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ABSTRACT In recent years, deep convolutional neural networks (CNNs) have significantly improved
pansharpening performance compared to traditional methods. However, existing CNN-based methods for
pansharpening still lack spatial detail and suffer from spectral distortion. To address this problem, this study
proposed a deep learning network based on channel and spatial attention mechanisms to enhance the spatial
resolution and decrease the spectral distortion of a pansharpened image. The proposed network consists
of a shallow feature extraction (SFE) unit to exploit the spatial and spectral features of the panchromatic
(PAN) and multispectral (MS) input images. Furthermore, a double-attention feature fusion (DAFF) module,
which consists of residual double-attention modules (RDAMs) with long and short skip connections, was
designed to improve the spatial resolution and alleviate the spectral distortion of the output image. In the
experiments, we utilized a deep internal learning strategy in which training data were extracted from a large
scene of the observed image itself. We evaluated the effectiveness of the proposed method usingWorldView-
3, Spot-7, Pleiades, and Geoeye datasets. The performance of the proposed method was compared with
some existing deep learning-based pansharpening techniques: deep residual pansharpening neural network
(DRPNN), residual network (ResNet), residual dense model for pansharpening network (RDMPSnet),
symmetric skipped connection convolutional neural network (SSC-CNN), and triplet attention network with
information interaction (TANI). The experimental results revealed that the proposed method outperformed
all the other methods in terms of quality evaluation metrics and visualization.

INDEX TERMS Channel attention, deep internal learning, multispectral, pansharpening, residual, spatial
attention.

I. INTRODUCTION
Most satellite systems acquire two types of images: single-
channel panchromatic (PAN) images with high spatial
resolution and multispectral (MS) images with low spatial
resolution. Many remote sensing implementations, such as
environmental monitoring, target detection, classification,
scene interpretation, urban planning, and surveillance [1],
[2], [3], [4], require high-resolution multispectral (HRMS)
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images. Pansharpening is an effective method for obtaining
these types of images. This technique is used to improve
the spatial resolution of an MS image by fusing it with a
high-resolution PAN image, as shown in Fig. 1.
Pansharpening is an active research topic, and several

studies have proposed pansharpening algorithms [5], [6], [7],
[8], [9]. These algorithms can be divided into two main
classes: classical and deep learning-based methods. Among
the various classical approaches, component substitution
and multiresolution analysis are two widely representative
categories [6]. Examples of component substitution-based
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methods include intensity hue saturation (IHS) [10], Brovey
transform [11], Gram-Schmidt (GS) [12], and principal com-
ponent analysis (PCA) [13]. Component substitution-based
methods estimated spatial details using information from
PAN image. The MS channels were upsampled to PAN
resolution and transformed into an alternate color space
by spectral transformation (such as IHS, GS, PCA, and
Brovey transform). The component in the transformed space
was then substituted with a PAN image to enhance the
spatial resolution. A sharpened image was produced after
applying the reverse transformation. These methods were fast
to execute, simple to implement, and resistant to aliasing
and misregistration issues; however, they introduced more
pronounced spectral distortions [14]. Meanwhile, multireso-
lution analysis-based methods extracted spatial details from
PAN image and injected them into the MS bands. Several
approaches were used to perform the extraction, such as
using a wavelet transform [15], Laplacian pyramid [16], or a
smoothing filter [17]. Multiresolution analysis-based meth-
ods were effective for reproducing spectral content; however,
they typically provided poor fusion results regarding spatial
detail [5].

FIGURE 1. Pansharpening concept. The PAN and MS images are combined
to produce an MS image with higher spatial resolution.

In the last few years, deep learning-based approaches
have been proposed in many studies for remote sensing
image enhancement tasks, such as single-image super-
resolution [18], [19], [20], [21], [22] and multi-image super-
resolution or pansharpening [23], [24], [25], [26], [27], [28],
[29]. Deep learning has gained popularity owing to its robust
capabilities and comprehensive learning approaches [14].
The first deep learning approach for pansharpening, known
as pansharpening using convolutional neural network (PNN),
was introduced by Masi et al. [23]. The PNN comprised
three convolutional layers, with different feature maps for
each layer. The structure was adapted from a super-resolution
convolutional neural network (SRCNN), designed for single-
image super-resolution [30]. Following PNN, deeper and
wider convolutional neural networks (CNN) with different
architectures and learning methodologies were explored to
increase the model’s performance and robustness.

