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ABSTRACT Adaptive Block-Based Compressed Sensing (ABCS) enables optimization of image and video
sensing platforms with limited resources, using novel algorithms for efficient reconstruction and real-time
operations. Taking number of measurements adaptively based on information contained in each block
of the image, results in better quality of recovered image, and is paving ways for general purpose use
of compressed sensing in various applications. Some of the major challenges in ABCS are, complexity
introduced at encoder end for adaptive rate allocation and choosing or learning a measurement matrix
for each allocation rate. As part of this paper, we introduce a novel adaptive measurement allocation
technique based on edge information with in the block. The algorithm is further improved by giving special
considerations for edges present at the block boundary. DCT (Discrete Cosine Transform) dictionaries are
used for measurement and recovery. Using simple encoding for measurement allocation greatly reduces the
complexity of encoder network in this scheme. Recovery is done by simple IDCT (Inverse Discrete Cosine
Transform) in case of DCT dictionaries. This approach demonstrates high effectiveness without the need for
computationally expensive GPU-based training. To assess the network’s generalizability, we conducted tests
using both natural andmedical images. Remarkably, the method exhibited consistent accuracy across various
measurement rates in both scenarios. The recovery time for compressively sensed images, whether they are
natural or medical, is real-time, with an average duration of around 50-65 milliseconds. The algorithm is
also used in conjunction with Content Aware Scalable deep compressed sensing Network (CASNET) to get
learned matrix for measurements on encoder side and pretrained model for reconstruction on decoder side.
Proposed method not only converges in constant time across blocks in contrary to the rate allocation method
of CASNET, but also outperforms the recovery quality in lower measurement rates. Extensive experimental
results shows that proposed algorithm out performs other state of the art algorithms recovery.

INDEX TERMS Adaptive block based compressive imaging, rate allocation, compressed sensing, random
sensing matrices, learned sensing matrices, deep compressed sensing.

I. INTRODUCTION
The rapid increase of sensors and sensing systems in current
period of time has fueled a digital revolution. This techno-
logical advance has yielded huge amounts of high-resolution
data. However, managing and storing such massive volumes
of information is a big challenge. Thus, there is a need for
solutions that can efficiently reduce transmitted data or offer
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substantial capacity for storage. Various approaches have
been devised and embraced to address this demand. Com-
pression of the sensed data thus, is of paramount importance
in current day world. Traditional signal processing follows
the Shannon-Nyquist theorem. The theorem states that signal
or image acquisition should occur at a rate at least twice
the highest frequency of the signal. In practice, because of
the sheer volume of data generated by sensors, traditional
approaches become ineffective and expensive. For instance,
JPEG compression, while effective, can be resource-intensive
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and time-consuming. As sensor technology continues to
evolve, striking a balance between data fidelity and efficiency
becomes even more critical. To accommodate ever expanding
sensor data, innovations in compression algorithms and stor-
age systems are essential. Contrary to traditional methods that
adhere to the Shannon-Nyquist theorem, compressed sensing
(CS) allows us to capture data at a lower rate by taking few
measurements while still ensuring accurate image recovery.

Compressed sensing (CS) is a groundbreaking approach
that capitalizes on the compressibility and sparsity of sig-
nals, in specific transform domains, to reduce the required
measurements. Sparse representations of signals allow us to
explore high-dimensional data and uncover underlying struc-
tures. By exploiting the inherent sparsity of signals: even with
fewer measurements, original image can be reconstructed
even in presence of noise [1]. CS recovery is backed by strong
mathematical guarantees.

However, CS comes with certain limitations:
Non-Adaptive Random Projection: CS applies non-

adaptive random projection for measurement vectors. The
direction of projection is random, due to which the efficiency
of recovery can be affected [2].
Uniform Energy Contribution: In traditional CS algo-

rithms, all signal components contribute with equal probabil-
ity and contribute the same energy. This uniform distribution
may be sub optimal for few scenarios.

Quality vs. Measurement Trade-Off: Achieving high-
quality signal recovery with minimal measurements continue
to be a major challenge.

Complex Recovery Process: While CS simplifies com-
pression during acquisition, the subsequent recovery process
is resource-intensive.

These challenges limit the widespread adoption of CS
technology for general purposes.

To address the limitations of traditional CS, BCS (Block
Compressed Sensing) is used in literature [3].
In BCS, the image is divided into blocks which are

non-overlapping, and each of the block is processed indepen-
dently. In contrast, traditional compressive sensing processes
the entire image and collects measurements using a single
measurement matrix, which can be computationally inten-
sive. In contrast, BCS simultaneously processes these blocks
using the measurement matrix. This approach captures the
structural aspects of all parts of the image effectively, and aids
in better reconstruction.

