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ABSTRACT In recent years, visual SLAM (Simultaneous Localization and Mapping) based on line feature
tracking has garnered widespread attention due to its provision of additional constraints for structured scenes.
However, the current mainstream framework, PL-VINS, faces several challenges, such as overly simplistic
line length pruning strategies and the utilization of fixed loss functions in point-line backend optimization.
To address the former, we propose a novel line-length pruning strategy that dynamically determines pruning
thresholds based on the average length of lines extracted from the current frame image. Regarding the
latter, we introduce the concept of point-line weighting, which involves dynamically adjusting the size of
the loss function based on the ratio of points to lines within a sliding window. Experimental results on
public benchmark datasets demonstrate that, compared to the PL-VINS method, our approach achieves a
6.79% average improvement solely by employing the enhanced line length pruning strategy. Furthermore,
by simultaneously adopting the improved line length pruning strategy and dynamic point-line weighting
for backend optimization, our method outperforms the PL-VINS method with an average improvement of
23.60%. This indicates that our proposed enhancements elevate the accuracy of SLAM.

INDEX TERMS Localization, SLAM, visual camera sensors.

I. INTRODUCTION
In the fast-paced domain of robotics today, simultaneous
localization and mapping (SLAM) stands as a fundamental
challenge crucial for enabling autonomous navigation in
mobile robots. At its core, SLAM empowers robots to
autonomously traverse and construct maps in unfamiliar
surroundings, relying on accurate environmental sensing and
dependable self-localization [1], [2], [3]. Beyond its impor-
tance in scientific inquiry, SLAM carries extensive practical
implications across industries such as manufacturing, health-
care, and defense, promising significant advancements in the
realm of autonomous systems.

SLAM systems are primarily categorized into three types
based on the type of sensors used: laser-based SLAM, visual-
based SLAM, and multi-sensor fusion SLAM. Among these,
visual SLAM (VSLAM) has garnered significant attention
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and research interest from both academia and industry due to
its simple structure, low cost, strong recognition capabilities,
and ability to capture rich texture information [4].

In the field of VSLAM, it can be further divided into
three categories: feature-based visual SLAM, direct method
visual SLAM, and deep learning-based visual SLAM. For
feature-based visual SLAM, such as PTAM [5], VINS-
MONO [6], and PL-VINS [7], they feature fast feature
point extraction, making them suitable for environments
with rich textures and real-time requirements. However, they
may suffer from tracking degradation in environments with
low texture or textureless regions. For direct-method visual
SLAM, such as DSO [8], LDSO [9], and DSM [10], they
directly use pixel values for tracking without the need for
feature extraction, making them suitable for environments
with weak textures and low-light conditions. However, they
tend to be sensitive to lighting changes and image noise,
and they require substantial computational resources. For
deep learning-based visual SLAM, such as DeepVO [11]
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and CNN-SLAM [12], they improve adaptability to complex
scenes and changes but require training on large-scale
datasets and may produce inexplicable results in some
scenarios.

Although VSLAM technology has made significant
progress, it still faces several challenges in practical appli-
cations. Feature-based visual SLAM relies on point features
to estimate camera trajectories and build environment maps.
However, in complex environments with weak textures or
drastic lighting changes, the performance of these systems is
often limited [13], [14]. For example, in indoor environments
with uniformly colored walls or suboptimal lighting condi-
tions, point features may not provide enough information to
support precise positioning and map construction. In addi-
tion, rapid movement or occlusion in dynamic environments
can lead to performance degradation. To overcome these
challenges, researchers have begun to explore the use of line
features in VSLAM. This is because line features provide
more structural information and provide a more intuitive
description of the geometry of the environment. Compared
to point features, line features are more robust in complex
environments.