Some researchers proposed pansharpening architectures
with residual learning and specific adaptations to overcome
the limitations of deep networks. Wei et al. proposed
deep residual convolutional neural network (DRPNN) and
obtained better results than PNN and classical methods [31],
[32]. Palsson et al. used a deep CNN with a residual
network (ResNet) to fuse fine and coarse spatial resolution
bands in Sentinel-2 images. The study revealed that the
residual architecture accelerated the convergence of deeper
networks by freeing the network from learning the coarse
spatial resolution part of the inputs, thereby allowing it to
concentrate on building missing fine spatial details [29].
Vionthini et al. proposed RDMPSNet, a deep residual dense
model for pansharpening satellite data. In this method,
a densely connected layer in the residual network was pro-
posed to preserve spectral information from a low-resolution
MS image and spatial information from a high-resolution
PAN image [33]. Nguyen et al. used a symmetric skipped con-
nection convolutional neural network (SSC-CNN), inspired
by the U-Net architecture to improve the spatial resolution
of remote sensing images. The skipped connection in this
method improved convergence without the use of too many
layers [28].

In another study, generative adversarial network (GAN)
strategies were used for pansharpening. In 2018, Liu et al.
proposed PSGAN (pansharpening using a generative adver-
sarial network) to effectively preserve the latent information
of features using a two-branch architecture as the generator
and a three-convolutional layer network as the discrimina-
tor. The two-branch architecture in the generator network
was better than the one-branch architecture at improving
the spatial details of the fused image [34]. Recently,
a multiscale unsupervised network based on generative
adversarial networks (Mun-GAN) consisting of a generator
and two discriminators was proposed for pansharpening and
competitive results were obtained [35].

Previous studies with deeper and wider convolutional
neural networks have improved the fusion quality. Never-
theless, a few issues associated with previous CNN-based
methods were introduced during fusion. MS and PAN
images contain different types of information. PAN images
provide high-frequency and spatial information, whereas
MS images are rich in spectral information and low-
frequency components. With considerable redundancy, it is
challenging to determine the relationship between them [36].
Each convolutional operator had only one local receptive
field throughout the convolutional process. Because context
information could not be adequately exploited, the obtained
features were likewise devoid of context information [36].
Furthermore, most current CNN-based methods handled
all channel-wise features equally. This process hindered
representational ability, and pansharpened images lacked
spatial details and suffered from spectral distortion [37]. This
condition affected remote sensing image analysis tasks that
rely on spectral features and spatial information, such as
target segmentation and object identification.
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FIGURE 2. The difference between supervised learning and deep internal learning for super-resolution. In supervised
learning, training was done using many external datasets of both low- and high-resolution image pairs. Then, the trained
model was used to increase the test images that were not used in the training process. In deep internal learning, the model
learns to recover a test image from the downgrade resolution of the test image itself [38].

To solve this problem, this study proposed a pansharpening
method that combined channel and spatial attention mecha-
nism networks, namely the residual double-attention network
(RDAN). The attention mechanism, which can learn correla-
tions between channels, has resulted in significant improve-
ments in image classification [39], object detection [40],
and super-resolution tasks [41]. Recently, it has been proven
to be effective in improving pansharpening performance.
For example, Zhang et al. added an attention mechanism
module to the Tri-UNet structure to capture multi-level
features and minimize the loss caused by downsampling [37].
Salvetti et al. used a residual channel attention mechanism in
a two-stream network to learn the interdependence between
channels. Based on this dependency, the correlation features
among the channels were adapted such that spatial and
spectral information were extracted exclusively [42]. Li et al.
proposed a cross-attention-based depth unfolding iteration
(CADUI) for pansharpening, which optimized deep prior
regularization and combined it with a cross-attention mecha-
nism. This method was proven superior to the other evaluated
methods [43]. Diao et al. adopted attention mechanisms
with information interaction to learn the spatial and spectral
components in source images more efficiently. This method
produced competitive results compared with state-of-the-art
methods [44].
The contributions of this study are summarized as follows.

First, we introduced a network with spatial and channel-wise
attention with residuals in the residual architecture. Channel
and spatial attention caused the network to focus on key
information, and the residual structure preserved the spectral
resolution of the fused image. Second, a feature extraction
was performed using shallow convolution layers before
fusing theMS and PAN feature images. The feature extraction
module takes advantage of the spectral and spatial properties

of MS and PAN images. Third, a deep internal learning
strategy was used to address the limitations of the training
data. In the deep internal learning method, pansharpening
was performed without extensive external data for training,
relying solely on a large number of small image patches of
the observed image.

The remainder of this paper is organized as follows. The
details of the proposed method are presented in Section II.
The experimental setup is described in Section III. Section IV
summarizes the experimental results and discussion, and
Section V concludes the paper.

II. PROPOSED METHOD
A. DEEP INTERNAL LEARNING
Pansharpening is a technique for improving the spatial
resolution of an MS remote sensing image by fusing it with
spatial information from a PAN image, as illustrated in Fig. 1.
This technique is known as multi-image super-resolution
in remote sensing implementations, in which two types of
images are used as inputs.

