changing RDMA write permissions to allow
the leader to directly write into follower logs, which involve
the OS (e.g., manipulating page tables) and could induce
significant costs (e.g., through TLB flushes).

D. FPGA SECURITY
Although our work targets systems-on-chip in general,
whether in the form of ASICs, chiplets, FPGAs or a
heterogeneous combination them, it is relevant to discuss
FPGA security measures, namely given our proof of concept
is implemented in one. Multiple strategies have been
proposed and used regarding FPGA security which, in turn,
have an effect on the system’s safety as well as resilience.
For instance, encryption and authentication [73], [74], [75]
have been adopted to protect bitstreams against intellectual
property (IP) piracy [76], trojan insertion, data leaks, etc.
Different solutions for key storage and protection have also
been proposed, such as the use of physically unclonable
functions (PUFs) [77]. However, (i) these techniques mostly
target the protection of hardware, i.e., bitstreams and the keys
used to decrypt them, not the software running on cores; and
(ii) even such mechanism have been the target of attacks [78],
[79], [80], [81].

E. EQUIVOCATION
In classical distributed consensus protocols, replicas send
messages to each other through an Ethernet connection.
Taking the example of PBFT [47], once a replica receives
a message from another with a certain sequence number,
it will ignore further messages from the same replica with the
same sequence number, forbidding the sending replica from
‘‘changing its mind’’ about the request being voted upon.
Inside an MPSoC, however, and if data is written in memory,
replicas can simply read the votes of others. As such, one
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must be cautious about an important detail: the time at which
a replica reads the memory where the proposals are stored.

Sadly, a key factor of FIT solutions — namely, authenti-
cation — when Byzantine behaviour is expected, becomes
problematic in the context of MPSoCs. All practical BFT
protocols rely on the presence of authentication and, thus,
cryptographic operations in order to ensure replicas do
not impersonate others or lie about their votes. PBFT,
for instance, relies on digital signatures, requiring that
requests and every message passed among replicas are
authenticated with the utilization of message authentication
codes (MAC), the keys of which are changed during recovery
to avoid impersonation if an attacker learns the MAC
keys. In MinBFT [48], e.g., the trusted-trustworthy device
USIG is in charge of signatures and provides two simple
operations create UI and verify UI. Every message
generated by a USIG is tagged with a certificate called UI
(unique identifier), containing an ID (the replica’s unique ID),
amonotonically increasing counter value and a signed hash of
the message; and serves the purpose of uniquely identifying
messages. These generated signatures are then verified in
other replicas’ USIGs.

Cryptography costs, although perfectly acceptable in the
context of distributed systems and their BFT implementa-
tions, given their fair performance ratio considering Ethernet
message passing costs, would not be suitable in on-chip
scenarios, since local transfer operations and cross-tile NoC
bus costs are in the microsecond to nanosecond domains.

Close to native communication latency therefore requires
abandoning cryptography and, with this, transferable authen-
tication [82]. It is, therefore, impossible to distinguish a
scenario where the sender of a message falsely sends (i.e.,
writes) some information from one where the receiver
(i.e., reader) modifies it. Consensus without transferable
authentication was first investigated by Lamport in the oral
messages (OM) protocol [83], where an impossibility to
diagnose errors, and hence recover from situations where
replicas could lie inconsistently to others (i.e., equivocate),
was identified. In other words, replicas lose the ability to
prove the origin of messages once this message leaves the
originator’s state.

To circumvent this impossibility, we rely on architectural
hybridization [48], [50], [51], [62], [63], i.e., the introduction
of a trusted-trustworthy component, and present our tightly-
coupled BFT-SMR protocol — iBFT, with the aid of a
write-once tag trusted-trustworthy component that serves as
the means to avoid equivocation (see Section XIII-E).

XIV. CONCLUSION AND FUTURE WORK
This paper tackled the predominant issues in FIT for on-
chip systems, attempting to devise a solution that relies on
no single-point-of-failure software layer and no synchrony
reliant protocol, tolerates arbitrary faults and has acceptable
performance for tightly-coupled environments. We intro-
duced the FIT protocol iBFT, a BFT-SMR protocol design
with such a goal in mind. We showed how iBFT circumvents

a well known impossibility identified by Pearson et al. for
BFT-SMR protocols that cannot rely on transferable authen-
tication, which is the case for tightly coupled BFT-SMR
protocols if they want to remain close to the performance
of the replica connecting communication medium: the
on-chip networks of multi- and manycore systems and
the shared memories they connect. We introduced trusted-
trustworthy hardware-based components to establish the
notion of write-once memory and have shown that, with these
components, Directions for future work include applying
dynamic reconfiguration to the tag trusted devices and the
cores as well for systems deployed entirely on Programmable
Logic fabric. Additionally, the investigation of further cross
core interaction mechanisms with relation to their resilience
to hardware faults and software compromise is an interesting
research line. The analysis of the interplay of different
hardware-level vulnerabilities, such as crosstalk and side
channels, and of hardware/software mitigation strategies is
also left for future work.
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