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ABSTRACT The field of deep learning is a rapidly developing research area with numerous applications
across multiple domains. Sonar (SOund Navigation And Ranging) processing has traditionally been a field of
statistical analysis. However, in the past ten to fifteen years, the rapid growth of deep learning has challenged
classical approaches with modern deep learning-based methods. This survey provides a systematic overview
of the Underwater Acoustic Target Recognition (UATR) domain within the area of deep learning. The
objective is to highlight popular design choices and evaluate the commonalities and differences of the
investigated techniques in relation to the selected architectures and pre-processing methods. Furthermore,
this survey examines the state of UATR literature through the identification of prominent conferences
and journals which points new researchers in directions where to allocate UATR related publications.
Additionally, popular datasets and available benchmarks are identified and analysed for complexity coverage.
This work targets researchers new to the field as well as experienced researchers that want to get a broader
overview. Nonetheless, experienced sonar engineers with a strong background within classical analysis also

benefit from this survey.

INDEX TERMS Deep learning, passive sonar classification, underwater acoustic target recognition.

I. INTRODUCTION

Underwater Acoustic Target Recognition (UATR) describes
techniques of classifying, categorizing, and identifying
unknown surface vessels or submarines through the anal-
ysis of their emitted acoustic signals [1], [2]. Acquiring
knowledge about the source type of underwater noise has
applications in maritime safety [3], [4], maritime traffic
-monitoring [4], [5] and -management [6], navigation,
surveillance [7], and in the recognition [8], [9] as well as
protection of marine life [10], [11]. In many domains, remote
sensing is mostly accomplished in the visual, or RADAR
domain. However, most modalities are not able to penetrate
the water column, effectively making them not applicable
for underwater sensing. In contrast, acoustic waves are
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able to propagate long ranges underwater [12], [13]. Up to
this date, classification of unknown maritime vessels are
mostly performed manually by highly experienced sonar
operators [14], [15], [16]. High performance sonar systems
are able to detect, localize and differentiate subtle noise
sources. Accompanied by the increasing number of maritime
vessels through the ongoing process of globalization [17],
[18], the number of targets sonar operators have to identify,
manage and classify has been steadily increasing. The
manual assessment has become infeasible from a pure
time and cost perspective. Initial automated approaches
utilized handcrafted features and classical statistical analysis.
These approaches often result in insufficient robustness and
generalization capabilities encountered at different recording
conditions. Therefore, a great demand for reliable, auto-
matic classification systems is present. Deep learning based
approaches have been shown to increase the generalization

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

154092

VOLUME 12, 2024


https://orcid.org/0009-0000-6627-7019
https://orcid.org/0000-0002-0467-0947
https://orcid.org/0000-0002-1969-559X
https://orcid.org/0000-0002-3973-2730

N. Miiller et al.: Navigating the Depths: A Comprehensive Survey of Deep Learning for Passive UATR

IEEE Access

capabilities. Also in other sonar domains like active sonar
deep learning techniques are of interest [19], [20] which is
not scope of this survey.

This paper aims to give a systematic up-to-date overview
of the UATR field. In the past, there have already been
various contributions to this subject that differ significantly
from this work in terms of their objectives or level of
detail. In [21], the authors gave a highly regarded review on
shoreline surveillance methods with active and passive sonar
systems, with deeper focus on the latter. In their work, the
authors focused on various feature selection methods, as well
as common architectures and learning strategies of various
research works. Another, more recent overview that extends
the study of [21] based on the commonalities and differences
between utilized architectures and methods is provided
by [14]. Despite the comprehensive analysis of various UATR
methods considered here, we have identified difficulties
with regard to the reproducibility and comparability of the
research examined in [14]. Therefore, we have adapted the
criteria of our survey to address both points, and to allow a
direct comparison between the different contributions. The
intention behind this objective is to provide the reader with an
overview of the UATR field from the literature point of view.
The data scarcity is a widely discussed difficulty in the deep
learning based UATR [8], [11], [22], [23], [24], [25], [26],
[27], [28], [29]. Therefore, a deep analysis on the available
datasets and benchmarks with an extensive explanation
regarding the complex underwater acoustic environment is
provided in this work. In summary, this survey outlines three
major contributions.

« Examine the state of the UATR literature.

Show the historic development of the UATR field and
describe how and where to allocate research works
regarding UATR. Identify prominent conferences and
journals of high quality papers and derive their key
contributions.

« Extend the technical analysis of UATR approaches

from existing surveys.

The intention lies in identifying commonalities and
differences between various approaches in terms of uti-
lized architectures, feature representations, and learning
strategies, while retaining reproducibility and compara-
bility.

« Provide in-depth analysis of the available datasets

and benchmarks.

Investigate popular datasets and benchmarks with a
spotlight on the complexity coverage. The in-depth
analysis of the publicly available datasets highlights
gaps that potential future datasets should cover in
order to obtain an overall pool of well generalizable
datasets that enables the UATR domain to advance
similar to other domains like computer vision and speech
recognition.

This survey is structured as follows. Section II gives an
overview of the literature search process and the selection
criteria applied. This section shows the historic development
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of the field and outlines the most qualitative journals and con-
ferences for UATR considered in this survey. Section III gives
a concise recap of the theoretical background knowledge
for underwater acoustics, followed by a brief description of
the selection of classical approaches and their corresponding
strengths and limitations in section III-C. Subsequently,
the benefits and promises of deep learning approaches are
outlined, followed by a comparison of common approaches in
section IV. The reproducibility of the examined publications
is given in section V. Section VI covers the different available
databases and gives insight to their complexity coverage.
At last some concluding remarks are given in section VII
followed by a summary of this work in section VIIIL

Il. METHODOLOGY

For the acquisition of publications, Elsevier’s Scopus and
Clarivate’s Web Of Science databases were selected due
to their multidisciplinary topics and extensive corpus for
our literature search. The search term for both databases
composed of the union of “Underwater Acoustic Target
Recognition” and “UATR”. Since the focus is put on
deep learning approaches, the publication time span was set
from 2012 to 2023, where 2012 marks the initial boom of
deep learning with the introduction of the ImageNet [30]
benchmark and AlexNet [31].

A. SEARCH RESULTS

The results obtained with the Scopus and Web of Science
database were identical, returning the same 102 publications,
respectively. Of these 102 publications, 89 had the topic
of classification, 13 had different recognition topics other
than UATR (like marine mammal identification and target
detection/ localization), five dealt with augmentation meth-
ods, four mainly with generative approaches that focused
on extending the data quantity, and one publication was
one of the two aforementioned surveys [14]. The literature
search was conducted in April 2024. Henceforth, these
102 publications will be referred to as the “UATR literature
corpus”.