In this study, an observed MS image is denoted by
IMS ∈ Rw×h×c, the PAN image is represented by IPAN ∈

Rrw×rh, and the pansharpened MS image is represented by
IHRMS ∈ Rrw×rh×c. w and h are the width and height of
the MS image, respectively, r is the ratio of the spatial
resolution between IPAN and IMS , and c is the number of
channels in theMS image. The pansharpening problem can be
formulated in (1).

IHRMS = f ( ˜[IMS , IPAN ]; θ) (1)

where f (.) is a pansharpening model to produce IHRMS
from the interpolated MS image ( ˜IMS ) and IPAN as inputs,
and θ is a network parameter consisting of weights
and biases.
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FIGURE 3. Schematic diagram of pansharpening using a deep internal learning strategy. In the training stage, training data were extracted from the
observed data (a large scene of PAN and MS images, denoted as IPAN and IMS , respectively). In the upper channel of the training phase, the MS image was
split, and the image patches were treated as references. In the two lower channels, the PAN and MS images were reduced in resolution (denoted as Ipan
and Ims, respectively) by their respective ratio, and then the MS component was interpolated. The results were split and fed to the network. The network
learned to reconstruct the MS image patches from their reduced-resolution. In the testing stage, the PAN and interpolated MS image were split and fed to
the trained model to produce the panshapened MS image patches. In the last step, the patches were tiled to obtain the whole pansharpened MS image.

Although deep learning technologies have significantly
improved the pansharpening performance, most implemen-
tations employ supervised learning, which requires many
low- and high-resolution image pairs for training. In practice,
pansharpening implementations often face unavailability of
such image pairs. To overcome this problem, a deep internal
learning strategy was utilized. This strategy was inspired
by zero-shot super-resolution using deep internal learning,
as described in [38], for single-image super-resolution.
Fig. 2 shows the differences between the deep internal
and supervised learning methods for single-image super-
resolution. In the supervised learning method, training was
performed using an extensive external database of low- and
high-resolution image pairs. The trained model was then used
to increase the resolution of the test images that were not
used in the training process. Unlike supervised learning, in the
deep internal learning approach, the model was trained to
recover the test image from the downgraded resolution of the
test image itself. During the testing stage, the trained model
was used to increase the resolution of the test image. The deep
internal learning approach did not require extensive training
data, and the trainingwas faster than supervised learning [38].

The implementation of the deep internal learning approach
for pansharpening is illustrated in Fig. 3. Unlike single-image
super-resolution, pansharpening uses two types of inputs for
training: PAN and MS images. The details of pansharpening
using deep internal learning, which consists of training and
testing stages, are described below.

1) TRAINING STAGE
The training process requires a pair of low-resolution multi-
spectral (LRMS) and high-resolution multispectral (HRMS)
image patches. The HRMS image patches were used as
references to calculate the loss function. Because the HRMS
images were not available, training data were created using
the Wald protocol [45]. According to the Wald protocol, the
observed MS image (IMS ) was treated as a reference, and
then this image was downgraded to produce the LRMS image
(Ims). In Fig. 3, in the first channel of the training phase,
the observed MS image (IMS ) was divided into N patches of
size n × n pixels, and the MS image patches were used as a
reference for training the network. In the two lower channels,
the observed MS and PAN images were downgraded, and the
MS component was interpolated ( ˜Ims). The resulting images
( ˜Ims and Ipan) were split into the same size as the reference
image patch. The N -stacked patches from ˜Ims and Ipan were
used as the inputs for the network.

The training stage aims to obtain optimal weights and
biases that minimize a loss function. To achieve this objective,
the mean square error (MSE) between the patches of the
pansharpened MS image and the patches of the reference
image (IMS ) was used as the loss function. Equation (2) used
to calculate the MSE.

L(θ ) =
1
N

N∑
i=1

∥f ([ ˜Imsi , Ipani ]; θ ) − IMSi∥
2. (2)
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In (2), f ([ ˜Imsi , Ipani ]; θ ) is ith pansharpened image patch, IMSi
is ith reference image patch, θ is a network parameter, andN is
the number of image patches. The result of the training stage
was a trained model with network parameter θ . This model
was used in the testing stage to improve the spatial resolution
of the observed image (IMS ).

2) TESTING STAGE
In the testing/prediction stage, the observed MS image (IMS )
was upsampled by a ratio of r , denoted by ˜IMS . The observed
PAN (IPAN ) and upsampled MS ( ˜IMS ) images were divided
into smaller patches of m × m pixels. These image patches
( ˜IMSi and IPANi ) were fed to the trained model to obtain the
patches of the pansharpened MS image. In the last stage, the
reconstructed image patches were tiled to obtain the entire
image (IHRMS ∈ Rrw×rh×c).

B. NETWORK ARCHITECTURE
This study proposed a pansharpening network called residual
double-attention network (RDAN). The network was inspired
by the residual dense network (RDN) [46], residual channel
attention network (RCAN) [41], and convolutional block
attention module (CBAM) [40] for single-image super-
resolution. Fig. 4 shows the proposed architecture.
In the preprocessing step, the observed MS image patch

(IMS ) was upsampled to the PAN size using a polynomial
interpolator. The upsampled MS image ( ˜IMS ) and PAN image
(IPAN ) were used as the inputs for the RDAN network.

