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ABSTRACT The present work discusses the classification of distribution of values of impulses. We solve the
problem in which random impulses occur before the vibrations caused by previous random impulses expire.
The goal was to achieve a correct classification of three groups of distributions characteristic of three different
processes: correct, transitory and flawed. The starting moment of the analysis as well as the length of time
interval are the objects of study of this article. In order to determine the significance of the extracted features
of the random time series under study, SHapley Additive exPlanations method was applied. The paper
discussed the stage of study which is focused on finding the first three stochastic raw moments that allow
for the most precise classification of distributions characterizing different processes in the shortest time. The
analysis using the random forest classifier made it possible to distinguish the distributions characteristic for
different types of processes, that is, it is possible to distinguish correct processes and transitory ones, etc.
It is hardest to distinguish correct processes from one another, since they are highly similar to one another,
but different from the other types.

INDEX TERMS Stochastic mechanics, random series of impulses, stationary time series, non-stationary
time series, classification, feature engineering.

I. INTRODUCTION
The theory of stochastic dynamic systems is an interdis-
ciplinary field which is also applied in mechanics. In the
case of mechanic non-deterministic systems there are no
mathematical instruments that would allow for unequivocal
description of the condition of a system at any given moment
on the basis of its previous conditions. This issues from the
random character of forces acting on this system. Hence,
in the 20th century several research centers initiated studies
on application of stochastic equations [1], [2], [3], [4], [5],
[6], [7], [8] in the analysis of dynamics of mechanical
systems. Instruments are searched for, which would make
it possible to foresee future states of dynamic systems with
the least level of uncertainty. The researchers work on
assessment of the risk, analysis of stability and optimization
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of functioning of the system in the presence of random
disruptions.

Among other tasks there were investigations facilitating
the analysis of actions of the systems whose vibrations were
forced by series of random impulses. First, mathematical
models were developed [9], [10], [11], [12], [13], [14], [15].
In the subsequent years the first attempts at verification of the
models with the help of simulation methods were made [16],
[17], [18].

The development of Artificial Intelligence started the
new stage of studies on stochastic mechanics [19], [20].
Application of the methods of machine learning is also a
new approach to classification of distributions of values of
stochastic impulses forcing vibrations of discrete systems.
The innovatory approach [20] to solution of some problems of
classification of discrete signals were presented in the work.
The investigations discussed in the present paper consider
diffrent time intervals and the methods of classification
are based on decision trees. These classification techniques
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are extensively applied in time series classification
[21], [22].

II. DESCRIPTION OF THE RESEARCH PROBLEM AND
DEFINING THE GOAL OF RESEARCH
Production of energy in a coal power plant requires control
over the burning process. Huge coal particles and small
coal particle that can be found in the dust pipe indicate
incorrections in the milling process and cause incorrect
burning. Looking through the data base of theWeb of Science
we can see that merely twenty seven papers deal with the
problem of granulation of coal particles. Scientists discuss
fine-grained waste materials [23], creation of coal and peat
fuel compositions for burning in solid-fuel boilers [24] or
enhancement of coal reactivit [25]. There are also studies on
atmospheric emissions of carbon compounds depending on
the burnt solid fuel, including the size of coal grains [26].

Diagnostics of the size of coal particles is still an open
problem.

The mathematical model for calculating of distributions of
impulses (that is, particles of different sizes) was developed
in the previous studies [15]. The model is independent of the
number of impulses, their values and intensity of occurrence
as well as the distributions of impulse values. It is only in the
case when time tends to infinity [27], [28] that time series
calculated for subsequent raw moments are ergodic and the
distributions calculated from the model at any time moment
are flawless. Therefore it cannot be applied in technology,
where the solution to a reverse problem, that is, recognition
of distributions of impulse values ought to be reached within
a few seconds or a few minutes.