BCS removes constraints on resources and grants the abil-
ity to sense and process images of any dimension. Thus, BCS
makes itself adaptable to various practical scenarios.

Like traditional CS, BCS also employs a wide variety
of recovery algorithms. OMP (Orthogonal matching pur-
suit),Matching pursuit and (COSaMP) compressive sampling
matching pursuit [4], [5] are few examples for greedy
algorithms used for recovery. Using right measurement
matrix plays a pivotal role in effectively using CS. BCS
employs matrices like Bernoulli, Toeplitz, Gaussian, partial
Hadamard, partial Fourier and sparse binary random matrix.

These matrices must satisfy the Restricted Isometry Prop-
erty (RIP) to ensure accurate signal reconstruction. The RIP
ensures that the matrix preserves the sparsity of the signal
during the sensing process [6].

BCS is very effective when compared to traditional CS in
capturing measurements across blocks in the image. How-
ever, there are some challenges with BCS algorithms. When
processing the image as a whole, contains lot of repetitive
structures and sparsity. The blocks in BCS do not have the
same level of compression ratio/ sparsity. BCS can enable
parallel processing of blocks hence achieve faster recovery.
Many times, blocking artifacts are observed in recovered
image since inter block relationships are often ignored due
to abrupt transitions between adjacent blocks.

Adaptive Block based Compressive Sensing (ABCS) is a
remarkable advancement in BCS, as it tackles the challenges
posed by traditional methods. ABCS dynamically allocates
measurements to each image block based on the presence of
information in it. Some blocks may predominantly contain
background (low information), while others hold significant
details (high information). While assigning higher measure-
ment rates to informative blocks and lower rates to less critical
blocks, ABCS maintains an overall measurement rate and
balances efficiency and fidelity [7].

ABCS effectively captures the most significant informa-
tion across all blocks. This adaptability ensures that essential
details are preserved while optimizing data acquisition. How-
ever, it also increases the encoder complexity and acquisition
time by introducing rate allocation algorithms at encoder
side. There is a need to maintain N- number of random
matrices, one for each allocated rate and to be sent to
decoder as well in order to recover corresponding image
block.

This problem is solved by various approaches in literature.
Certain techniques opt for a fixed number of measurement
variations. In this scenario, a predetermined set of random
matrices are learned and maintained against these measure-
ment rates. This simplifies the process by avoiding dynamic
matrix generation [8]. CASNET, creates a huge learned dic-
tionary [9], where a sub part of it is used as measurement
matrix based on allocation rate.

Fewmethods employ deterministicmatrices likeHadamard,
2D DCT (Discrete Cosine Transform), or DWT (Discrete
Wavelet Transform) for takingmeasurements. Thesematrices
cater to the problem by providing predictable and structured
measurement patterns. Despite the non-RIP compliance of
the ensuing measurement matrix in these cases, the L-DCT-
ZZ [10] algorithms utilize, low-pass, 2D Discrete Cosine
Transform (2D-DCT) matrices for measurement. Since the
transform coefficients’ location is known, enables for trivial
recovery of image blocks using the 2D IDCT in mere mil-
liseconds.

We summarized the existing ABCS algorithms, in follow-
ing sections, and also proposed novel adaptive rate allocation
algorithm and tested it against both natural and medical
images.
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A. CONTRIBUTIONS
As part of this paper, we proposed a novel adaptive block
based compressive sensing algorithm by using edge informa-
tion in the block. The proposed algorithm is further improved
by adding extra weight in blocks containing edge pixels in
block borders. This ensures reduced blocking artifacts in
recovered image.

The proposed model is tested against standard data sets of
natural images as well as medical images using standard 2D
DCT dictionaries. PSNR (Peak Signal to Noise Ratio) and
SSIM (Structural Similarity Index Measurement) of recov-
ered images are compared. The method’s performance is
consistent for both natural as well as medical images. The
recovery time of each image is also captured.

The proposedmethod is further tested against CASNET [9]
recovery. In CASNET the rate allocation algorithm is based
on a light weight CNN (Convolution Neural Network). This
is replaced by proposed method which does not require any
GPU or high accelerated processor. The performance of pro-
posed measurement algorithm is superior to CASNET in
lower measurement rates.

B. ORGANISATION OF PAPER
Section II Introduces Compressed sensing theory and
explores the related work done in the field of CS and DCS
(Deep Compressive Sensing). In Section III, we explore,
Adaptive Block Compressive Sensing (ABCS) algorithms.
Sections IV presents the Edge based Adaptive Rate Allo-
cation (EARA) algorithm and its improvement for special
consideration of border pixels WEARA (Weighted Edge
based Adaptive Rate Allocation). The empirical investiga-
tions are presented in Section V, where we compare these
algorithms with other adaptive CS methods. Additionally, the
algorithm is tested against DCS algorithm CASNET. Finally,
Section VI provides conclusions drawn from the study and
future scope.