B. SELECTION PROCESS

The research papers considered in this work have been
carefully selected according to the described UATR topic.
Accordingly, this mainly includes research on clustering,
classification or identification of unknown maritime vessels,
solely based on their emitted acoustic fingerprint. Addition-
ally, criteria such as comprehensibility and reproducibility are
also taken into account in the selection process. These include
studies with comprehensive descriptions of the architectures
used, a detailed description of the data pre-processing chain
and a reproducible training procedure. Furthermore, the
included research papers should make reasonable compar-
isons to similar approaches. This type of selection process
is fairly subjective. However, this selection criteria highlights
well-structured and comprehensible research works on which
other, especially new research can easily build upon. This
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non-english (4)
not deep learning (6)

not task related (11)
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no access (13)

no public dataset used (28)

FIGURE 1. Amount of included and excluded papers from this survey.

selection process indicates a general structure of research
works in the UATR domain, which new researchers can adapt
and orientate to. The selection criteria are summarized as
follows.

1) UATR Task Related.
The work should focus on the detection of maritime
vessels based solely on their noise. While other modal-
ities could be taken into account as complementary, the
classification based on their passive sonar signature is
required.

2) Deep Learning Approach.
While many works exist on classical statistical analysis,
the objective of this work is to compare deep learning
based approaches.

3) Reproducibility and Comprehensibility
In order for a publication to be considered as com-
prehensible, the model architecture, method, and data
pre-processing strategy has to be described. Addition-
ally, for the sake of reproducibility, the research work
must conduct their work on a publicly available dataset.
To this work, we define the requirement of the usage of
either the ShipsEar- [32], DeepShip- [33] or the Ocean
Networks Canada dataset.

As stated above, this work is focused on the classification
of unknown maritime vessels. An extensive review of deep
learning based detection of unknown passive targets is given
in [34]. A comprehensive overview of deep learning based
detection and classification of sonar targets in image based
sonar is given by the authors in [19].

We skimmed the publications on the basis of their title,
abstract and experimental section, in order to gain an initial
overview of studies relevant to the objective of this survey
according to the criteria stated above and to narrow down
the considered publications. After the skimming process,
roughly two thirds of the publications of corpus A were
discarded. Fig. 1 displays the distributions of included and
discarded publications and gives insight into the reason
certain publications were excluded.
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Fig. 1 show that roughly a quarter (27.5%) of the
resulting publications were discarded, as they did not include
experiments on one of the three mentioned public datasets
conflicting with the reproducibility criterion. We could
not gain access to 13 of the 102 publications (12.7%)
despite given access to most publishers. Nonetheless, despite
appropriate effort these publications were only accessible
with a costly subscription, or the original papers were
untraceable. A total of eleven papers (10.8%) were not related
to the UATR task of identifying maritime vessels. These
publications focused on either the detection and localization
of maritime vessels or on the identification of different noise
sources, such as marine mammals. Six papers (5.9%) did not
apply any deep learning based method to the UATR task, and
four papers (3.9%) were not published in English. In total,
40 (39.2%) of the initial 102 publications remained which
matched the selection criteria and therefore are considered as
relevant to this survey. We will refer to these 40 publications
as the ““relevant studies corpus”.

It is important to mention that a significant amount of
promising publications of well known representatives of
the passive sonar domain have been excluded from this
survey on the basis of the aforementioned selection criteria.
Additionally, some publications were simply not indexed by
the SCOPUS and Web Of Science Database. It is advisable
for new researches to extend their literature search outside the
scope of this survey and directly look for publications of some
prominent research institutes. A selection of well represented
institutions in the underwater acoustic domain are given in
section II-D.

C. DEVELOPMENT OF THE UATR FIELD
This section provides a short overview of the historic
development of the UATR domain. We aim to contrast
the development of UATR approaches based on classical
statistical and deep learning based methods. A second
literature search using the “passive sonar classification”
(PSC) keywords was conducted with the Web of Science
Database. We will refer to the result of this query as the
“PSC literature corpus’ in the remainder of this study. The
query resulted in a total of 100 publications. After a similar
skimming process as with the first literature search, we were
able to divide the publications into 23 deep learning and
77 non-deep learning related papers. The 23 deep learning
papers were already present in UATR literature corpus. The
following Fig. 2 shows the development of the research
field in the last 30 years. Note that six of the publications
in UATR literature corpus were not deep learning related
(see section II-A) resulting in the 96 papers shown in the
following Fig. 2. We will refer to this subset of the UATR
literature corpus as the ‘“‘deep learning literature corpus”.
This development is demonstrated using the deep learning
corpus (96 papers) and the non-deep learning publications
obtained with the “PSC” keyword search (77 papers).

Fig. 2 clearly shows an increase in the number of
publications from a handful of publications every few
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FIGURE 2. Development of the number of published articles under the
keywords “Underwater Acoustic Target Recognition”, “UATR” and “passive
sonar classification” from Elseviers SCOPUS and Web of Science database
up to the year 2023.

years up to ten publications per year under the “PSC”
keyword. The number of publications under the ‘“UATR”
keyword underwent a similar development, but much later
and more drastically. Currently, the total accumulated number
of publications roughly match. The 92 publications with the
“UATR” keywords consist mainly of research conducted
on deep learning methods. While the research work found
under the “PSC” keyword focuses on classical statistical
approaches on handcrafted features. An interesting milestone
in the development lies around the year 2020, where the
number of “UATR” publications (12) firstly surpasses the
number of “PSC” publications (10). In addition, the year
2020 also marks the turning point where the number of
papers published under the secondary “PSC” keyword has
been rapidly decreasing ever since. Fig. 2 highlights three
important developments. Firstly, the number of publication in
the UATR domain is rapidly increasing every year. Secondly,
newly published research obviously shifted from classical
statistical approaches to deep learning based methods. Lastly,
the term “Underwater Acoustic Target Recognition” has
become the associated keyword that addresses classification
of unknown maritime vessels and has replaced ‘‘passive
sonar Classification” which covers a more broad spectrum
of applications.

D. BIBLIOGRAPHIC ANALYSIS

All analysis are only applied to the initial UATR search
query. This section gives a brief overview of the most
significant journals and conferences for UATR. Additionally,
this bibliographic analysis should identify the placement of
the UATR subject within the general research field. In order
to identify the associated research field, we utilized the
“Scimage Journal & Country Rank” website,! (last accessed:
30.04.2024, 11:23) and the associated research categories.
For this survey, the identification of qualitative publishers
is based on the total number of papers published under the
“UATR” corpus and the number of papers included in this
survey according the aforementioned selection criteria. This
metric yields high quantity but low quality publishers and

1 (https://www.scimagojr.com/journalrank.php
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rewards the contrary. The significance o of a publisher to this
work is determined as:

Nyelevant
O = Nrelevant + (D

Ntotal
where o describes the significance score, Nejeyan: 1S the
number of publications from the UATR corpus considered in
this work and n;,y,; is the total number of journal/ conference
publications found under the UATR keyword. Fig. 3 displays
the most significant journals and conferences to this work,
based on the aforementioned score.