Earlier studies [28] showed that for oscillators with
strong damping and high frequency, when the impulses
occur extremely rarely, there is a chance of calculating the
distributions of values with a small uncertainty threshold.
Yet, there is no chance of applying the model in several
other cases - the waiting time for the time series to become
ergodic is too long. Having applied the methods of Artificial
Intelligence, in the current paper we are seeking a possibility
of classifying time series when the intensity of hits is so high
that subsequent impulses occur before the vibrations caused
by the previous one die out. The analyzed time series are
not ergodic, for a majority of trials they will not be even
stationary.

III. MATHEMATICAL BACKGROUND
A. THE DISCRETE SYSTEM VIBRATING UNDER THE
INFLUENCE OF A RANDOM SERIES OF IMPULSES
The authors analyse the vibrations of an oscillator with
damping (1)

d2x
dt2

+ 2b
dx
dt

+ a2x = f (t) (1)

where a and b are parameters of the oscillator.

The vibrations are forced with the help of random series of
impulses (2),

f (t) =

∑
ti<t

ηiδ(t − ti) (2)

where η is the value of the i-th impulse, i = 1, 2, · · · , n, ti is
i-th moment of excitation of the movement, δ(t − ti) is Dirac
distribution at time ti [29].
In the domain of stochastic mechanics that deals with

the response of systems to being forced by a random series
of impulses, it is hard to find a uniform notation. Taking
into consideration equation (2) only, we should suggest
the description like coefficient occurring at Dirac delta.
In the most frequently cited work [12] dealing with impulse
forcings, the coefficient η was called strength of the impulse
while in the subsequent work [30] η is described as random
vectors representing the direction of the impulses. These
descriptions do not reflect the character of random variables
that perform the key role in the discussed problem. In the
further part of the paper the name the impulse value has been
used [9], [31].

B. RANDOM VARIABLES DEFINING THE RANDOM SERIES
OF IMPULSES
A random variable is defined by the set of values and by
the distribution of probability determining the probability of
occurrence of the value. A random series of impulses (2)
have been described by two random variables – one discrete
and the other one continuous. Random variable φ, of discrete
character, defines the values of impulses η, which in the
case under consideration are independent realisations of a
random variable with finite mean value and finite variance.
In turn, time intervals between impulses ti = (ti − ti−1) are
independent realisations of the random variable for which the
function of probability density is in the form of exponential
distribution (3).

t(τ ) =

{
λe−λτ for τ ≥ 0
0 for τ < 0

(3)

For the assumptions formulated in this way the solution of the
equation (1), (2), (3) assumes the form:

x(t) =
1
c

∑
0<ti<t

ηie−b(t−ti)sin(c(t − ti)) (4)

where b is damping coefficient, c is frequency of damped
vibrations, η is the value of i-th impulse, ηi is a sequence
of independent identically random variables with finite
expectation.

C. RAW MOMENTS COMPUTED FROM THE MOVEMENT
OF THE SYSTEM
Moments of occurrence of impulses as well as their values are
independent random variables. By making the signal discrete
we can establish the estimators of raw moments of the order
k = 1, 2, · · · , m.

m̄i =
1

[t/h]

∑
n<t/h

x i(nh) (5)
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TABLE 1. Parameters of distributions characterizing a correct processs.

TABLE 2. Parameters of distributions characterizing a transitory process
that is the one transforming in a wrong direction.

TABLE 3. Parameters of distributions characterizing a flawed process.

where h is value of the coefficient responsible for discretiza-
tion of the signal, t is time, n = 1,2, · · · is number of the
subsequent sample in the signal discrete.

In the study we check the possibility of classification
of random movement on the basis of the analysis of raw
moments (5). Such methods of classification are searched
for, which recognition of the distribution of a random series
of impulses should depend only on the values of impulses
included in the series. The impact on the raw moments
of time in which a subsequent impulse occurs should be
reduced to a minimum. Therefore, like in the analysis of
continuous random variables, an individual point, that is,
a certain moment of time, cannot be analysed. The analysis
should cover a certain time interval and its starting point as
well as its duration are the object of study in the current paper.