In this paper, we propose an improved VSLAM method
to enhance the performance and robustness of the system
in complex environments through adaptive line extraction
and point and line weight optimization. First, we adopt
an adaptive thresholding strategy to optimize line feature
extraction for different lighting and texture conditions.
Second, we introduce a weight optimization mechanism to
dynamically adjust the matching weights of the features
according to the distribution number of features and the
environmental structure information, so as to improve the
positioning accuracy and the stability of map construction.
The contributions of this paper are as follows:

• Removing non-dominant lines from the image reduces
the number of lines, thus improving the performance and
pose estimation of VSLAM.

• According to the point and line states of the local envi-
ronment, dynamically adjust the optimization weights to
improve accuracy of VSLAM in complex environments.

• Experiments on the benchmark dataset EuRoc [15]
demonstrate that our method outperforms the PL-VINS
method.

In the rest of the paper, Section II presents related work,
and Section III describes the architecture of our proposed
systematic approach. Section IV discusses our improved
adaptive line length rejection strategy and point-line weight
optimization. Section V describes the experimental setup and
experimental results. Finally, we summarize our findings and
future work in Section VI.

II. RELATED WORK
In the research progression of feature-based VSLAM, the
development of feature extraction and optimization methods
has been the core driving force behind technological advance-
ment. Early works primarily focused on the extraction and

matching of point features, such as Scale-Invariant Feature
Transform (SIFT) [16], Speeded Up Robust Features (SURF)
[17], Harris corner detection [18], and others. However,
these methods exhibited poor performance in handling
weak textures or illumination changes. To overcome these
limitations, the Oriented FAST and Rotated BRIEF (ORB)
algorithm [19] was proposed. It enhances the speed and
robustness of feature extraction by combining FAST keypoint
detection with BRIEF descriptors. Although corner detection
techniques have matured significantly, challenges such as
difficulty in acquiring corners and tracking loss still persist,
especially in structured environments.

To address these issues, some studies have proposed
methods that integrate both point and line features. Refer-
ences [20] and [21] introduced line constraints into stereo
cameras. Reference [22] optimized RGB-D vision using
point, line, and plane features. Reference [23] utilized
the LoFTR network to generate dense point matching
feature descriptors in low-texture scenes, filtering unreliable
features using feature masking, and enhancing matching
robustness using KNN strategies. References [24], [25],
and [26] all enhanced localization by merging or suppressing
unstable line segments, reducing the number of short lines
to ensure the stability of line features during tracking.
Reference [7] improved the real-time performance of the
Line Segment Detector (LSD) algorithm for pose estimation
problems and added additional constraints on scene structure.
Reference [27] proposed adaptive combinations of point, line,
and plane features for environmental adaptation, aiming to
enhance tracking and mapping performance in scenes with
varying texture richness. However, current research focuses
on the quality of lines while neglecting the quantity issue.
This paper introduces a novel adaptive line-filtering strategy
to maintain an appropriate number of lines in the image.

Recently, some studies have started to focus on adaptive
feature extraction and back-end optimization. For example,
Zhou et al. [25] and Yu et al. [28] proposed an improved
point-line feature VSLAM method. By adopting adaptive
thresholds for point features and data association strategies,
they enhanced the adaptability and robustness of the system
in different environments. These works provide valuable
insights, indicating that significant improvements in VSLAM
system performance can be achieved by adaptively adjusting
feature extraction strategies and optimizing back-end pro-
cessing workflows.

Building upon previous research, this work further
explores the application of adaptive line extraction and
weight optimization in VSLAM. The goal is to provide a
more reliable and efficient visual perception solution for
the autonomous navigation of mobile robots in complex
environments.

III. SYSTEM OVERVIEW
In this section, we will briefly outline our system. Our system
is built upon the PL-VINS architecture and incorporates
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FIGURE 1. System Overview: Our system was developed based on the PL-VINS architecture with three threads: measurement preprocessing, local
VIO (Visual Inertial Ranging) and closed loop. The highlighted parts are our improvement points.

dynamic line length trimming thresholds and dynamic
point-line weighted back-end optimization techniques. This
enhancement enables line features to play a more effective
role in feature tracking and local map construction. The
overall algorithm workflow is depicted in Figure 1. The
system consists of three threads: measurement preprocessing,
local VIO (Visual-Inertial Odometry), and loop closure.