The proposed network consists of threemain parts: shallow
feature extraction (SFE) unit, double-attention feature fusion
(DAFF)module, and image reconstruction (IR) part. The SFE
unit was responsible for extracting the spatial and spectral
features from the PAN and MS images. Spatial and spectral
information were combined using the DAFF module. Finally,
the pansharpened MS image were reconstructed using the IR
part. The details of each RDAN component are explained as
follows:

1) SHALLOW FEATURE EXTRACTION (SFE)
Pansharpening techniques based on deep learning can be
classified into two main categories: single-branch and
dual-branch neural networks [34], [47]. In a single-branch
neural network, the MS image was concatenated with the
PAN and the composite image was then sent to the deep
learning model as one input. In the dual-branch architecture,
the MS and PAN images were processed using a feature
extraction module consisting of two feature extractors. The
extracted features were then concatenated and merged using
a fusion network.

In this study, a dual-branch architecture with an SFE unit
was used. The SFE unit consisted of a two-branch neural
network for extracting the features of the MS and PAN
images. A four-channel MS image was used as the input
for the first branch, and a single-band PAN image was used
as the input for the other branch. The two branches had

similar structures with different weights and biases. The
structure contained two consecutive convolution layers with
64 channels and a 3 × 3 kernel size, followed by a rectified
linear unit (ReLU) activation function. Equation (3) describes
the shallow feature extraction process.

Fpan = HSFE (IPAN )

Fms = HSFE ( ˜IMS ), (3)

where HSFE (.) denotes a convolution operation. Output from
the SFE unit contained two feature maps that represent the
spatial and spectral information of the PAN and MS images.

2) DOUBLE-ATTENTION FEATURE FUSION (DAFF)
To fully use the feature maps from the SFE part, we fused
them using a DAFF module. The DAFF contained a set of
residual double-attentionmodules (RDAMs) that consisted of
convolution operations, multiplication, channel attention, and
spatial attention mechanisms. In the DAFF, the feature maps
were concatenated to form a compact feature map, as shown
in (4).

Fin = Fms ∥ Fpan (4)

where ∥ denotes a concatenation operation.Fin is then utilized
for further shallow feature extraction as expressed in (5):

F1 = HSFE (Fin). (5)

F1 in (5) is then used as the input to the first RDAM.
RDAM combined channel and spatial attention to recali-

brate feature weights. RDAM contained convolution layers
with a rectified linear unit (ReLU) activation function and
a channel and spatial attention block with a short skip
connection (SSC), as shown in Fig. 4. An SSC allowed
shallow information to propagate in a straightforward manner
through identity mapping, which was advantageous for
information flow.

In this network, let Fn be the input and Fn+1 the output
of the n-th RDAM. First, we performed two convolution
operations, as formulated in (6).

F ′
n = H (Fn) (6)

where H was the convolution network consisting of two
convolutional layers. RDAM inferred attention maps sequen-
tially along two distinct dimensions: channel and spatial. The
attention maps were then multiplied by the input feature map
to improve the adaptive features. Equation (7) describes the
double-attention mechanism in RDAM [40]:

Fca = Mc(F ′
n) ⊗ F ′

n

Fsa = Ms(Fca) ⊗ Fca. (7)

In (7), ⊗ denotes element-wise multiplication, F ′
n is the input

feature map, Mc is the 1D channel attention map, Ms is the
2D spatial attention map, Fca is the channel-refined feature
and Fsa is the final refined output.

An SSC was introduced to obtain the output of the n-th
RDAM. It was acquired by element-wise addition between
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FIGURE 4. The proposed network architecture. The network consisted of an SFE unit, a DAFF module, and IR parts. The DAFF contained a set of RDAMs
with channel and spatial attention mechanisms.

FIGURE 5. Channel attention (CA) module. The spatial information of the
input feature was aggregated by using average and max pooling
operations. Then, it was forwarded to a shared network to create a
channel attention map.

FIGURE 6. Spatial attention (SA) module. The spatial attention map was
generated by applying average and max pooling operations along the
channel axis, concatenating them, and then forwarding them to a
convolution layer.

the output of the channel and the spatial attention block with
the input feature map, as formulated in (8).

Fn+1 = H (Fsa) ⊕ Fn (8)

where ⊕ is element-wise addition and Fn+1 denotes the
output of the n-th RDAM.

Suppose we have N RDAMs. Equation (9) expresses the
output of the N -th RDAM.