II. COMPRESSIVE SENSING AND RELATED WORK
The theory of compressed sensing is introduced in this
section. Related work done in CS recovery in BCS and DCS
approaches are also presented.

A. COMPRESSED SENSING THEORY
CS theory suggests to take measurements instead of samples
for direct compression at the time of sensing. Consider an
image f which is an N ∗N dimensional according to Shannon-
Nyquist theorem. That means, to capture all details of f ,
at least N∗N samples to be taken. Many signal encoding
methods leverage the sparsity of the signal or image in some
domain and compress it after acquisition. Compressive sens-
ing builds on the same point that almost all the images/ signals
are sparse in some domain. Let ψ be an ortho normal basis in
which f is sparse such that

f = ψx (1)

where x is K sparse and K≪N. By taking M measurements
(M>K by small factor) from the image using a measurement
matrix φ, the sparsity of x is randomly projected through the
measurements.

y = φx (2)

At recovery end, x̂ is reconstructed by l0 minimization and f̃
can be reconstructed back from x̂ by using reverse transfor-
mation on basis ψ . But in practical scenarios l0 minimization
is challenging. According to Cades and Tao [1] l0 mini-
mization can be replaced with l1 minimization, as long as
measurement matrix φ satisfies RIP (Restricted Isometry
Property). Equation (3) show the recovery of x̂ from l1 mini-
mization.

x̂ = argmin||x∥1; s.t
1
2
∥(y− φx)∥22 ≤ ϵ (3)

B. COMPRESSED SENSING RECOVERY METHODS
There are various algorithms proposed in literature for CS
recovery. Non-neural-network based solvers are basically
optimization algorithms which try to solve the convex opti-
mization problem. Recovery of X is generally done based on
equation (4) where algorithms use some regularization term.

x̂ = argmin
x

1
2
∥(y− φx)∥22 + λR(x) ≤ ϵ (4)

where λR is a prior with λ as regularization term. Some of the
famous algorithms in this category include ADMM (Alter-
nate Direction of Method of Multipliers), ISTA (Iterative
Soft Thresholding Algorithm), AMP (Approximate Message
Passing) and TV (Total Variation) based algorithms [11], [12]
[13]. Some of the algorithms use Bayesian priors [14], [15]
[16]. Edge CS [17] proposes the use of edges information to
aid in overall reconstruction of the original image.

With advancement of deep learning models and Nural
networks, there are CS recovery algorithms proposed that
uses neural network architectures. There are native neural
network implementations as well as neural networks formed
by unfolding iterative algorithms. CNN based neural net-
work is proposed in MD-Recon-Net [18], CSNET+ [19],
[20], CNN With Attention [20]. OPINE-NET [21], ADMM-
CSNET [22], ISTA-NET+ [23] andAMP-NET [24] are some
examples of neural network based unfolded iterative algo-
rithms. In these networks, neural network translations of the
state of art iterative algorithms are unfolded and trained end
to end. Most of these recent Deep learning based iterative
CS algorithms propose end to end learning and optimization
of Neural network along with the sampling matrix. Refer-
ence [25] gives review of various CS recovery algorithms.

Block based Compressive Sensing, increased the gener-
alizability of CS by catering to images of any dimension.
It divides the image into non overlapping blocks and take
measurements from each block. There are number of CS
recovery algorithm proposed in literature based on BCS. For
example, AMP-NET, ADMM-CSNET and ISTA-NET+ also
uses BCS and recovers the image blocks and combines them
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back to an image. Since inter block relationships are not con-
sidered in these methods, blocking artifacts are observed in
the recovered image. Various schemes are used in literature to
overcome blocking artifacts. AMPNet uses De-blocker mod-
ule, a BM3D based filter is used in DR2Net [26] to remove
the blocking artifacts. BCS-net uses partial image block
recovery and a deep full image recovery to remove block-
ing artifacts.NL-CSNet [27] uses Non local self-similarity
scores to capture long as well as short distance block
relationships.

There are majorly 2 issues in these block-based deep CS
networks. Rate allocation is flat and does not depend on the
information present in each block. Another issue is, each
network is trained against each of standard measurement rate
and resultant measurement matrix is stored. This requires the
network to be trained for n- number of measurement rates
which is complex and costly.

The first problem is addressed by Adaptive BCS in litera-
ture.