A. IMAGE INPUT
Whenever an input image is received, the system performs
point and line feature extraction. For point extraction, we use
the Shi-Tomasi corner detector, which is an enhanced version
of the Harris corner detection algorithm. This detector
accurately identifies corners in the image and has strong
noise resistance. For line segment extraction, we fine-tune
the hidden parameters of the line segment detector to quickly
extract line segments. We use a ‘‘wide-in, narrow-out’’
strategy to extract all lines in the image. Subsequently,
we calculate the average length of line segments in the current
image and dynamically determine the pruning threshold for
line segments. This aspect will be further elaborated in
Section IV.

B. SLIDING WINDOW OPTIMIZATION
After system initialization, a fixed-size sliding window is
utilized to maintain a local map. The sliding window offers
advantages in rapid optimization of key vectors such as local
stability, pose, velocity, spatial points and lines, acceleration,
and gyroscope bias. These key vectors are jointly optimized
by multiple residual functions, as shown in Equation (9). The
size of the loss function is dynamically adjusted based on

the states of points and lines within the sliding window. This
aspect will be discussed in detail in Section IV. Additionally,
the slidingwindow determines whether a frame is a keyframe,
and if so, it is passed to the loop closure thread.

C. LOOP CLOSURE
After local VIO, if the parallax between the current frame
and the previous keyframe exceeds a predefined threshold
or if the number of tracked features drops below a certain
level, the current frame undergoes keyframe determination.
Once a keyframe is selected, it activates the loop closure
thread to search for potential loop closures. Upon detecting
a loop closure, global pose optimization is performed using
least squares functions, as shown in Equation (11). Our
experiments, as well as those of PL-VINS, have verified that
loop closure detection significantly improves the accuracy of
SLAM.

IV. IMPROVED LINE METHOD
A. DYNAMIC REJECTION THRESHOLD
The current commonly used methods for line extraction are
LSD and EDLines. However, they are primarily designed for
scene representation rather than pose estimation. Therefore,
they still have some potential for improvement in SLAM.

We notice that the improvements based on line extraction
methods ( [24], [25], [26]) mainly focus on merging and
filtering short lines, rather than considering the number of
lines. Although PL-VINSmentions extracting dominant lines
as features because they may reappear in the nearest frame
images, the issue of extracting an appropriate number of lines
remains unresolved. We believe that too many lines can lead
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FIGURE 2. (A) describes the unimproved line extraction process, and (B)
illustrates the enhanced line extraction process. Images are from the
MH-04 sequence dataset. It can be clearly seen that our method results in
a reduction in the number of lines.

to a significant number of matching errors, thereby reducing
algorithm performance and localization accuracy. Therefore,
based on the concept of dominant lines, when high-quality
lines can be extracted from the image, the rejection threshold
for lines should be increased to reduce their quantity.

In PL-VINS, the line length rejection strategy is oversim-
plified, calculated as follows:

Lmin = ⌈µ ∗ min(WI ,HI )⌉ (1)

Among them, Lmin represents the minimum length of
the line segment to be retained, min(WI ,HI ) represents the
smaller value between the width WI and height WH of the
input image, ⌈⋆⌉ represents the ceiling operation, and µ is a
ratio factor.

For this formula, we have made two considerations:
First, in structured environments where lines are clearly
visible, after obtaining a sufficient number of dominant lines,
this formula may retain non-dominant lines in the image,
leading to an excessive number of lines. And in unstructured
environments where lines are not clearly visible, this formula
may result in extracting too few lines or even fail to extract
any lines at all. Therefore, we propose a new dynamic line
length elimination strategy, the experimental results of which
are shown in Figure 2, and the formula is as follows:

d =

√√√√ n∑
i=1

(xi − yi) (2)

Lmin = ⌈µ ∗
1
n

n∑
i=1

di⌉ (3)

where ⌈⋆⌉ represents the ceiling operation, d denotes the
Euclidean distance between two points, and µ is a scaling
factor. In this context, xi and yi represent the coordinates of
corresponding points on two line segments, with n being the
number of points or dimensions considered in the distance
calculation. During extensive experiments, we set µ to 1.25,
considering generalizability.