Fout = HRDAM ,N (FN )

= HRDAM ,N (HRDAM ,N−1(. . . (HRDAM ,1(F1)))) (9)

where Fout is the output of the N -th RDAM and HRDAM ,N is
the composite function of N -th RDAM operation.
More details regarding the channel and spatial attention are

provided below:
• Channel attention (CA)
In contrast to the current CNN which treats all channel
features equally, the channel attention mechanism
assigns weights to distinct channels to focus on more
useful information and suppress useless information in
an input feature [40]. Channel attention was computed
by compressing the spatial information of the input
tensor to generate a weight for each channel through a
pooling operation. Fig. 5 describes the process of the
channel attention mechanism used in this study [40].
Let F ′

n ∈ RH×W×C be the input of the attention module,
where C is the number of features of sizeH×W . Global
average pooling and max pooling functions were used to
convert channel-wise global spatial information into the
channel descriptor. The output was then sent to a shared
network to create a channel attention map Mc. The
shared network was composed of channel-downscaling
(WD) and channel-upscaling (WU ) with a ratio of r .
Channel-wise dependencies were extracted from the
aggregate information using a gating mechanism with
sigmoid functions. Equation (10) expresses the channel
attention mechanism [40].

Mc(F ′
n) = σ ((WUReLU (WDFavg(F ′

n)))

+WUReLU (WDFmax(F ′
n))) (10)

In (10), F ′
n ∈ RC×H×W is the CA module input,

Favg is the average pooling feature, and Fmax is the
max-pooling feature obtained by shrinking F ′

n through
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TABLE 1. The datasets used in the experiments.

spatial dimension H ×W by the reduction ratio of r . σ
is the sigmoid function, WU and WD represent weight
matrices, which act as channel-upscaling and channel-
downscaling, respectively, with a ratio of r .

• Spatial attention (SA)
Channel attentionmethods only considered inter-channel
dependencies and neglected spatial information. The
spatial attention (SA) module has often been used
in CNNs to increase their ability to model spatial
information and has shown great success [40]. The
spatial attention module created a spatial attention
map using the inter-spatial relationships of features
to show the location of important information in the
feature maps. Channel attention focused on refining
the feature maps, whereas spatial attention focused
on the importance of learning inside the feature
map. Combining these two methods significantly
enhanced the feature maps and improved the model
performance [40]. Fig. 6 shows the spatial attention
module diagram.
In the SA module, the average and max pooling
operations were used along the channel axis to generate
two 2D maps, Favg(F ′

n) ∈ R1×H×W and Fmax(F ′
n) ∈

R1×H×W , which were then concatenated to generate
an efficient feature descriptor and convolved using a
convolutional operation to produce a 2D spatial attention
map Ms(F ′

n) ∈ RH×W . Equation (11) describes the
spatial attention mechanism [40].

Ms(F ′
n) = σ (H (7×7)([Favg(F ′

n) ∥ Fmax(F ′
n)])) (11)

where σ denotes the sigmoid function, and H7×7

represents the convolution operation with 7 × 7 filter
size.

3) IMAGE RECONSTRUCTION (IR)
In the reconstruction stage, a convolution layer with four
filters was employed after extracting and fusing the spectral
and spatial features with a set of RDAMs. The number
of filters used was the same as the MS image channels
used in the experiments. To compensate for the potential
loss of spectral information because of feature extraction
or feature fusion operations, a long skip connection (LSC)
was used, in which the input MS image passed directly
into the reconstructed MS image. The LSC allowed the
input image’s spectral information to complement the
pansharpened image’s spectral information and prevented
spatial information lost as the network deepened. The final

pansharpened output IHRMS is described in (12).

Ffin = H (FN )

IHRMS = H (Fcon + Ffin) (12)

where Fcon represents the concatenation of the PAN and MS
feature maps and H represents the function of the entire
pansharpening model.

III. EXPERIMENTS
A. DATASET
We performed several experiments using remote sens-
ing images from Bandung, Indonesia, collected from the
WorldView-3, Spot-7, and Pleiades satellites. In addition,
we used data from Geoeye satellite for computational cost
analysis. Table 1 summarizes the datasets used in the
experiments. The data consisted of PAN and MS images
with a spatial resolution ratio of four. All MS images have
four bands, and the PAN images have a single channel. The
images were divided into 64 × 64-pixel patches with 8-pixel
overlap. The training data were downscaled four times and
downgraded using a Gaussian kernel of size 9 × 9.
In the testing phase, we split the PAN and upsampled

MS images into 100 × 100 pixels, added 28 zero paddings
around the image patches and fed them into the network.
In image reconstruction, the output image edges were
cropped to restore the 100 × 100 image patches, and then
all reconstructed patches were combined to form a whole
pansharpened MS image.