Fig. 3 shows the highest publishing journals and con-
ferences in the UATR domain in terms of quantity. Only
seven journals published more than a single UATR related
paper. The “Journal of Marine Science and Engineering”
is the largest UATR publisher with a total amount of
eight publications, of which seven are included in this
survey. The second-highest number of publications are from
the “Sensors” journal, however scoring lower than the
“Electronics™ journal it includes irrelevant papers to this
study. This penalization can also be seen in the last two
displayed journals ‘““‘Remote Sensing” and “Entropy”” where
the majority of the published papers were excluded from this
survey. The same characteristic can be seen in the distribution
of conferences proceedings. The major conference in the
UATR field is the “OCEANS” Conference. Even though
many papers were published as proceedings of various ““Inter-
Noise” conferences, the majority are considered as irrelevant
to this study, resulting in a low score.

In addition to the metric o, the mean number of citations
for each journal is given by s to evaluate the visibility of
publications within each journal and conference proceeding
by comparing to the mean average citation count (MACC) of
the corresponding journal. All bibliographic metrics are also
displayed in Table 12 (see appendix). The “Journal of Marine
Science and Engineering” and “Electronics™ score the best
in terms of relevant publications. However, the publications
are only cited on average by 4.12 and, 1.5 respectively.
In contrast, the two publication within the “IEEE Access”
journal are cited 17 times on average. The distribution of the
average citation count does not accompany the distribution of
the number of relevant papers. The visibility of publications
within the regarded journals is determined by subtracting the
MACC from the mean number of citations fijrs. Fig. 4 shows
the paper visibility for each journal.

Fig. 4 shows that the visibility of the papers within
the regarded journals follows a similar trend as the mean
number of citations, s Which can be derived from Fig. 3.
Therefore, the highest visibility of publications are currently
achieved in the “IEEE Access”, “Applied Science - MDPI”
and “Geoscience and Remote Sensing Letters - IEEE”
journals.

The 96 UATR publications of the deep learning literature
corpus were published in over 60 different journals and
conference proceedings, whereas the 40 publications of the
relevant studies corpus were published in 29 different journals
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UATR Journals

% Engineering, A Computer Science, l Environmental Engineering, + Physics
o | Hcites|
Journal of Marine Science and Engineering - MDPI 1 777771788 |4.12
Electronics - MDPI 4 3.00]1.50
Frontiers in Marine Science - Frontiers Media S.A. 1 3.00 | 0.00
Applied Sciences - MDPI 777772.67| 10.67
Geoscience and Remote Sensing Letters - IEEE 4 iz 2.67 | 6.33
Sensors - MDPI g 2.50 | 4.25
IEEE Access 2.00]17.00
Knowledge-Based Systems - Elsevier 2.00]5.00 Number of Publications
PL0S ONE - Public Library of Science 1 2.00 | 5.00 m Total Relevant
Transactions on Instrumentation and Measurement - IEEE 2.00] 4.00
Expert System with Applications - Elsevier 2.00|0.00
Transactions on Audio, Speech and Language Processing - IEEE/ACM 2.00 | 0.00
Multimedia Tools and Applications - Springer 1 2.00]0.00
IET Radar, Sonar and Navigation - Wiley 2.00 | 0.00
Ocean Engineering - Elsevier 77771.50]0.00
Applied Acoustics - Elsevier 1 P 1.33 | 5.67
Remote Sensing - MDPI ) 1.33 | 1.33
Entropy - MDPI Z777771.33]1.00
0 2 4 6 8 10
UATR Conferences
OCEANS (2019 2023) 1 77777 2.67 | 8.67
IEEE Oceans Conference (2021) 1 2.00] 2.00
CCC (2023) 2.00 | 0.00
ICET (2021) {7]2.00 | 11.00
EEI (2023) 1 2.00 | 0.00
ICSIP (2021) 2.00 | 2.00
ICETCI (2023) 2.00] 0.00
BigDIA (2022) 2.00 | 6.00
COA (2021) 7777 1.50 | 2.00
INTER-NOISE (2016 2020 2021) ~/1.14]0.00
0 2 4 6 8 10

Number of Publications

FIGURE 3. The most contributing journals and conferences to the UATR task, based on the total number of published work and the

number of relevant work.

IEEE Access

Applied Sciences - MDPI

Geoscience and Remote Sensing Letters - IEEE
PLoS ONE - Public Library of Science

Applied Acoustics - Elsevier

Journal of Marine Science and Engineering - MDPI
Sensors - MDPI

Entropy - MDPI

Transactions on Instrumentation and Measurement - IEEE
IET Radar, Sonar and Navigation - Wiley
Electronics - MDPI

Frontiers in Marine Science - Frontiers Media S.A.
Remote Sensing - MDPI

Knowledge-Based Systems - Elsevier

Multimedia Tools and Applications - Springer 1

Ocean Engineering
Transactions on Audio, Speech, and Language Processing - IEEE/ ACM
Expert System with Applications - Elsevier

FIGURE 4. The visibility of publications within the included journals.
mean number of paper citations for the corresponding journal.

and conference proceedings. This distribution accentuates
the niche domain of UATR, indicating that a ‘“‘standard”
journal that focused solely on passive sonar processing is
not present yet. Merely the ‘“Journal of Marine Science
and Engineering - MDPI” indicates a development towards
this direction. Additionally, the associated research subject
and category of the journal is indicated using the symbols:
triangle for engineering, asterisk for computer science, square
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The visibility is determined by subtracting the MACC from the

for environmental engineering and star for physics. The
analysis using the ‘“Scimage Journal & Country Rank”
website showed that the UATR domain mainly is assigned
to following research domains: engineering (15), computer
science (8), environmental science/ engineering (5), and
physics (5).

To elucidate the differences between the two keyword
searches applied and to give a more extensive overview of
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the research field, Table 1 presents a selection of the most
frequently represented journals, authors and affiliations in the
PSC- and UATR literature corpora, as well as the articles that
were included in this analysis.

While a majority of journals appear in both PSC- and
UATR literature corpora, the appearance of authors and the
corresponding affiliations are more exclusive to the corpora.
Despite the extensive range of research works reviewed in
this study, several promising studies from the PSC literature
corpus were deliberately excluded from this survey due
to non-compliance with the inclusion criteria outlined in
Section II-B. These included works on target detection and
localization, sonar imaging, any recognition of non ship
radiated noise sources, not deep learning related works and
works that did not benchmark on the publicly available
datasets. Therefore, after the cleansing, no publications from
the journals like ‘““Sensors”, “Journal of the Acoustical
Society of America”, “IEEE Journal of Oceanic Engineer-
ing”, “Defence Science Journal”, ‘“Mechanical Systems and
Signal Processing” and “IEEE Signal Processing Letters”
remained.