BCS-NET uses adaptive rate allocation by creating few
channels and each channel handling a particular measurement
rate. The problem with this approach is, only few measure-
ment rates are being considered as the number of channels
cannot be huge. You et al. [28] proposed a network to handle
the arbitrary number of sampling matrices. However, this
method needs huge number of samplingmatrices for different
measurement rates during training, whichmakes training pro-
cess expensive. The next section discusses ABCS algorithms,
in which most of them uses deterministic 2D DCT or wavelet
dictionaries for measurement and reconstruction.

III. ADAPTIVE BLOCK BASED COMPRESSED SENSING
ALGORITHMS
Apart from non-neural network based iterative methods and
Neural network based Deep compressed sensing methods
which uses fixed number of measurements across blocks,
there are some methods proposed in literature that will allo-
cate measurement rate adaptively based on some measure of
information present in each of the image block.

Gao et al. [29] proposed adaptive BCS measuring different
measurement rates to different blocks, based on sub image
characteristics. In [30] adaptive rate allocation per block
is proposed based on statistical information like Number
of significant DCT coefficients in the block, entropy and
variance. Measurements are readjusted to reach overall mea-
surement rate. However, the number of measurements cannot
be beyond a particular level in each block, causing ineffective
recovery. Among the proposed information, Number of DCT
coefficients is the dimension that is always yielding a good
result. Zhang et al. [31] proposed a method of measurement
rate allocation based on standard deviation. The method is
simple and there is no fixed number of measurement limit.
However, the effectiveness of the method depends on block
size and generally shows good results between measurement
rates of 30% to 50%.

Li et al. [32] proposed measurement rate per block allo-
cated based on calculating error between blocks. If the error
between adjacent blocks is high, it is considered as more
spatial changes between image blocks and allocates more
measurements. Though blocking artifacts are reduced by this
scheme, the cost involved in hardware implementation of the
algorithm proposed at the encoder side is huge.

Algorithm in [33] allocates measurement rates based on
texture contrast with in the block. More measurements are
taken for higher textual contrast blocks. The model shows
consistent high performance across the channels, however,
global weighted reconstruction model used increases the
recovery complexity.

Zhou et al. [34] proposed a saliency based adaptive parti-
tioning method. Generally, in ABCS the block size is fixed,
and only number of measurements will vary based on some
measure of information. But in this scheme, the block size is
adaptive based on the saliency of the image. This is done by
using Kmeans clustering. The major issue with this approach
is the complexity introduced both on encoder as well as
decoder side due to adaptive block size.

Most of the ABCS algorithms discussed uses determinis-
tic dictionaries for taking measurements. Especially most of
them use DCT based measurements. LL-DCT-ZZ algorithm,
is the linear and non-adaptive 2D-DCT CS technique. The
algorithm draws inspiration from work mentioned in [10]
done by Romberg, which observes that compressive sensing
(CS) of images is challenging. To aid faster and better recon-
struction, a set of linear transformmeasurements by using 2D
DCT which are lowpass, acquired in zigzag order just like in
JPEG can aid reconstruction significantly.

Yuan et al. [35] proposed that LL-DCT-ZZ measurements
can be reconstructed back using Compressive Sensing recon-
struction algorithms and showed that the scheme achieved
better performance for SSIM in comparison to JPEG.

Zammit et al. [36] used block boundary variation for allo-
cation of measurement rate. The rate allocation method is
tested against both using deterministic DCT dictionaries and
DAMP based Deep CS recovery. The method is simple and
hardware friendly for implementation. How ever the method
does not perform well especially at lower measurement rates.

Chen et al. [37] proposed a method of rate allocation based
on distortion minimization. Sampling rate is allocated based
on analytical function that minimizes the predicted distortion
of the image block by using one of exponential/ logarithmic or
polynomial model. The method introduces lot of complexity
at decoder end. If the rate allocation happens on receiver, then
a feedback loop of additional overhead is required for sensing
the image. In recent past Adaptive rate allocation is used in
conjunction with Deep compressive sensing and end to end
parameters are learned, along with sampling matrices.

CASNET [9] proposes an adaptive rate allocation and
solves the problem of different sampling matrices, by learn-
ing a huge unified sampling dictionary. Sampling matrix for
any measurement rate is taken as a submatrix with first n∗n
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submatrix from top left corner. The huge sampling matrix is
initialized by eigen values of training set and later learned
during training phase. CASNET allocates saliency-based rate
using a CNN network. Measurements are adjusted based on
an algorithm that converges based on various saliency scores
of the blocks. Though the network solves the problem of
adaptive rate allocation, CASNET introduces complexity on
encoder side of CS, which will be a challenge in sensor-based
networks which generally would not have compute power.
Sometimes the saliency-based rate allocation takes lot of iter-
ations before converging. CASNET also has challenges with
generalizability of Unified sampling matrix, as it is primarily
based on eigen values of training data set and is tested against
only natural images.