FIGURE 3. Both scenarios (A) and (B) in complex environments result in
the extraction of too few points and lines by the SLAM system.

B. ADAPTIVE LOSS FUNCTION SIZE
We observe an interesting phenomenon: the number of dots
and lines in an image decreases only in three cases. The first
case is when there are no bright points in the dark image.
We do not discuss this case because, in this case, VSLAM
cannot extract the features of points and lines from the image.
The second case is when there are bright parts of the image in
a dark environment. In this case, accurate corner points can be
obtained near the bright light, while line extraction becomes
less accurate. The third case is that accurate line features
can be extracted from bright structural images, while point
features are difficult to obtain. This is illustrated in Figure 3.
We believe that in the third scenario, where accurate line

extraction is feasible, the constraint imposed by line features
would enhance the accuracy of the SLAM system. Therefore,
it is advisable to increase the optimization weight for lines
and decrease it for points. However, in the second scenario,
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although lines can still be extracted, they might be unstable
compared to point features. Hence, it is preferable to increase
the optimization weight for points as they provide more
reliable constraints.

For the second and third scenarios, we distinguish them by
using the local grayscale value to reflect the global grayscale
value. We calculate the average grayscale value of the central
circle in the image to represent the brightness level of the
image. The formula is as follows:

P̄ =

∑
(x,y)∈R ω(x, y)

E
(4)

where P̄ represents the local grayscale value of the image,
ω(x, y) represents the grayscale value of pixels, R represents
the circle centered at the pixel in the image, and E represents
the total number of pixels in the circle.

Inspired by [25], which used the number of points and lines
in the current frame to set optimization weights, our approach
takes a different direction. We believe that relying solely on
the point and line count of a single frame lacks robustness.
Instead, we use a sliding window approach that considers the
number of points and lines acrossmultiple recent frames. This
method captures themost recent image data, providing amore
accurate reflection of the current complex environment. The
optimization weights are dynamically adjusted based on the
aggregated data within the sliding window.

Additionally, by considering the resolution of different
cameras, we can establish a normal range for the number
of feature points in typical environments. If the actual
feature point count falls below this range, it suggests the
environment is either structured or poorly lit. Our algorithm
then distinguishes between these scenarios using grayscale
values and dynamically adjusts the optimization weights for
points and lines accordingly. The corresponding formula is
shown below.

mi = β ∗ (
ni

n̄i + n̄j
) (5)

mj = β ∗ (
nj

n̄i + n̄j
) (6)

where mi represents the loss function value of points, mj
represents the loss function value of lines, β is the initial
coefficient, which is usually set to 0.6 for generalization, ni
and nj represent the number of points and lines in the current
sliding window, and n̄i and n̄i are the averages of the points
and lines in normal environment. The overall flowchart is
shown in Figure 4.

We optimize using line reprojection residuals based on
point-to-line distances. First, the projection line l is obtained
by transforming Lc to the image plane. Then, assuming lw
represents the j-th spatial line ζ which is observed by the i-th
camera frame ci, the line reprojection error can be defined as:

l = [l1, l2, l3]T (7)

rL(z
ci
ζj
, x) = d(m, l) =

mT l√
l21 + l22

∈ R (8)

FIGURE 4. Flowchart of Adaptive Loss Function Based on Dual Estimation
for Assessing Current Environment Conditions. Upon input of image data
and completion of point and line extraction, if the number of points and
lines is insufficient, a local grayscale assessment of the current
environment is conducted. Finally, dynamic adjustment of weight
optimization is performed. If the number of points and lines is normal,
default weight optimization is carried out.

where d(m, l) represents the distance function from a point
to a line, and m represents the homogeneous coordinates of
points in the line element. The corresponding Jacobianmatrix
can be obtained through the chain rule [29].

We perform local optimization within a sliding window,
defining the full state vector X associated with point, line,
and IMU measurement information in the sliding window.