Nevertheless, we strongly encourage readers to consider
relevant research beyond the scope of this survey. We aim to
underscore significant and influential studies that were not
included in this review. The following articles are derived
from the literature reviews provided by [14], [21] who
provide are more general machine learning oriented view
on UATR and from highly cited articles that did not fulfil
all selection criteria stated in section II-B. For instance,
Hu et al. [23] pioneered the integration of depthwise separa-
ble convolutions within a 1D CNN architecture, facilitating
the direct extraction of discriminative features from raw
waveform signals. Similarly, Doan et al. [7] proposed a
CNN architecture applied directly to raw waveform signals,
demonstrating the effective use of skip connections to reuse
features extracted by earlier layers. The authors in [35]
addressed the challenge of data scarcity by leveraging unla-
belled data with a deep belief network. Dynamic effects on the
received signal, though often overlooked, are critical in real-
world applications. Xue et al. [36] addressed these challenges
by employing channel attention modules to manage Doppler
shifts in a custom-acquired dataset. Additionally, the authors
in [37] captured temporal correlations from time-frequency
representations using a second-order pooling strategy within
a CNN architecture applied to custom-recorded signals. Most
studies on underwater acoustic target recognition (UATR)
have focused on single-label target recognition, whereas in
many practical scenarios, multiple targets are encountered
simultaneously. Beckler et al. [38] addressed this limitation
by employing a Bayesian formulation within a standard CNN
to demonstrate multi-label recognition.

Furthermore, several prominent institutions in the fields
of oceanography and sonar signal processing are notably
absent from this literature review, as no publications utilizing
deep learning for the recognition of ship-radiated noise
were identified within either the initial or extended literature

VOLUME 12, 2024

corpora under the “Passive Sonar Classification” keyword.
The selection of the provided research institutions are widely
represented from an applicative point of view in the sonar
domain. We would therefore highlight the importance to
direct the reader’s attention to these institutions, which may
contribute relevant research in future studies. A selection of
these institutions includes:
o “Center for Acoustics Research and Education”, Uni-
versity of New Hampshire”
« “Institute of Sound and Vibration Research”, University
of Southampton?
o “United States Naval Research Laboratory”*
« “Woods Whole Oceanographic Institution” (WHOI)?
o “Defence Science and Technology Laboratory”
(DSTL), UK Ministry of Defence?®
« “Applied Research Laboratories” (ARLL), The Univer-
sity of Texas at Austin’
o “Scripps Institution of Oceanography”, University of
California San Diego®
« “The Applied Research Laboratory”, Penn State Uni-
versity’
o “Atlantic Research Center” (ARC) Defence Research
and Development Canada Research Center!?

IlIl. THEORETICAL BACKGROUND

The main intention of UATR is to differentiate between
targets by analysis of the emitted acoustic noise. Unfortu-
nately, the received acoustic signal is not only affected by
the target vessel design and operating conditions, but also
by various environmental influences. This section provides
a brief overview on the physics of underwater acoustics and
highlights the major difficulty in UATR that arises from this
complicated domain.

In their studies, the authors in [39] and [40] demonstrated
that different ship types have distinct spectral character-
istics. Ship radiated noise follows a complex generation
mechanism, where the three main contributors of noise
have mechanical-, propeller-, and hydrodynamic origins [10],
[35], [41]. Mechanical noise describes the noise generated
by the propulsion system, machinery, gearbox, and other
mechanical actuators on or within the vessel. Propeller
noise describes the modulation of broadband cavitation noise
caused by the propeller rotation. Hydrodynamic noise is
generated through boundary interactions between the vessel’s

2 (https://eos.unh.edu/center-acoustics-research-education

3 (https://www.southampton.ac.uk/about/faculties-schools-
departments/school-of-engineering/institute-of-sound-and-vibration-
research

4 (https://www.nrl.navy.mil/

5 (https://www.whoi.edu/

6 (https://www.gov.uk/government/organisations/defence-science-and-
technology-laboratory

7 (https://wwwext.arlut.utexas.edu/labs.shtml

8 (https://scripps.ucsd.edu/

9 (https://www.arl.psu.edu/

10(https://www.canada.ca/en/defence—research—development/services/
capabilities.html
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TABLE 1. Comparison of the article appearance quantity of widely represented journals, authors and affiliations under the “Passive Sonar Classification”,
“Underwater Acoustic Target Recognition” keywords and the research works included in this survey.

Publications in Corpus
Category | Rank Name PSC  UATR _included
1 Journal of Marine Science and Engineering 3 9 7
2 Sensors 8 7
3 Applied Acoustics 2 3 1
4 Journal of the Acoustical Society of America 7 1
5 IEEE Journal of Oceanic Engineering 5
6 Defence Science Journal 4
7 Sensors (MDPI) 4 2
8 Entropy 4 3 1
9 IEEE Geoscience and Remote Letters 2 3 2
Journal 10 Applied Science — MDPI 2 3 2
12 Mechanical Systems and Signal Processing 3
13 IET Radar Sonar and Navigation 3 1 1
14 Remote Sensing 3 1
15 Frontiers in Marine Science 2
16 IEEE Signal Processing Letters 2
17 IEEE Sensors Journal 2
18 Journal of the Acoustical Society of Korea 2
19 Measurement 2
10 Ocean Engineering 2 2 1
20 Lecture Notes in Computer Science 2
1 De Seixas JM 9
2 Yang HH 9 2
3 De Moura NN 6
4 LiJh 5 1
5 Luo XW 5
6 Kamal S 5
7 Zhao DX 4 2
8 Supriya MH 4
9 Zhang W 3 1 1
10 Liu F 4 2
Author | ) Liu DL 4
12 Shen TS 4 2
13 Chandran CS 4
14 Xul 4 1
15 Xie Y 4 1
16 Chen L 4 3
17 Li DH 3 2
18 Wang Y 2 3
19 Varut RM 3
20 Liu JH 3
1 Northwestern Polytechnical University 11 17 7
2 Universidade Federal Do Rio de Janeiro 12
3 Chinese Academy of Sciences 4 10 2
4 Harbin Engineering University 7 8 4
5 University of Chinese Academy of Sciences CAS 8 7 1
6 Cochin University Science Technology 7 1
7 Institute Of Acoustics CAS 7
8 Southeast University China 6
9 Applied Science — MDPI 5 5
o 10 United States Navy 4
Affiliation | -y Chinese ACAD MIL SCI 4 2
12 United States Department Of Defence 4
13 Tiangong University 4
14 Zhejiang University 3 2
15 Naval Physical Oceanographic Laboratory NPOL 3
16 Indian Institute Of Technology System IIT System 3
17 Portland State University 3 2
18 University Of Electronic Science technology Of China 3 1
19 Defence Research Development Organisation DRDO 3
20 University of Sheffield 3

hull and the ocean medium. The composition of these noise
sources commit to unique acoustic fingerprints of maritime
vessels. The effects on a received underwater waveform, with
respect to amplitude, frequency and phase, are displayed in
Fig. 5.

154098

A sound wave propagating in water can either be subject
to dynamic effects that alter the features of the emitted wave
or to additive effects, like noise and other sources. The
origin of and degree of these effects are highly dependent
on the corresponding environment, geographic region, season
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as well as target- and receiving platform design. The high
level influences segment into further intermediate influences.
In Fig. 5, these low level features are separated into a
controllable (marked green) and non-controllable set (marked
red). When generating a dataset, one would technically have
information regarding the controllable parameters, whereas
the non-controllable parameters can only be influenced indi-
rectly. An ideal dataset for the underwater acoustic domain
should account for sufficient variability in all influences
to ensure an appropriate complexity coverage. This is later
covered in section VI. For more in-depth explanation on the
cross-correlation of the aforementioned variables, we highly
suggest reviewing some standard literature for underwater
acoustics, such as [42], [43], and [44].