B. EXPERIMENTAL CONFIGURATIONS
The experiments were implemented using Python 3.7,
TensorFlow GPU 2.2.0, and PyTorch for CUDA 12.2, on an
NVIDIA DGX cluster with 8x NVIDIA Tesla V100.We used
the mean square error (MSE) as the loss function and Adam
(adaptive moment estimation) as the optimizer. In this study,
we did not evaluate the effects of hyper-parameter settings
such as the learning rate, filter size, filter number, batch size,
and number of training epochs.We set most hyper-parameters
as in previous studies [23], [29], [41]. The learning rate was
set to 5 × 10−4 with a momentum of 0.9. Training was
completed in 30 epochs with a batch size of 32. We used
64 filters with a kernel size 3 × 3 in all the convolutional
layers. In the proposed network, we set the number of
RDAMs to 5.

Two types of experiments were conducted to assess the
performance of the proposed method. The first was an
experiment with reduced-resolution images, and the second
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was with full-resolution images. In the first experiment,
the reference quality metrics were used to evaluate the
performance of the proposed method. The properties of
the reconstructed image were compared with those of the
reference image by measuring the deviation between the
images. Because the HRMS image as a reference was
unavailable, we evaluated the performance of our proposed
method at reduced-resolution based on Wald’s protocol [45].
The observed MS image was treated as a reference and the
testing image was a downgraded version of the observed
MS image. We used the peak signal-to-noise ratio (PSNR),
structural similarity (SSIM) [48], spectral angle mapper
(SAM) [49], relative dimensionless global error synthesis
(ERGAS) [50], spatial correlation coefficient (SCC) [51],
and Q index [52] as the reference quality evaluation metrics.
Based on PSNR, the best performance was achieved with the
highest PSNR. One is the ideal value of the SSIM, SCC, and
Q index, whereas zero is the best value for SAM and ERGAS.

The second experiment was performed at full-resolution.
This experiment followed the diagram shown in Fig. 3. The
network was trained using downgraded data, and all methods
were tested using the original MS image. This experiment
had no ground-truth images to measure the performance
using the reference quality evaluation metrics. Therefore,
we measured the quality of the pansharpened images using
the no-reference quantitative metrics (QNR) [53]. The QNR
consists of spectral distortion (Dλ) and spatial distortion
(Ds) components. The Dλ measured the interband distortion
between the original MS image and the pansharpened image,
while the Ds focused on the spatial distortion by calculating
the Q-index value between the MS image and the PAN
image. The best Dλ and Ds were indicated by a zero value,
whereas the best QNR was one [53].

IV. RESULTS AND DISCUSSION
The experimental results are presented in this section.
We compared the performance of the proposed method with
several existing methods in both the reduced- and full-
resolution versions. At full-resolution, we also assessed the
effects of channel and spatial attention, skip connections, and
feature extraction module on the proposed network.

A. COMPARISON WITH EXISTING METHODS
In this section, we evaluated the performance of the proposed
method and compared it with several existing deep learning-
basedmethods, includingDRPNN [31], ResNet [29], RDMP-
SNet [33], SSC-CNN [28], and TANI [44]. In addition,
we assessed the performance of two classical methods:
IHS [10] and SFIM [17]. The IHS was based on the
component substitution method, and the SFIM was based
on multiresolution analysis method. The performance was
compared at reduced and full-resolution.

The quantitative metric values of Pleiades, Spot-7, and
WorldView-3 at reduced and full-resolutions are summarized
in Table 2, Table 3, and Table 4, respectively. In the reduced-
resolution experiments, reference metrics were used for the

FIGURE 7. (a) Observed MS image; (b)-(i) Residual plot of IHS, SFIM,
DRPNN, ResNet, RDMPSNet, SSC-CNN, TANI, and the proposed method
(RDAN), respectively, in the reduced-resolution WorldView-3 image.

FIGURE 8. (a) Observed MS image; (b)-(i) Residual plot of IHS, SFIM,
DRPNN, ResNet, RDMPSNet, SSC-CNN, TANI, and the proposed method
(RDAN), respectively, in the reduced-resolution Pleiades image.

quantitative evaluation. For example, SAM was used to
examine spectral distortion, ERGAS was used for spatial
distortion, and SSIM was used as a comprehensive metric.
The best outcomes were marked in bold, and the second-best
results were marked in italics. According to Table 2 -
Table 4, in reduced-resolution experiments all deep learning
methods had better values than the classical methods for
almost all metrics. The deep learning methods with attention
mechanisms (TANI and RDAN proposed in this study)
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TABLE 2. Performance comparison of the proposed method with the other pansharpening methods in reduced and full resolution on the
WorldView-3 data.

TABLE 3. Performance comparison of the proposed method with the other pansharpening methods in reduced and full-resolution on the Spot-7 data.

TABLE 4. Performance comparison of the proposed method with the other pansharpening methods in reduced and full-resolution on the Pleiades data.

performed better than the othermethods. The tables also show
that the proposed RDAN algorithm performed best for all
indicators.