IV. PROPOSED ADAPTIVE RATE ALLOCATION
ALGORITHM
Taking inspiration from LL-DCT-ZZ algorithm and using
edge information at each block as a prior, the proposed
algorithm allocates adoptive measurement rate per block. The
proposed algorithm is first tested against 2D DCT dictionar-
ies for effectiveness, as the recovery time is in milliseconds
(real time). The aim is to have minimal complexity intro-
duced at encoder side in adaptive rate allocation as well
as the time taken to allocate measurement rate is minimal.
Figure 2 shows the flow diagram of proposed algorithm, both
at encoder as well as decoder side. Encoder splits the image
into blocks and take measurements either using 2D DCT
or learned measurement matrix. Measurement information is
also passed along with rate information to decoder. Inverse
CS is conducted per block based on rate allocation. Recov-
ered image is formed by combining all the recovered blocks.

Image under consideration is divided into L blocks of
B∗B size as in below equation 5. Padding with 0 intensities
on borders is used to make the image dividable into B∗B
blocks. W and H represents Width and Height of the image
respectively.

L = ⌈W/B⌉ ∗

⌈
H/B

⌉
(5)

A. EDGE BASED ADAPTIVE RATE ALLOCATION
ALGORITHM
Given Image I0, the edges are calculated with the images
across the blocks by gaussian blur followed by canny edge
detection as shown in Figure 1.

Rate allocation per block Si is then calculated by the
equation 6.

Si = Sm + aei (6)

where Sm is the minimum measurement rate for a block with
0 edges. ei represents the edge pixel ratio with in the block. a
represents the scaling factor. Calculation of each of these
terms is elaborated in following equations.
Sm can be calculated from equation 7.

Sm = rS0 where 0 < r < 1 (7)

where S0 is the overall measurement rate we want to achieve,
r is a factor taken in between 0 and 1.

ei = ne/ni (8)

ei represents the edge pixel rationwith in the block, calculated
by equation 8, i.e. total number of edge pixels ne within the
block by total number of pixels ni in the block.

FIGURE 1. Edge detection across blocks using canny edge detection.

In Equation 6 a represents the scaling factor and is calcu-
lated as shown in equation 9.

a = L ∗ (S0 − Sm) /
∑

ei (9)

L here represents the number of blocks in the image.
Rate allocation happens in 4 steps on encoder side with low

complexity.
Step 1: Edge detection per block is done using Gaussian

blur followed by canny edge detector. This ensures that the
edges calculated are robust to noise.

Step 2:Minimum rate allocation for block Sm is selected.
Step 3: Block based adjustments based on edge informa-

tion are calculated as per equation 6
Step 4: Remaining measurements Sa are readjusted to top

edge information contained blocks as per equation 10 &11

Sa = S0 −

∑
Si (10)

Ad = ⌈Sa/m1⌉ (11)

where Ad shows the measurement % to be adjusted, m1
is the number of measurements that represent 1% for the
given block size. For example, for a block size of 32∗32, m1
is around 10 measurements. The number Ad increases 1%
measurements per block in the descending order of edge ratio.
Meaning if Ad = n then n blocks with heist number of edge
pixels in the descending order will get 1% increase in the
measurement rate.

Initially r is taken as 0.5 and then different experiments are
conducted by varying r value and effectiveness is measured.
Measurement and recovery results of the rate allocation
algorithm is presented in the next section

B. WEIGHTED EDGE BASED ADAPTIVE RATE ALLOCATION
ALGORITHM
The algorithm proposed in previous section is improved by
adding extra weight to edge pixels present in the border of
the block.
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Edge is an important characteristic in an image, which
represents rapid changes in the intensity values. Allocat-
ing a greater number of measurements based on number of
edge pixels present with in the block is effective, as the
scheme allocates more measurements to block containing
more edges. The presence of edge pixel in the border of a
block has a special significance, as there is a high probability
of the edge continuing into adjacent block. These pixels carry
extra information beyond the block and often considering
them equal to other edge pixel can cause undesired effects
like blocking artifacts, after recovery.

In order to better address blocking artifacts due to block-
based processing, the scheme allocates extra measurements
based on number of border edge pixels present in the block
according to equation 12

Si = Sm + aei + n ∗
(eb/ei) (12)

Here eb represents edge pixels in border in ith block and ei
is number of edge pixels in ith block. 0<n<3, is a small
multiplication factor to add additional weight.

For simplicity, we took n=1 and conducted the experi-
ments.

Due to this special consideration for border edge pixels,
sometimes, depending on the image as well as block size
the measurement rate is greater than 100%. But taking 100%
measurement rate does not make any sense in case of CS.
So, the measurement rate is capped at 90% as a threshold
in case of measurement rate going beyond 90%. Remaining
adjustments shown in step 4 are calculated and adjusted as
per equation 10 & 11.
Figure 10 shows the representation of block of image.