As any mechanical wave that transports energy through a
medium, the most important quantities to describe underwa-
ter acoustic waves are amplitude, frequency, and phase [4].
The amplitude is an umbrella term for the received pressure to
a certain area. Analogous to every physical wave, underwater
acoustic waves are also subject to interference, attenuation,
as well as frequency and phase shifting effects. Despite
the basic similarity, many approaches for classical acoustics
are not applicable to underwater acoustics, mainly due to
the inhomogeneous nature of the oceanic environment [4].
Underwater acoustic signals experience various propagation
and transmission losses [3] as well as additive effects like
ambient noise.

Regular inhomogeneities like time varying underwater-,
and surface channels, as well as antiwaveguides such as
shadow zones are caused by different sound velocity profiles
[42, p. 2-9], [29]. The sound velocity profile typically
depends on the water temperature, salinity, and pressure
[42, p. 1], and is consequently dependent on the geographic
region and time.

Transmission loss refers to the reduction of received signal
strength as a wave travels through and interacts with a
medium. The received pressure is affected by many effects.
Primarily, every mechanical wave suffers absorption by the
propagation medium, where some energy is absorbed in terms
of heat as the wave interacts with the molecules. This effect
increases at larger propagation distances. Secondly, trans-
mission losses such as scattering, geometric spreading and
reflections decrease the amplitude. Scattering losses describe
the redistribution of energy when acoustic signals scatter of
particles, bubbles and other irregularities in the water column.
As acoustic waves propagate omnidirectionally, geometrical
losses occur where the energy is dispersed spherically. In the
special case of an underwater acoustic channel, the energy is
dispersed cylindrically. Reflection losses occur at boundaries
of media with different propagation velocities, such as the
seabed or the water surface. This results in the signal’s atten-
uation as partial energy quantities are either transmitted or
reflected [42]. Lastly, mechanical properties and operational
states of the transducer can alter the emitted amplitude [11].
All the aforementioned effects contribute to the decrease of
signal strength mutually. Generally, underwater acoustics is
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TABLE 2. Underwater acoustic spreading loss dependent on target
distance, r adapted from [47, p. 102].

T Intensity  Transmission
ype varies as loss [dB]

No spreading r0 0

Cylindrical r—1 10log r

Spherical r—2 20log r

Hyperspherical —r—3 30logr

regarded as a low Signal-to-Noise-Ratio (SNR) scenario [7],
[16], [27], [41], [45], [46]. The typical expected spreading
losses under different circumstances in dependency on the
target distance are displayed in Table 2. Real transmission
losses are mainly comparable to spherical spreading.

Furthermore, the propagation of underwater acoustic sig-
nals is usually accompanied by multiple frequency alternating
effects. First and foremost, relative dynamic movements
between the signal transducer and receiver cause frequency
shifts due to the Doppler effect [27]. Secondly, vessel operat-
ing conditions like engine revolutions per minute, gear choice
etc., but also general ship conditions contribute differently to
the emitted frequency spectrum [11], [29]. Dissipation and
absorption of signal energy is typically frequency-dependent,
where high frequencies are attenuated stronger compared to
lower frequencies. Reflection, scattering, and refraction of an
incident wavefront at boundaries cause frequency dependent
generations of a secondary wavefront that superimpose with
the original wave [43, p. 352]. Additive effects like ambient
noise sources contribute additional frequency components
to the spectrum of a received signal. Fig. 6 displays the
frequency dependant attenuation modelled by the empirical
derived Francois-Garrison formula for various seawater
temperatures.

Lastly, the received phase of an underwater acoustic
signal can be distorted or altered through various effects.
Acoustic turbulence such as local inhomogeneities of the
water column cause fluctuations in the velocity and direction
of the sound wave. Boundary reflections at the seabed,
water surface or submerged objects can cause phase shifts.
Dynamic properties such as movement of the emitter and
receiver also alter the phase component. At last, acoustic
signals can take multiple propagation paths due to reflection,
refraction, and scattering at the surface and seabed. This
results in different paths and therefore distances the acoustic
signal can propagate from the emitter to the receiver,
consequently resulting in phase shifts. Multipath propagation
especially occurs in shallow water regions and can add a
significant temporal complexity to the signal [3], [7], [10],
[49]. At last, the characteristics of the transducer and receiver
also influence the received phase due to design, mounting and
processing choices.

In addition to the preceding losses and modifications
caused by the wave propagation in water, different additive
contributions of ambient noise influence the SNR and
spectrum of a received signal. At low frequencies 0.1 —
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generation.

10 Hz turbulence noise is present which includes alter-
ations caused by ocean, atmosphere, and geophysical noise
sources like underwater volcanic eruptions and earthquakes
[42, p. 30, 31]. In the frequency band between, 10 — 300 Hz
the main noise present is caused by remote ship traffic.
The significant increase in commercial shipping, and the
low attenuation of sound at these frequencies, generate a
continuous background noise [4], [10], [13], [41], [50].
The main source for traffic/ vessel noise are the propulsion
machinery, propeller interactions in water and the flow noise
generated by the water movement at the ship’s hull. This
type of noise is the main of interest to UATR. The state of
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the sea itself is also a major noise contributor with many
mechanisms. This mainly includes the breaking of waves
on the sea surface and the accompanying cavitation noise
of collapsing bubbles. This effect is highly associated with
the wind conditions [42, p. 30, 31]. Other weather condition
such as rainfall also generate broadband noise on the surface,
typically in the range between 1 kHz and 5 kHz. Additionally,
biological noise produced by the marine fauna can have a
considerable impact on the noise level in certain regions
and seasonal time spans [17]. Furthermore, the random
movement of atoms and molecules due to thermal energy, also
referred to as molecular agitation or thermal noise, generates
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a noise spectrum in the range between 100 kHz and 1 MHz.
Lastly, uncontrollable man-made noise contributions, such
as sea floor mining/ drilling, active sonar systems etc. can
be present throughout a very broad frequency spectrum. All
the aforementioned noise sources contribute differently to the
isotropic noise level. The frequency dependant noise level for
various selected ambient noise contributions is displayed in
Fig. 7.

A. CHARACTERISTICS OF SHIP RADIATED NOISE

Despite the many influences to a propagating underwater
acoustic wave, some key properties of ship emitted noise
are evident. This section provides a short overview of these
features and also provides general assumptions that can be
applied for the signal processing.