Non-reference metrics were used to examine the pansharp-
ening performance of the full-resolution experiments.Dλ was
used to evaluate spectral distortions,Ds was used to assess the
spatial distortions, and QNR was used as a comprehensive
metric. Table 2, Table 3, and Table 4 show that in the
full-resolution condition, the deep learning-based methods
performed better than the classical methods. In reduced-
resolution experiments, TANI achieved the second-best
performance, however, in the full-resolution experiments, the
second-best QNR on the three datasets was achieved using
different methods. SSC-CNN had the second-best QNR on
the WorldView-3 dataset, TANI had the second-best result on
the Spot-7 data, and RDMPSNet achieved the second-best
performance on the Pleiades data. TANI performs well on
down-scaled images, however, this method performed poorly
on the full-resolution images. For the Worldview-3 and Spot-
7 data, our proposed network outperformed the other methods
in terms of Ds, Dλ, and QNR. On the Pleiades image, our

method obtained the fourth rank for Dλ. However, the Ds
and the QNR achieved the best results. These results verified
that the proposed approach improved the spectral and spatial
information in the MS images better than the other methods.

From the experiments with reduced-resolution, the dif-
ferences (residuals) between the fused image and reference
were plotted in Fig. 7, Fig. 8, and Fig. 9 for the WorldView-
3, Pleiades, and Spot-7 images, respectively. The images
show the residuals for the entire test image. A darker image
indicates more significant errors between the reference and
the enhanced images. Fig. 7 shows that the proposed method
produced the brightest residual image compared with the
other fused images in the experiment using the WorldView-3
dataset. These results indicated that the fused image obtained
using the proposed method was the closest to the reference
image. Similar results are shown in Fig. 8 and Fig. 9.
Using the proposed method, the residual images between the
pansharpened and the reference on the WorldView-3, Spot-
7, and Pleiades data are whiter than those obtained using the
other methods. These results demonstrated that the proposed
method effectively improved the resolution of theMS images.
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FIGURE 9. (a) Observed MS image; (b)-(i) Residual plot of IHS, SFIM,
DRPNN, ResNet, RDMPSNet, SSC-CNN, TANI, and the proposed method
(RDAN), respectively, in the reduced-resolution Spot-7 image.

FIGURE 10. Pansharpening results in a full-resolution WorldView-3
image. (a) PAN image; (b) Observed MS image; (c) enlargement of the red
area in the PAN image; (d) enlargement of the red area in the MS image;
(e-k) enlargement of the pansharpening results of IHS, SFIM, DRPNN,
ResNet, RDMPSNet, SSC-CNN, TANI, and the proposed method (RDAN),
respectively.

The visualization results of the experiments at full-
resolution are shown in Fig. 10, Fig. 11, and Fig. 12. For a
better visual comparison, we enlarged the red areas in the
figures. From the WorldView-3 and Pleiades data, as shown
in Fig. 10 and Fig. 12, respectively, the pansharpened images
from the proposed method are clearer and provide better
spatial resolution than those from the othermethods. From the
experiments on the Spot-7 data, Fig. 11c and Fig. 11d show
that the classical methods based on component substitution

(IHS) provided better spatial resolution than the multires-
olution analysis-based methods (SFIM). However, artifacts
and blurs were still generated near the edges. Fig. 11c shows
that classical methods based on component substitution (IHS)
suffered from spectral and color distortions. In contrast,
Fig. 11d to Fig. 11j show that classical method based on
multiresolution analysis (SFIM) and deep learning-based
methods performed well in terms of spectral aspects. They
could preserve the color and spectral information in the
pansharpened image. Fig. 10 to Fig. 12 also show that
deep learning-based methods performed better than non-deep
learning approaches, and our proposed method (RDAN)
provided the best results with appropriate spectral and spatial
resolutions.

B. EVALUATION OF CHANNEL ATTENTION AND SPATIAL
ATTENTION MODULES
The experiments were conducted under three conditions to
demonstrate the effects of the CA and SA modules. First,
we conducted an experiment using a complete network,
as illustrated in Fig. 4. The second step was to remove
the CA module from the network, and the last step was
to remove the SA module. The experimental results for
the full-resolution data are presented in Table 5. The table
shows that the network with channel attention without
spatial attention performed better for all datasets than the
network with only spatial attention. The experimental results
also showed that the combination of channel and spatial
attention outperformed a network with only channel or spatial
attention. These comparisons demonstrated that utilizing both
types of attention was effective for MS image pansharpening.

TABLE 5. Effect of channel and spatial attention modules.