Due to the fact that experimental analysis of Dirac delta
function (2) is impossible, and an attempt at its implemen-
tation in experimental investigations would transform the
mathematical model (4), a decision was made to conduct
simulation studies focused mostly on engineering of features
describing time series of raw moments. Features that could
be used in classification of distributions are searched for.
Experimental studies taking into account the difference
between the model of a hit as described by Dirac delta
function and an actual hit will be possible to execute at a
later date thanks to the directions of analysis determined at
the present stage of investigations.

IV. METHOD
A. PREPARATION OF THE DATASET
There are infinitely many possible distributions of a discrete
random variable. In actual technological systems, however,

TABLE 4. Statistical parameters of distributions characterizing a correct
process.

TABLE 5. Statistical parameters of distributions characterizing a
transitory process hat is the one transforming in a wrong direction.

TABLE 6. Statistical parameters of distributions characterizing a flawed
process.

TABLE 7. Parameters of the simulations.

the goal is not to distinguish all possible distributions. The
research is focused on possible methods of recognizing
correct processes and those marked with errors.

In the current study, we define a correct process as one
that involves impulses of similar values (Table 1). A process
marked with errors (flawed one) is the one (Table 2), which
includes impulses of high and low values. There are also
transitory processes (Table 3), that transform from one to the
other, that is from a correct process to flawed one or vice
versa.

Legends in the tables show the colours that mark particular
classes in all visualizations. The classes representing correct
processes are shown in various shades of green, classes
representing flawed processes are shown in various shades
of red while the classes representing transitory processes are
shown in various shades of yellow and orange.

Nine distributions including just two impulses with the
occurrence probability equal to 0.5 were selected for the
study of the features of time series. Distributions of impulse
values were selected so that they had the same mean
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FIGURE 1. Sample movement of vibrations of an oscillator in a correct process.

FIGURE 2. Sample courses of vibrations of an oscillator in a flawed process.

value and different statistical parameters shown in Tables 4,
5, and 6 [32], [33]. Distributions including errors in the
process are characterized by high standard deviation and high
changeability coefficient, correct distributions are marked by
low coefficients of variation and low standard deviation.

Sample movement of vibrations of an oscillator in a correct
process and a flawed one were shown in Figs. 1 and 2 [34].
Parameters of the simulations were presented in Table 7.
The smaller the impulses occur in a random series, the

harder it is to notice changes in the movement of vibrations.
Hence, further analyses will be focused on estimators of
moments (5) and not courses.

B. SELECTING OF A FRAGMENT OF TIME SERIES FOR
CLASSIFICATION
In the case when two random variables occur: a continuous
one T describing the intervals between impulses, and

that of distribution of values φ (η), recognition of the
distribution of values requires two parameters connected
with time: the length of time interval that is necessary
for the analysis, and the time moment when the analysis
begins.

An analysis should start at the moment when the subse-
quent impulses exert the least influence on the changes at
raw moments computed from the movement of vibrations.
Additionally, the differences between the imposed distribu-
tion and that executed by the pseudorandom generator of
random numbers should be as little as possible both for the
T variable and the φ distributions. Estimators of the moments
as well as estimators of executed distributions are computed
from the moment t = 0 till a certain time moment. Both the
timemoment fromwhich the investigations can be started and
the duration of the time interval should be initially decided
upon on the basis of exploration research and then verified
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FIGURE 3. The first, the second and the third stochastic raw moments m calculated from the location x(t) for a selected samples.

by algorithms of Artificial Intelligence with the use of feature
engineering.