Ship radiated noise consists of a wideband continu-
ous spectrum with discrete narrowband frequency compo-
nents [14], [41], [51]. The propeller cavitation and the flow
noise of the vessel generate the broadband component. The
target’s internal machinery and propulsion systems are the
main contributors to distinct, narrowband spectral frequency
lines [52], [53]. While target information is predominantly
distributed in lower frequencies [10], [39], [50], [54],
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especially below 5 kHz [51], high frequency components
also include target information [53]. Most approaches focus
on either determining the low frequency line spectrum
or the high frequency modulation caused by the target’s
propeller [5].

While varying vessel operating conditions result in time
dependant irregularities [55], [56], [57], ship radiated noise
is mostly considered static in short time [14], [22], [41], [41],
[58], [59], where the authors in [ 13] narrow down the stability
between 10 — 30 ms. The authors in [41] even state that ship
radiated noise can be considered static up to 100 ms, making
the underwater acoustic signals more stable compared to
human speech. Nonetheless, short time variations, like engine
start-up, de- and acceleration of the target vessels etc. can
still give insight to useful vessel specific information as
demonstrated by [55] and [56].

As stated above, the field of UATR is considered a low
SNR scenario, where many of the influences described in
this section decrease the effective amplitude of a propagating
acoustic wave. Despite the distinct features that can be
extracted to categorize unknown vessels, ship radiated noise
is still subject to severe intra-class variance, where targets
of the same category can vary extensively in speed, tonnage,
power system and propeller characteristics [3].

B. FEATURES REPRESENTATIONS IN UNDERWATER
ACOUSTICS

Traditionally, UATR systems are composed of independent
feature extraction and a classification processes [23]. Due
to the complexity of the oceanic environment, the extraction
of meaningful characteristics is the major key in the vessel
classification process [24], [41], [56]. This section is intended
to cover the various feature representations commonly
used in UATR and highlight the corresponding limitations
and strengths. The various feature representation in the
UATR domain can roughly be assigned to the following
categories; time domain (waveform), frequency (spectrum),
time-frequency (spectrogram) and auditory features [15],
[24], [60].

Digitized acoustic signals are constructed as one-
dimensional signals that describe amplitude oscillations
over time. The raw waveform itself contains the highest
possible information content of the received signal. Various
waveform based features, such as the zero-crossing-rate
and the waveform structure itself, are applied in acoustic
processing [61]. However, features based solely on the
plain temporal waveform are difficult to describe and
comprehend. As the classification of unknown maritime
vessels predominantly rely on the manual assessment of
sonar operators, more sophisticated comprehensible features,
such as spectral based characteristics, are extracted from
the original signal. The main tool for the extraction of
spectral components is the Fourier Transform (FT). The
major shortcoming of spectral features is the inability to
represent temporal context. Consequently, two-dimensional
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time-frequency representations are often applied [62], [63].
The most basic time-frequency representation is the Short-
Time-Fourier-Transform (STFT). The STFT is a temporally
segmented Fourier Transform (FT) over short consecutive
time frames. The output of such time-frequency representa-
tions are referred to as spectrograms. In audio processing,
especially in speech recognition, the harmonic behaviour of
the spectral components are exploited through the extraction
of the cepstrum. The cepstrum can capture periodic structures
within the spectrogram, and is obtained through the inverse
Fourier transform of the logarithmic spectrogram.

As the most energy is concentrated in lower frequencies,
research such as [39] and [64] focuses on the extraction of
the characteristic narrowband line spectrum that is generated
by the ship’s internal machinery [14]. A common approach
is the extraction of the LOw Frequency Analysis Recording
(LOFAR)-spectrogram [41], [57]. In contrast to the narrow-
band detection, the Detection of Envelope Modulation On
Noise (DEMON) focuses on the extraction of the modulation
frequencies of the broadband noise caused by the propeller
cavitation. The DEMON analysis is therefore utilized for
the extraction of distinct propeller characteristics, such as
number of propellers and number of blades per propeller [27].

Especially in speech recognition, auditory inspired fea-
tures achieved satisfactory results [65]. Experienced human
operators are able to distinguish different vessel types by
timbre, fluctuations in frequency and beat [27]. Inspired
by the capabilities of sonar operators, auditory inspired
approaches have also made inroads into the UATR domain.
As humans do not perceive sound linearly, the logarithmic
Mel-Scale is often applied to mimic the human auditory
perception [66] in the form of a Log Mel Spectrogram (LMS).
The Mel-Scale emphasizes lower- over higher frequencies.
Most often, a lower dimensional representation that captures
the periodic cepstral properties of the Mel spectrogram
are extracted with Mel Frequency Cepstral Coefficients
(MFCC) [67], [68]. Besides the MFCC, a similar feature
representation does not incorporate the Mel scale, but rather
the Gammatone frequency scale to formulate Gammatone
Spectrogram (GST). Analogous to the Mel approach, the
Gammatone Frequency Cepstral Coefficients (GFCC) can
be extracted from the GST [69]. Both MFCC and GFCC
utilize a set of pre-defined filters of various bandwidths
and amplitude to emphasize different spectral regions of an
input signal. In contrast to the MFCC, the Gammatone filter
bank applies smooth filters, which allow for more overlap
and therefore better correlation between the independent
filters [51]. The constant Q-Transform (CQT) is another
time-frequency representation closely related to the LMS.
Similarly, the CQT offers geometrically spaced frequency
filters, where the resolution varies logarithmically. It has its
origins in music processing, therefore it aims to have equal
resolutions across all octaves [70].

All spectrum or cepstrum based approaches are able
to capture energy, frequency and time information. The
foundations of these feature representations are build on the
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Fourier transform, which describes a complex wave structure
as a sum of superimposed sinusoidal waves with infinite
length. This periodic property of the sinusoidal wave leads
to an insufficient time localization capability. Moreover, this
characteristic is underlined by the fixed window length of the
STFT, where low- and high frequencies are resolved equally
in time. The Wavelet Transform (WT) allows for better
localization in both time and frequency, allowing for a more
precise analysis of non-stationary signals [71]. Thus avoiding
the conflict in balancing low- and high frequencies resolution
by choosing an adequate window length. The WT adapts
to the signal by applying shorter window lengths for high
frequencies, and lower window lengths for lower frequencies,
leading to a more effective representation of a wide range
of signal dynamics. This is especially advantageous for
analysing signals with transient components and varying
frequencies. However, the Wavelet Transform still requires
a priori information to select a proper mother wavelet. More
recently, the Hilbert-Huang Transform (HHT) has been used
to analyse underwater acoustic signals [72]. The HHT is an
adaptive approach that extracts subtle oscillatory-like features
from a signal. It focuses only on a certain set of frequencies,
which have a high energy response. The main strengths of
the HHT lies in the analysis of non-linear and non-stationary
signals. It uses the Empirical Mode Decomposition (EMD)
to decompose a signal into intrinsic mode functions (IMFs)
[73]. The frequency-time analysis is performed by applying
a Hilbert Transform on the mode functions [74]. The HHT is
preferred over the WT when instantaneous frequencies are of
great interest, as the WT assumes a certain level of frequency
stability in the time span of the wavelet.