C. EVALUATION OF LONG AND SHORT SKIP
CONNECTIONS
To evaluate the effect of skip connections, we first removed
the SSC in all RDAM modules and then removed the LSC
from the proposed network. Table 6 presents the results.
The table shows that the performance decreased significantly
when the SSCs or LSC were removed from the network. For
example, when the LSC was removed, the QNR decreased
from 0.9504 to 0.8880 in the WorldView-3 image and from
0.9448 to 0.7218 in the Spot-7 image. The best Dλ values
achieved by the proposed method indicated that the long
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FIGURE 11. Pansharpening results in a full-resolution Spot-7 image. (a) PAN image; (b) Observed MS image;
(c) IHS; (d) SFIM; (e) DRPNN; (f) ResNet; (g) RDMPSNet; (h) SSC-CNN; (i) TANI; (j) The proposed method (RDAN).

FIGURE 12. Pansharpening results in a full-resolution Pleiades image.
(a) PAN image; (b) Observed MS image; (c) enlargement of the red area in
the PAN image; (d) enlargement of the red area in the MS image; (e-k)
enlargement of the pansharpening results of IHS, SFIM, DRPNN, ResNet,
RDMPSNet, SSC-CNN, TANI, and the proposed method (RDAN),
respectively.

and short skip connections are advantageous for improving
spectral information. The LSC made the spectral information
of the MS input image was directly used to supplement
the spectral information of the pansharpened image. The Ds
indicator of the proposed method shows that the use of skip
connections could address the problem of spatial information
loss. The experimental results verified that the combination
of short and long skip connections enhanced the spectral and
spatial details of the fused image.

D. EVALUATION OF FEATURE EXTRACTION MODULE
In this study, we evaluated the effect of using the SFE
module in a dual-branch neural network and compared it

TABLE 6. Effects of long and short skip connections.

with that of a single-branch neural network (without the
SFE module). The results are presented in Table 7. Based
on the quantitative metrics, the fused image generated using
the feature extraction module performed better than those
generated using a single-branch neural network. Compared to
the single-branch feature extraction network, this dual-branch
network exhibited enhanced performance in reducing redun-
dant information across different MS image channels and
better utilized the spatial information in the MS and PAN
images.

TABLE 7. Effect of the feature extraction module.

E. EVALUATION OF COMPUTATIONAL COST
Generally, there is a trade-off between the quality and
computational burden. A more extensive network, indicated
by a more significant number of parameters, provides better
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performance but increases computational cost [9]. In this
study, we evaluated the effectiveness of the proposed method
by investigating the number of parameters or model size,
computation time, and QNR of a pansharpened image at
full-resolution. We assessed the computational cost using a
remote sensing image acquired by a Geoeye sensor. The
results are summarized in Table 8.

TABLE 8. The comparison of parameter numbers, QNR, and computation
time of four deep learning-based methods in Geoeye image.

Table 8 shows that there is no direct correlation between
number of parameters with computational cost and quality
of pansharpened image in our experiments using Geoeye
image. The experimental results show that the model size
is not the only factor affecting the computation burden
and model performance. Many factors affected the deep
learning computation time andmodel performance, including
the model framework, size, and optimization process. The
DRPNN had the quickest computing time in our experiments,
but the performance could have been better. TANI had the
most minor parameters; however, this method performed
more poorly and required significant computation time. The
proposed method (RDAN) offered the largest QNR with the
second-lowest computation time. These results demonstrated
that our proposed method can perform better with an
acceptable computational cost.

V. CONCLUSION
This study proposed a pansharpening method to learn the
spectral and spatial information in source images more
efficiently by combining channel and spatial attention in
residual connections. The combination of channel and
spatial attention empirically verifies that exploiting both
is superior to using only a single type of attention. The
residual connections within the low and high layers allow
lower-level information to propagate to the higher layer,
helping the network to preserve information that would have
been lost through the training process with many layers.
Using a feature extraction module before fusing multispectral
and panchromatic images also improves pansharpening
performance. A deep internal learning strategy is used in
this experiment. This approach can enhance the spatial
resolution of multispectral images without requiring a large
amount of external training data. However, it only uses many
small patches extracted from a large scene of the observed
image itself. This strategy overcomes the problem of the
unavailability of extensive training data.

To evaluate the performance of our proposed method,
we conducted experiments on downgraded and full-resolution
remote sensing images of Bandung, Indonesia, taken from
the WorldView-3, Spot-7, Pleiades, and Geoeye satellites.
The experimental results show that the proposed method
performs better in terms of spatial and spectral evaluation
metrics with an acceptable computational cost. In the future,
we will explore the potential of implementing the proposed
method for pansharpening with other sensors such as Ikonos,
Gaofen, Quickbird, or Landsat, including pansharpening
hyperspectral images.

Applying deep learning techniques has proven effective
in improving the spatial resolution of multispectral remote
sensing images. However, some specific issues still need to
be solved. For example, the generalization ability of the most
recent deep learning approaches for pansharpening still need
to be improved. To solve this problem, we will explore a
fine-tuning technique to enhance the generalization ability
of the network in the following study. Furthermore, we will
explore unsupervised learning methods and generative adver-
sarial networks, combined with attention mechanisms for
better performance to overcome the situation in which
reference images are unavailable.
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