In the investigations described in the current paper, three
initial stochastic rawmoments were computed with the use of
the equation (5) for the nine generated distributions φ. It must
be remembered, however, that they are individual trials, and
in these investigations a one thousand trials were generated.
Fig. 3 represents stochastic moments for two trials of each of
the nine distributions. In accord with the assumption of the
simulation, in the case of the initial moment, time series of
the moments approach one value, which is why they seem to
be indistinguishable. Subsequent stochastic moments differ
in mean values, which are approached by particular signals
generated in a given class.

C. EXPLORATORY INVESTIGATIONS
In order to better visualize all analysed trials, channels
were designated by way of determining the maximum value,
minimum one and the mean value (Fig. 4) from all trials in
particular classes, every second.

Exploratory research indicated that in the case of the sec-
ond and third stochastic moments, the time series of moments
become, in a way, distinguishable after 300 seconds. This
observation was confirmed by the preliminary studies con-
nected with classification. Additionally, exploratory research
showed that further division of particular tunnels takes place
at certain time intervals that are difficult to describe precisely.
In the case of the second moment, after 600 seconds we are
able to distinguish fairly precisely only those groups that
differ significantly from one another. Distributions φA, φG,
φI , φK , and φO, φR are indistinguishable. This means that
the distributions characterizing a correct process φA, φG, φK
get mixed with the distribution characterizing a transitory
process φI . In the case of the second and third moments, after
600 seconds most classes become possible to distinguish,
and the groups characterizing different types of processes
seem distinguishable as well. Hence it was decided that
the studies connected with Artificial Intelligence algorithms

covered 300 second intervals starting at the 300th, 600th and
900th second.

D. STATIONARY CHARACTER OF AN INDIVIDUAL TRIAL
Stationary character of the examined time series was checked
in three time windows for all three stochastic moments.
On the level of significance equal to 0.05 examination of
stationary character was conducted with the use of two tests:
Augmented Dickey-Fuller (ADF test) and Phillips-Perron
(PP test) [35]. Both tests showed that in the II, III and IV
time window stationary signals constitute approximately 1%
of all examined series. The number of stationary signals of
subsequent models in the examined time windows according
to ADF test are presented in the Fig. 5.

E. ARTIFICIAL INTELLIGENCE ALGORITHMS
After the initial attempts at application of various kinds of
algorithms of AI and executing a comparison of results, the
authors decided to apply the algorithm of random forest [36].
A random forest consists of a definite number of decision
trees, and the result of classification is decided by the highest
number of votes received from individual trees. Each tree
consists of a root, branches and nodes. Branches lead from
the root to subsequent nodes, and at each node one condition
is tested, which allows for the choice of branches leading to
further nodes. If no branch spreads from a node, it is called
a leaf. Each leaf is marked with a class, which is assigned an
observation. The main advantage of random forest is that they
allow for determining which features of a dataset are the most
significant. It is also possible to visualize the division that has
been executed.

In the case of random forest it is very important to select
hyperparameters properly, because thanks to this the risk
of overfitting of the model is reduced.In the current study
the hyperparameters of the random forest were selected
with the help of grid search method, which consists in
searching of the grid of parameters with respect to a given
criterion; in this case it was the highest precision. The
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FIGURE 4. The first, the second and the third stochastic raw moments m calculated from the location X(t) for a thousand different movements.

FIGURE 5. The number of stationary signals for the second stochastic moment in the examined time windows according to ADF
test.
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TABLE 8. Selected features.

FIGURE 6. Confusion matrix for 30 features.

analysis was focused on the most important hyperparameters
of the random forest, like the number of trees, the function
measuring quality of division, maximum depth of the tree,
minimum number of samples needed for node division and a
minimum number of samples on a leaf.

Optimization of the selected hyperparameters of the
forest allowed us to obtain reproducible results. In order to
determine whether a division of a data set influenced the
results, cross-validation was conducted – the dataset was
divided into five equal parts, each of which became in turn
a test set and the remaining parts was a training set. There
were no significant differences between the obtained results,
which means that random character of the division of the data
set into the training set and the test one had no significant
impact on the obtained result.