The choice of the different aforementioned time-frequency
representations strongly depends on the assumption whether
ship radiated noise is considered stationary or non-stationary.
Research works, such as [14], [22], [41], [41], [58], and [59]
consider ship radiated noise as stationary. In contrast, the
researchers in [55], [56], and [75] consider ship radiated noise
as non-stationary. There is still quite a discrepancy among the
researchers within the relevant studies corpus, however the
number of publications that consider ship radiated noise as
stationary outweighs the contrary by two thirds. Nonetheless,
this is not a simple assumption to make, as it is strongly
dependent on the specific use-case. If constantly moving
and distant vessels are investigated, the noise is rather
stationary, whereas strong de- and acceleration movements
and transients like engine startups etc. rather imply the
presence of a time varying signal.

C. CLASSICAL CLASSIFICATION APPROACHES

The development of automated sonar processing approaches
were predominantly orientated towards the human opera-
tor. Consequently, the focus has been historically put on
comprehensible and interpretable, mostly time-frequency
based features obtained through the STFT, LOFAR and
DEMON analysis. The preceding feature representations are
usually combined with simple statistical-, more recently with
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machine learning and even more recently with deep learning
to classify or categorize a received acoustic signal.

This section will briefly cover a selection of statistical
classifiers in UATR to map unknown underwater acoustic
signals to known labels. Statistical models have been shown
to work sufficiently in data-scarce applications while being
less prone to over-fitting [14]. They are fairly simple and
offer comprehensible parameters and working principles, and
are often utilized as supportive decision—systems to human
operators.

Table 3 summarizes a selection of several statistical
classification approaches build on top of the aforementioned
different time, frequency, time-frequency and auditory fea-
tures. The approaches were selected from the accumulated
references of deep learning literature corpus. It is important
to note that the provided scores and metrics in this section are
difficult to compare directly, due to the lack of comparable,
publicly available datasets and benchmarks at the time of
most publications. All approaches are evaluated on custom
and enclosed datasets (except for [32]). The algorithms of
many of the selected approaches are available as of the
shelf methods in most statistic toolboxes across various
programming language. Nonetheless, no access to the used
source code is available for any of the displayed methods.

According to the selected approaches, the Support Vector
Machine (SVM) emerges as an often utilized classifier [61],
[72], [76], [77], [78]. The SVM is a versatile supervised
model, mostly used for regression and classification tasks.
The main objective of the SVM lies in finding an optimal
decision boundary (or hyperplane) that separates input data
points with a maximal margin. This margin is based on
the Euclidean distance between the data point and the
decision boundary [79]. In [61] the authors constructed
a nine-dimensional feature representation which included
statistical properties extracted from the raw wave-structure.
These included zero-crossing wavelength, peek-to-peek
amplitude, zero crossing wavelength difference and wave
train areas. Through the application of the SVM on the
nine-dimensional feature, they were able to achieve a
recognition rate of 89.5% on a two class classification
of a custom real world dataset. In [76], the authors fit a
non-linear polynomial to the continuous power spectrum
of a received acoustic signal. They demonstrated that the
power spectrum reflects certain ship specific properties.
Additionally, they state, that no a priori information of the
frequency distribution is required to achieve a recognition
accuracy of up to 94.0%. Moura and Seixas [62] target
scenarios where negative samples (targets not present in the
dataset) are difficult to obtain. They apply a single-class SVM
for the detection of novel ships types. They use the LOFAR
analysis followed by a principal component analysis (PCA)
to reduce the dimensionality. The PCA transforms correlated
variables into linear uncorrelated variables, referred to as
principal components. The principal components represent
the variables of highest variance and are subsequently used
as input to the SVM classifier. For the evaluation of the
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novel detection, they introduce the SP-index metric which
is composed of the number of known events classified as
novelty and the number of novelty events classified as known
classes. With their approach, they were able to achieve an
SP-index of 77.9%. The authors in [77] use the modified
GFCC feature as input to the SVM, illustrating the noise
robustness of over the MFCC and plain GFCC features.
The modified GFCC, they refer to as MGFCC is extracted
from a Gammatone Cochleargram in combination with a
discrete cosine transform for dimensionality reduction. They
are able to achieve a classification accuracy of 98.6% on a
four class, custom dataset. The authors in [72] also utilize
time-frequency representations in combination with SVM for
the classification of unknown vessels. In contrast, however,
they make use of the Hilbert-Huang transformation on the
cepstral coefficients extracted using a Gammatone filter bank,
achieving a classification accuracy of 96.7%. Additionally,
the authors [72] were able to demonstrate the stability of the
HHT features under various SNR scenarios.

The Gaussian Mixture Model (GMM) represents another
often utilized classification model in UATR. The GMM is
a probabilistic model that assumes that input samples are
generated from a mixture of normal distributions. The key
objective is the determination of the distribution parameters
such as mean and variance to model the underlying mixed
Gaussian distribution. Therefore, the GMM is often applied
in supervised and unsupervised clustering and classifications
scenarios. GMMs are highly flexible and can model a
wide range of complex data distributions. Additionally,
due to the probabilistic nature, GMMs can model the
uncertainty, providing confidence levels. In [32] the authors
set up baseline results utilizing GMMs for the publicly
available ShipsEar Dataset they introduce. With the GMM
and Cepstrum Coefficients (CC) as feature input, they are able
to detect vessel presence with 100% accuracy. Additionally,
their method is able to differentiate between four vessel types
with an accuracy of 75.4%.

In [63] the authors model the human decision process
of sonar operators based on ship specific characteristics
extracted from the line spectrum of a DEMON analysis
combined with a Fuzzy logic classifier. Fuzzy logic deals with
probabilistic logic with approximate reasoning. In contrast
to classical logic where the variables have fixed binary
values, fuzzy logic incorporates non-fixed values. This has
applications in decision-making systems where a human like
reasoning under uncertainty is required. The implemented
logic can model nonlinear relations of arbitrary complexity
while remaining comprehensible. Nonetheless, fuzzy logic
systems are somewhat subjective and reliant on expert
knowledge in the implementation stage.

The statistical methods and the feature extraction methods
presented demonstrate that the classification and catego-
rization of unknown vessels based solely on the emitted
noise is possible. The classical approaches require only a
handful of data samples to train and are less subject to
over-fitting while still being interpretable due to their pure
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TABLE 3. Overview of UATR approaches using classic statistical and machine learning based classifiers for various feature representations.

Feature Classifier Reference Contributions
. Wave Meng et al. . . .
Time Structure SVM (2014) [61] Obtain loudness and timbre like char-

acteristic from pure wave structure

Liu et al.

Spectrum SVM

(2014) [76]

Fit a nonlinear polynomial to the spec-
trum. Demonstrate that power spec-

Frequency trum includes target information. No
priori information of the feature distri-
bution is necessary.