Yellow areas represent edge pixels ei, and areas in light brown
represent edge pixels in border eb.

FIGURE 2. Flow diagram of adaptive block based compressive sensing
based on edge information.

Algorithm1 and 2 below details out the proposed
edge-based rate allocation algorithms

V. SENSING AND RECOVERY AND RESULTS ANALYSIS
A. RECOVERY USING DCT / IDCT DICTIONARIES
The proposed algorithms are first tested using 2D-DCT
dictionaries and IDCT is applied at the decoder end for
recovering the original image. For instance, Monarch image
as shown in figure 1, when conducted experiments with 32∗32
block size, to achieve 10% measurement rate, a block with
highest edge pixel ratio got 18% measurement rate while the

Algorithm 1 Edge Based Rate Allocation (EARA)
Input: Image I, block size B, compression factor S,

Algorithms used for reconstruction =

{IDCT2| CASNET}.
Output: Image Io is sensed through EARA

algorithm and reconstructed using the reconstruction
algorithms

1 Divide the image I into L Block of size B∗ B each
L = ⌈W/B⌉ ∗ ⌈H/B⌉

2 Blur the image block using Gaussian Blur
3 Detect the edges using Canny edge detector
4 Calculate minimum allocation rate Sm by

setting rate factor r
5 For each block b in blocks:
6 Calculate edge pixels ratio ei = ne/ni
7

∑
e+ = ei

8 Calculate the edge factor a = L ∗ (S0 − Sm)/
∑
ei

9 Measurement per block Si = Sm + aei
10 Complete the remaining adjustments
11 Collect Si measurements per block
12 Transmit measurements & number of measurements

per block to decoder
13 Reconstruct Io at the output per reconstruction algorithm

Algorithm 2 Weighted Edge Based Rate Allocation
(WEARA)
Input: Image I, block size B, compression factor S,

Algorithms used for reconstruction =

{IDCT2| CASNET}.
Output: Image Io is sensed through WEARA

algorithm and reconstructed using the reconstruction
algorithms

1 Divide the image I into L Block of size B∗B each
L = ⌈W/B⌉ ∗ ⌈H/B⌉

2 Blur the image block using Gaussian Blur
3 Detect the edges using Canny edge detector
4 Calculate minimum allocation rate Sm by setting

rate factor r
5 For each block b in blocks:
6 Calculate edge pixels ratio ei = ne/ni
7 Calculate edge pixels at block boundaries
8

∑
e+ = ei

9 Calculate the edge factor a = L ∗ (S0 − Sm)/
∑
ei

10 Measurements Si = Sm + aei + n ∗ (eb/ei)
11 Adjust measurements with max cap of 90%
12 Collect Si measurements per block
13 Transmit measurements to decoder
14 Reconstruct Io at the output per reconstruction algorithm

block with no edge pixel got 5% measurement rate since r is
taken as 0.5 in the first iteration.

Once the measurement rate is allocated per block, DCT is
applied on each block of the image. First n coefficients as per
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FIGURE 3. Parrots, camara man, peppers, boats, barbara, monarch, house and forman images (256 X 256) used for testing.

TABLE 1. Avg PSNR/SSIM for different IDCT based methods.

the measurement rate allocated are captured in zig zag order
as shown in figure 4. Set 11 Dataset is used for evaluation.
Set11 consists of 11 gray scale images of size 256∗ 256.
8 images of size 256 ∗ 256 each from data set ‘set11’ are used
for evaluations. The images used are shown in figure 3. Each
image is tested for different measurement rates from 0.04,
0.1,0.2, 0.3, 0.4, 0.5.

The effect of rate factor r is shown in figure 5 for different
measurement rates. Set of 8 images in Figure 3 are taken,
WEARA based rate allocation is performed for 32∗32 blocks
with multiplication factor n is taken as 2. DCT/ IDCT is
used for sensing and reconstruction. Average PSNR values
of recovered images. At lower measurement rates, small rate
factor (r=0.3) has more performance by small margin, as the
measurement rate increases, small rate factor is not effec-
tive. Effectiveness of rate factor increases till r=0.5 and has
counter impact once r > 0.5 onwards. Taking these factors
into consideration, r is fixed at 0.5.

The comparison of Average PNSR using proposed meth-
ods with AL-DCT-BBV method [36] and EFM-Exponential
method [37]. Clearly proposed methods outperform the
PSNR values by a large margin. Effectiveness of weighted
edge-based rate allocation (WEARA) is a small margin in
lower measurement rates, but shows clear margin in higher
measurement rates. Time taken for recovery at any measure-
ment rate in this setting is in range of 50-65 milli seconds,
making it real time reconstruction.