F. EVALUATION OF THE CLASSIFICATION
In evaluation of the classification, three metrics were applied:

• accuracy - the ratio of all correctly classified cases to
all classified cases (6).

Accuracy =
TP+ TN

TP+ FP+ TN + FN
(6)

where TP is true positive, FP is false positive, TN is true
negative and FN is false negative.

FIGURE 7. Confusion matrix for selected features.

TABLE 9. Metrics.

• precision - informing how many cases of all those
expected to be positive (TP + FP) are truly positive (TP)
(7).

Precision =
TP

TP+ FP
(7)

• recall - the ratio of cases that were expected to be true
positives (TP) to those that should have been assigned to
a given class (TP + FN) (8).

Recall =
TP

TP+ FN
(8)

G. SELECTION OF FEATURES
Time series were imported to Python environment where,
with the help of Time Series Feature Extraction Library
(TSFEL [37]) software statistical and spectra features of
subsequent stochastic moments were extracted for each of
time windows under consideration. In the first stage, the
method of selects features from the tsfresh library [38] was
used. The features whose impact on the classification of the
nine distribution presented in the paragraph was insignificant,
were rejected. This allowed for initial reduction of the size of
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FIGURE 8. Accuracy in the examined time windows for selected feature of stochastic moments.

FIGURE 9. Confusion matrix for case I.

the data describing the properties of the time series. Initial
selection was not possible for the first time window, since the
analysis showed that none of the features had a significant
impact on classification of the presented distributions. Later,
the value of Spearman correlation coefficient between the
values of features determined from particular moments and
the class of distribution was examined and on this basis
a decision was made to limit each of the sets to 30 most
important features. The final decision concerning selection of
features for each of the examined cases was made on the basis
of SHAP (SHapley Additive exPlanations [39]) analysis.
SHAP analysis allowed for examination of the influence of
each of the 30 features on classification. In each examined
case from 2 to 4 most significant features were selected
(depending on the window and moment under consideration.

FIGURE 10. Confusion matrix for case II.

In the case of the first moment in each of the examined
windows, the greatest influence was exerted by the statistical
features of absolute differences of the signal: the mean, sum
and median - as well as the signal distance. As regards
the remaining moments in each window other features were
selected (Table 8).

Analyzing Table 8, we can say that the signal characteris-
tics obtained after wavelet transformation that are of greatest
importance. Selection of merely a few features was sufficient,
and the obtained results were close to those acquired in the
analysis using all generated features (Fig. 6, 7).

V. RESULTS
The investigations involved an attempt at classification
distribution of values φ(η) on the basis of features of each
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moment as well as combined features of two moments (the
second and the third one) and the features of all three
moments in each window.

In the case of the first moment, in each of the time windows
under study we are able to distinguish only those groups,
which differ from one another significantly. Distributions
characterizing the correct process are impossible to distin-
guish from the distribution characterizing a transitory one.

In the case of the second moment, after 600 s most
classes become distinguishable for the groups characterizing
different types of processes and poorly distinguishable for the
processes of the same type, e.g, transitory ones.

In the case of the third moment, after 600 s most classes
are classified correctly.What is classified incorrectly includes
the samples representing, first of all, two distributions:
distribution φC , characterizing a flawed process and the
distribution φG, characterizing a correct process.
After combining the features of the moments we can

classify fairly precisely the groups after the passage of 600 s.
This means that using the features of at least twomoments we
are able to achieve higher precision in a shorter time (Fig. 8).
Classification on the basis of combined features of the second
moment and the third one brings slightly better results than
those conducted on the basis of all three moments.

The results of the investigations will be discusses for two
cases:

• case I: classification of the basis of the features of the
second moment in the fourth time window (between
900 and 1200 s),

• case II: classification on the basis of combined features
of the second moment and the third one in the third time
window (between 600 and 900 s).