X = [xo, x1, . . . , xnk , λ0, λ1, . . . , λnp , o0, o1, . . . , onl ] (9)

xk = [Pbwk ,Qbwk ,Vbwk , ba, bg], k ∈ [0, nk ] (10)

The full state vector X is defined as follows: xk includes
the following components: the position Pbwk , orientation Qbwk ,
velocity Vbwk , accelerometer bias ba, and gyroscope bias bg of
the k-th IMU body. nk , np, and nl represent the total number
of keyframes, spatial points, and lines in the sliding window,
respectively. λ is the inverse distance of the point feature
to its first observed keyframe. oT = (θT , θ)represents the
four-parameter orthogonal representation of the 3D line.

Next, we define the objective function for local
optimization:

min(eprior + eimu + epoint + eline + eloop) (11)

where eprior represents the prior information obtained when
marginalizing old frames in the sliding window, eimu and
epoint represent the residual of IMU measurements and point
reprojection, respectively, eline and eloop represent the residual
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of line reprojection and loop closure constraints. As for the
definition of eline, it can be defined as:

eline =

∑
(i,j)∈ζ

(p
∥∥∥rζ (zciζj ), x∥∥∥2∑ci

ζj

) (12)

p(s) =

{
s, s ≤ 1
2
√
s− 1, s > 1

(13)

where p(s) represents the Huber norm, used to suppress
outliers.

TABLE 1. Comparison of Line Suppression Strategy and PL-VINS for Mean
Line Length, Std Dev, and ATE.

V. EXPERIMENTS
In this section, we evaluate the experimental performance
on the EuRoc benchmark dataset in terms of localiza-
tion accuracy and real-time performance. The experiments
are implemented on Ubuntu 20.04 and ROS Noetic. All
experiments are conducted on an Intel Core i5-8300h CPU
@2.30GHz. We compared the performance of all sequences
in the EuRoc dataset, evaluating the absolute trajectory error
(ATE). The formula for calculating Root Mean Square Error
(RMSE) is as follows:

RMSE(T ) =

√∑n
i=1(yi − y̆i)2

n
(14)

where yi and y̆i represent the true pose and estimated pose of
the mobile robot at time i, respectively.

A. REJECTION STRATEGY
Table 1 compares the Absolute Trajectory Error (ATE) of
our method with PL-VINS, with bold values indicating better
results. As shown in the table, the line length suppression
strategy is crucial. When there are many long lines in the
image, we prioritize retaining long lines while removing short
ones; when there are fewer long lines, we retain short lines as
much as possible. This adaptive thresholding strategy results
in a higher mean line length and standard deviation compared
to PL-VINS, thereby improving localization accuracy.

In terms of Absolute Trajectory Error, although PL-VINS
performs better on certain datasets, the difference from our
method is minimal. Notably, on the more challenging dataset

V2-03, our method improves the loop closure test results by
22.30%.

Finally, from the overall average, we can see that the
mean line length and standard deviation of our adaptive
line strategy are higher than those of PL-VINS, resulting
in a 6.79% improvement in Absolute Trajectory Error. This
clearly demonstrates the importance of filtering out non-
dominant lines.

FIGURE 5. Low-light Environment of The MH-05 Sequence. In the
red-highlighted portion, the environment corresponds to a dark setting
with bright spots. The ‘‘Raw Image’’ images depict the environment, while
the ‘‘Image Extraction’’ images illustrate the results of point and line
extraction. The color of the trajectory lines represents the absolute
position error.

B. REJECTION STRATEGY AND WEIGHT OPTIMIZATION
After optimizing the line length rejection strategy, we pro-
ceeded with dynamic weight optimization. To evaluate the
localization accuracy on the EuRoC dataset, we conducted
experimental comparisons with VINS, VINS-Fusion, PL-
SLAM, PL-VIO, and PL-VINS, using Absolute Trajectory
Error (ATE) as the metric.