Table 1 shows the comparison of Average PSNR and SSIM
obtained by similar DCT/IDCT based recovery methods with
the proposed Edge pixel-based methods. Clearly proposed
algorithms have better PSNR and SSIM values for wide range
of CS ratios. Comparing between the two proposed methods
as shown in Figure 6, PSNR ofWEARA is better than EARA
algorithm. SSIM values are very close and at higher CS ratios

FIGURE 4. Zigzag order of reading DCT coefficients.

better SSIM is observed in EARA based algorithm without
using weights.

Figure 13 shows the comparison of Parrot recovered image
at different rates of measurement using WEARA algorithm
using DCT. Subjective quality of recovered image can be
compared by understanding texture features around the eye
of the parrot.

B. RECOVERY USING CASNET
In the recent past, many State-of-the-Art algorithms are
proposed in CS recovery based on Deep learning based
compressed sensing. In this section we test the proposed
algorithms in conjunction with the work done by Chen et al.
[9], the deep neural network they proposed is called CASNet.
CASNET hasmajorly 3 sub networks. Sampling Subnet (SS),
Initialization subnet (IS) and Deep Recovery subnet (RS).
Sampling subnet has a neural network which creates the

159420 VOLUME 12, 2024



V. Pavitra, V. B. S. S. I. Dutt: Block-Based Adaptive CS by Using Edge Information for Real-Time Reconstruction

TABLE 2. Average PSNR/SSIM for Set 11 by various Deep compressed sensing methods.

saliency map for the image block and allocates measurement
rate for it. To get to the overall desired measurement rate it
uses Block Ratio Aggregation strategy (BRA). We replace
the Sampling subnet with the proposed algorithm for mea-
surement rate allocation. For recovery remaining 2 subnets
are used as is.

FIGURE 5. Effect of r value on different measurement rates.

The experiment is done to check the adaptability of the
proposed algorithm with any effective custom recovery tech-
nique.

Unlike many other Deep compressed sensing techniques,
in which models are trained separately for different measure-
ment rates, CASNET uses a Unified learnable Generating
matrix A, fromwhich first q rows are used as sampling matrix
based on sampling rate q. A is initialized by using Singular
vale Decomposition of training set and later learned as part
of training process.

At the recovery end, initial estimate of the recovered signal
is done by using the equation below

x̂(0)i = ATqiyi (13)

Recovery is iteratively done by using proximal gra-
dient descent implemented through CNN, by solving

equations 14 & 15

z(k) = x̂(k−1)
− ρφT

(
φx̂(k−1)

− y
)

(14)

x̂(k) = argmin
x

1
2

∥∥∥(
x − z(k)

)∥∥∥2
2
+ λR(x) (15)

where k represents the iteration index of PGD and ρ denotes
the step size. Equation 14 is general step in gradient descent,
and equation 15 shows the proximal mapping step. λR repre-
sents regularization term.

FIGURE 6. Avg PSNR of different methods, r = 0.5 for proposed methods.

We used the Weighted edge-based rate allocation algo-
rithms for measurement rate allocation with r=0.5 and n=1
and then used the rest of the implementation of CASNet as is.
Experiments are conducted with set 11 dataset with different
measurement rates. The comparison of Weighted edge-based
Rate allocation method using CASNet against other 8 state
of the art methods are shown in Table 2. Proposed method
in conjunction with CASNet outperform CASNET and other
methods, with consistent higher PSNR across all measure-
ment rates. SSIM values are generally better, except for 25%
and 30%measurement rates, where SSIMof CASNet is better
by a very small margin. Figure 7 shows and compares the
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FIGURE 7. Forman visual comparison after recovery by various methods.

FIGURE 8. Medical images used for evaluation (a) Human head subset - proton density (b) T1 Human head subset (c) T2 human head subset (d) Thorax
subset -Proton density (e)T1- Thorax subset (f) T2- Thorax subset.

visual results of recovered image of foreman image using
different state of the art recovery techniques.

C. RESULTS FOR MEDICAL IMAGES
Proposed rate allocation methods are tested against 6 med-
ical images taken from Visible human project initiated by
the National Library of Medicine (NLM). Images in Visible
Human Project are openly accessible for research purposes.
The Dataset consists of CT,MRI and Cryosection of human
subjects [39]. T1, T2 and Protein density images of Head
Subset and Thorax Subset respectively are taken into consid-
eration. Each image is of size 256∗256. The images are shown
in Figure 8.

Medical images are sensed and reconstructed using pro-
posed algorithms, both with deterministic as well as CASNet
implementations.