In the first case classification used two features of the
second moment: wavelet standard deviation and wavelet
energy. In the second case two features of the secondmoment:
wavelet absolute mean as well as autocorrelation, and two
features of the third moment: wavelet absolute mean and
spectral distance. The data were imported to PYTHON
environment and rescaled to the range 0 – 1. Then, for each
vase hyperparameters were selected and classification was
executed.

In accord with the formulae: (6), (7), (8) metrics were
computed for each class (Table 9). Fig. 9 and 10 represent
confusion matrix for the analysed cases.

Random forest copes well with the prediction of signals
belonging to distribution characteristic of various processes.
Both stationary signals and non-stationary ones are some-
times classified incorrectly. In both examined cases there
are three groups that are the most difficult to recognize,
since they are highly similar to one another: A (80/70), G
(85/65) and K (90/60). It is worth noting, however, that
each of these distributions is characterized by a correct
process. Application of the second moment and the third
one improved the classification of these groups by several
percent (increase in precision and sensitivity). Precision

of the model was also improved. The main advantage
of application of features of two moments is obtaining
better results in a shorter time. However, if we wanted to
distinguish between groups A, G and K, it seems necessary
to wait for new solutions in the Artificial Intelligence
methods. At the present moment we demonstrate the best
results that could be obtained. Even with the use of deep
learningmethods a better classification could not be obtained.
An analysis of incorrectly classifies samples showed that
the stationary character of time series does not influence
classification.

VI. CONCLUSION
Due to the fact that size of particles in the dust pipe should
be controlled as early as during the coal grinding process
while diagnosing of the dust particle size is an open problem,
the authors decided to develop a model of responses of the
system to impulse forcing. Using the samemodel for analyses
with the help of simulation investigations, the authors
define different cases of systems, forcing distributions and
intensity of forcings. In this way they identify difficulties
encountered while solving the problem. The authors use the
achievements of Artificial Intelligence methods, applying
feature engineering as well as various types of algorithms,
gradually approaching the solution of the reverse task,
namely, identification of distributions of impulses forcing the
vibrations of the system, based on the analysis of the course
of vibrations.

The work discusses the problem of classification of
vibrations forced by a random series of impulses. The
goal was to achieve a correct classification of three groups
of distributions characteristic of three different processes:
correct, transitory and flawed. Parameters of the oscillator
were selected so that random impulses occurred before the
vibrations caused by previous random impulses died out.
In the analysed problem it was important to minimise the
impact of the random variable T defining the intervals
between impulses. Time intervals of 300 s were adopted for
the analysis. On the basis of exploratory studies confirmed
with the help of feature engineering, the beginnings of the
examined time series were established. The extracted features
of stationary time series and non-stationary ones were used in
classification. The features were selectedwith the use of some
methods of feature engineering, including SHAP method,
which allows for simultaneous interpretation of the results of
the model.

The studies showed that:

• Application of machine learning in the problem under
consideration allows for an analysis of vibrating systems
in which subsequent random impulses occur before the
vibrations forced by previous impulses die out. For
a finite time interval such an analysis would not be
possible with the use of a mathematical model.

• The stationary character of time series does not influence
classification.
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• Using the features of the second stochastic moment only
we can classify the distributions with the precision of
0.84 after 900 s.

• Using the features of both the second stochastic moment
and the third one simultaneously we can classify the
distributions with the precision of 0.89 after 600 s.

• In the remaining cases under study the quality of
classification is significantly lower.

The conducted analysis indicates that the best results
will be obtained when the features of the second stochastic
moment and those of the third one are used. On the basis of
the features of these two moments we are able fastest and
most precisely to distinguish those distributions which are
characteristic of different processes. Nevertheless, it is the
hardest to distinguish the distributions characterized by the
lowest changeability, low standard deviation and the same
mean.

The next stage of the discussed investigations will be
defining the minimum length of the time window and
minimum number of trials, and further - executing of
experimental studies.
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