Table 2 shows the ATE results, revealing that the VINS
series, which employs Shi-Tomasi corner detection, offers
better robustness in dark environments with bright points,
such as those in the MH dataset. In these scenarios, point
feature extraction and tracking outperform line feature
methods, which is why VINS outperforms PL-SLAM, PL-
VIO, and PL-VINS. Our approach, which uses point-line
weighted optimization to minimize the influence of lines,
achieves better accuracy than other point-line methods but
still falls short of VINS in these specific environments.

Conversely, in brighter and more structured environments,
such as those in the V1 and V2 datasets, our method excels.
Line feature extraction and tracking are more reliable under
these conditions, leading to superior performance. However,
the MH sequences highlight a limitation of our method: the
difficulty in accurately tracking line features in low-light
conditions. This limitation underscores the need for further
refinement in line feature extraction techniques to improve
robustness across diverse lighting scenarios.
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TABLE 2. Comparison of Line Length Filtering and Dynamic Weight Adjustment Optimization Algorithms with Other Open-Source Algorithms. (Bold
Indicates Best ATE Performance).

FIGURE 6. PL-SLAM, PL-VIO, PL-VINS and our method are compared, and A-D are the MH-04, MH-05, V1-03 and V2-03 difficult sequence
set trajectory maps.

Figure 5 from the MH-05 sequence illustrates this issue.
In low-light environments, point extraction is concentrated
near bright spots, making tracking easier, while line extrac-
tion faces significant challenges. To address this, our method
adjusts the weight of lines and points dynamically, which
is crucial for maintaining SLAM accuracy in environments
where line features are less stable. On average, our method

improves PL-VINS accuracy by 23.06% and outperforms
other algorithms, especially in complex environments.

After analyzing the ATE results, we further compared
the algorithms that incorporate line features by testing their
runtime, as detailed in Table 3. In PL-SLAM, ORB-based
corner point extraction and LSD-based line feature extraction
consume significant time. While PL-VIO and PL-VINS use
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FIGURE 7. Comparison of the algorithms in low-light and bright environments in the Euroc dataset: the PL-VINS algorithm on the left, the optimized
algorithm on the right, line features in red and point features in green.

Shi-Tomasi for point extraction, the original LSD used in
PL-VIO remains time-consuming. PL-VINS improves line
extraction efficiency by adjusting LSD’s parameters, and our
method further reduces runtime by decreasing the number of
lines, speeding up line-matching.

TABLE 3. Comparison of Computational Overhead Between Our
Algorithm and Current Open-Source Feature Line Algorithms.

Figure 6 demonstrates the visual comparison of 3D
motion trajectories, while Figure 7 compares the line feature
extraction results of our method with PL-VINS. Our method
is able to extract high-quality line segments more stably
in complex environments, reduce the tracking of drifting
line segments, and guarantee the stability of dominant line
segments through a dynamic line segment length rejection
strategy. By dynamically evaluating the environmental con-
ditions based on point and line data, our method adjusts the
loss function in point and line optimization, which makes
the SLAM system more adaptive and improves the overall
performance.

VI. CONCLUSION
Our experiments demonstrate the successful performance of
our method in various scenarios and produce satisfactory
results. By optimizing the line length elimination strategy, the
system can accurately extract a small number of high-quality,
advantageous lines in complex environments. In addition,
dynamic weighted optimization enables the system to adapt
to different environmental conditions and set different
optimization weights, thereby improving the accuracy and
robustness of the SLAM system.

However, it is worth noting that line features are currently
underutilized. For example, they are not fully exploited in
loop closure detection, and there are challenges with line
matching accuracy. Additionally, in partially bright and dark

environments, the accuracy of lines is not as reliable as corner
points, resulting in limited utilization of line features.

For future work, in addition to the aforementioned
issues, we believe that single-sensor systems have fatal
limitations. For instance, vision-based SLAM systems cannot
operate in completely dark environments, while laser-based
SLAM systems cannot capture rich environmental textures.
Therefore, we plan to address scale, texture, and lighting
issues in SLAM by utilizing multi-sensor fusion methods.
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