Unlike the natural images, medical images have different
patterns exhibited. In general, MRI based scans are sparser
and more compressible when Fourier dictionaries are used.
But to check the generality of the proposed algorithm and
easier comparison, we used DCT based deterministic dictio-
naries for these medical images.

The medical images are sampled by using 32 ∗ 32 blocks
with WEARA as well as EARA algorithms as part of our
experiments. Table 3 shows the results of PSNR/SSIM of
6medical images usingWEARA algorithm usingDCT/IDCT
recovery.

Figure 9 shows the visual comparison of recovered image
which is sampled using WEARA using IDCT at 30%

FIGURE 9. Comparison of recovered image (left) and original image for
30% sampling of proton head sub image (PSNR/SSIM: 31.64/0.9642).

FIGURE 10. Representation of edge pixels and border edge pixel in the
block.

sampling rate. Figure 11 shows the detailed view of high-
lighted areas in figure 9.

At 40% or 50% measurement rates the distortions in the
detail are small compared to 30% or lower. Table 4 shows
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TABLE 3. Average PSNR/SSIM with WEARA for 6 medical images using
DCT/IDCT dictionaries.

FIGURE 11. Comparison of differences in highlighted spots. Ground
reality(upper) recovered (lower).

the comparison of computational complexity using DCT dic-
tionaries. Clearly other state of art methods has Millions of
parameters to be trained with high compute machines like
GPUs.

FIGURE 12. Average PSNR for r =0.5 for EARA and WEARA rate allocation
on 6 medical images using DCT.

FIGURE 13. Parrot recovered using IDCT with WEARA for 10, 25, 30 and
40% measurement rate- PSNR(DB)/SSIM values shown at bottom.

FIGURE 14. Comparison of computation time using DCT vs Deep
learning-based recovery.

FIGURE 15. Thorax Proton density image original (left), recovered from
30% measurement using CASNET PSNR(DB)/SSIM: 36.05/0.9470.

Figure 12 shows the comparison average PSNR of EARA
andWEARA algorithms for recovery of 6 medical images for
different measurement rates. At lower measurement rates the
advantage of weighted rate allocation is very small, however
from measurement rates > 20% the advantage in PSNR is
clearly visible using WEARA algorithm.

Figure 14 shows the image recovered using CASNET with
WEARA algorithm at 30% measurement rate. At measure-
ment rates lesser then 10% (1%, 4%) blocking artifacts are
clearly observed in medical images using both CASNET
as well as 2D DCT dictionaries. From 10% onwards the
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TABLE 4. Comparison of computational complexity.

recovered signal has understandable details when compared
visually. Comparison of recovery time using simple DCT
based dictionaries vs Model based deep learning is con-
ducted. Time measured for CASNET based deep learning
model is obtained by using L4 GPU machine. Whereas the
time obtained using DCT dictionaries is by using 8 core, 1TB
CPU machine without using expensive GPUs.

The results are represented in Figure 15. Clearly DCT
based sensing and recovery took much less time for both
medical and natural images when compared to Deep learning
recovery. In case of CASNET or EARA based (for measure-
ment allocation) CASNET for reconstruction computational
time is higher compared to DCT dictionaries. Hence DCT
dictionaries can ensure real time reconstruction at all mea-
surement rates.

VI. CONCLUSION AND FUTURE WORK
Two adoptive rate allocation ABCS algorithms are proposed
based on edge information in each block of the image. In both
of the algorithms simple edge detection techniques and linear
equations to calculate the rate allocation per block are used.
Since rate allocation is linear and simple, it is much suitable
for sensors which generally has less compute power.

The proposed algorithms are tested against set of 8 natural
images using deterministic DCT dictionaries to understand
the effectiveness. Time taken to recover original image is
in the range of 50 to 65 milliseconds, making it real time
reconstruction.

The proposed algorithm is also tested using CASNET
where measurement matrix is taken as a submatrix from
a unified learned measurement matrix. Recovery of image
using CASNET using the proposed rate allocation techniques
have outperformed other state of the art techniques.

To understand the generalizability of the algorithm, it is
tested against a set of 6 medical images with different
measurement rates with DCT/ IDCT as well as CASNET
recovery. In both cases the recovered images exhibited high
PSNR and SSIM values, showing the adoptability of the
proposed algorithms.

Comparison of recovery time and computational complex-
ity using DCT vs trained dictionaries of various methods is
also presented.

In future, the proposed algorithms can also be compared
for video encoding applications. Apart of edge only infor-
mation, consideration of texture information in combination
to edge information might further enhance the performance
across wide range of images. This can be improved as part
of future work. Comparison of proposed method against
different deterministic measurement matrices like Bernoulli/
Fourier can also give valuable insights and might help adopt-
ing the right measurement matrix for real-time high-quality
recovery.
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