LOFAR SVM %g‘ir;)e[g;l] Apply a SVM on LOFARgrams for
(single class) detection of novel ships.
DEMON Fuz;y Kummert Extraction of ship properties like pro-
Logic (1993) [63] ) )
Time- peller shaft rage, number of blades
based on line spectrum of the DEMON

Frequency analysis

HHT SVM égr]li)e[t;le]. Utilize HHT on top of GFCC features
for time-frequency analysis. Indicate
feature extraction robustness for low
SNR conditions.

MFCC GMM Santos—(%cirg)l IE%;TZ etal. Introduce ShipsEar dataset and respec-

tive baseline recognition accuracy of

. 75.4%. Demonstrate that ship types

Auditory can be identified by various hull sizes.
Lian et al. . . .

GFCC SVM Utilize modified Gammatone Filter

(2017) [77]

mathematical and statistical nature [14]. However, it has
been shown that a fairly sophisticated and highly engineered
feature extraction process is necessary to extract meaningful
patterns from within the data. The feature extraction is of
significant importance and requires high level of domain
expertise to craft [7], [23], [26], [35], [45], [46], [80]
and extensive manual labour [45]. The handcrafted features
in combination with the shallow classifiers are not able
to extract deep features from within the data, due to
the limited model capacity [81] and strongly compressed
information within the features [41]. In reality, the properties
of underwater acoustics are unable to fulfil the assumptions
made in the feature crafting process, resulting in insufficient
generalization capabilities [41], [52], [82], [83].

IV. DEEP LEARNING APPROACHES

With the accumulation of accessible datasets, deep learning
approaches have been increasing in popularity within the
UATR field. Deep Learning based methods are purely data
driven models that can learn hierarchical features [3] with
little to no a priori information [56] allowing the development
of end-to-end recognition models. The automatic feature
extraction process directly tackles the issue of manual
feature crafting confronted in the application of statistical
methods [24], [55]. Irfan et al. [33] compared various
statistical- to deep learning based approaches and demon-
strated that the purely data driven deep learning approaches
outperform the former. This section covers the deep learning
based UATR approaches for various benchmarks taken from
the relevant studies corpus. The objective is to identify
common architectures, feature representations and learning
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bank. Demonstrate noise robustness of
GFCC features over MFCC

strategies. The general data processing pipeline common for
all investigated approaches is displayed in Fig. 8.

In general, the investigated publications follow a unified
data processing procedure. At first, the recordings of various
lengths are separated into smaller, equally sized batches.
In the second step, pre-processing methods are applied to
the fixed size windows. These typically include resampling
to a unified sample rate, standardization and applying pre-
emphasis filters. If required, the waveform samples are
transformed into a desired representation form. The third and
fourth step describe the extraction of meaningful features
and classification of the processed input. Typically, these
steps are aggregated in a single model with corresponding
components.

All the included approaches evaluate their methods on
common benchmarks. The benchmarks are derived from
ShipsEar [32] and DeepShip [33] datasets. In addition to the
recognition of the twelve different noise classes provided by
the ShipsEar dataset, it has become common to categorize
the vessel noise in subcategories of five or nine categories.
Concerning readability and simplicity of comparison, the
various approaches are separated into individual tables 4, 5,
6, 7, respective to the utilized dataset. Note, the displayed
approaches are sorted in chronological order and certain
approaches that utilize both datasets are listed in both tables
accordingly.

A. MODEL ARCHITECTURES

Deep networks have been shown to more effective in
capturing deep hierarchical feature representations as shallow
networks with sonar data [28], [50], [S57]. Despite the
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FIGURE 8. The standard processing pipeline in UATR. (1) In the first step,
the collected samples in the dataset are sliced into equally sized batches.
(2) pre-processing measures, such as resampling, standardization and
pre-emphasis are usually applied in the second step. Additionally the
sliced waveform samples are transformed into the desired representation
form. Step (3) and (4) describe the feature extraction and classification
incorporated in within the selected model. Some approaches specifically
apply these two steps individually. Most of the research is concentrated
on the pre-processing and feature -crafting and extraction.

performance increase, issues like the vanishing gradient
problem complicate the training process of deep neural
networks [7], [28], [55]. At first, popular network architecture
choices in the UATR field and the motivating properties that
lead to these decisions are highlighted. Fig. 9 summarizes
the distributions of the model architectures listed in the
tables 4 5, 6, 7 and 8.

Regarding the considered deep learning based UATR
publications, it is evident that convolutional neural networks
(CNN) are the most popular architecture, with a share of
two thirds. This characteristic is carried along all investigated
benchmarks. 26 of a total 40 publications utilize CNNs for the
encoding layers. The CNN architectures have their origin in
the computer vision domain and have been very successful
ever since [49], [58]. On the basis of this success, a common
practice has evolved in the audio and sonar domain, where
CNNs are applied by adapting the input modalities to the
image like inputs typically expected by CNNss. In total, 24 of
the 26 CNN approaches transform the original waveform
into a two-dimensional time-frequency representation similar
to a gray scale image. Fig. 9 shows that all studies of the
relevant studies corpus were published between 2019 and
April 2024. Additionally, an increase of the CNN usage in the
UATR field can be clearly derived from Fig. 9. In the years
2022 and 2023 transformer architectures have first made
ground in the UATR domain. The usage of the Restricted
Boltzmann Machine (RBM) and Multi Layer Perceptron
(MLP) based approaches are focused around single research
groups respectively, resulting in relatively low number of
publications.
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The introduction of residual connections and the corre-
sponding Residual Neural Networks (ResNet) by [102] have
become a widely utilized backbone within the UATR field.
12 publications of the 26 using CNNs make use of this
backbone. The authors in [3], [5], [15], [22], [26], [50],
[91], [97], and [99] make use of ResNetl8. The authors
in [6] make use of a ResNet50 architecture, proving that
deeper networks are able to extract more semantic meaningful
features compared to their shallow counterparts. Yang et al.
[6] demonstrate that a sophisticated feature choice can elevate
a smaller scale ResNetlO to achieve comparative results
obtained with a larger ResNet18 architecture.

As previously mentioned in section III vessel noise is
composed of narrowband and broadband frequency compo-
nents. Capturing broadband frequency relations contrasts the
local feature extraction property of CNNs [7], [49], [85]. The
usage of large convolution kernels and very deep networks
can overcome this issue, however, at the cost of expensive
computation and difficult training [23], [52]. The authors
in [85] utilize differently sized kernels in parallel to extract
features with different resolutions to increase robustness
towards capturing complex broadband targets. Li et al. [60]
introduce a basic block module based on separated patches of
the input spectrogram, where an MLP captures the globally
distributed features across these patches. In [82] the authors
make use of multiple differently sized dilated kernels to
increase the receptive field, without significantly increasing
the computational effort. Besides the model driven solutions,
the authors in [6] are able to increase their receptive field from
a data point of view. In their work, three different LOFAR
spectrograms of various frequency resolutions are fused as
input to the model in a multichannel array.

Tables 4,5,6,7,8 indicate that only a minority of approaches
employ simple architectures. The majority of methods
incorporate mechanisms designed to extract more globally
extended or temporally related features. Attention mech-
anisms have been successfully introduced into CNNs to
extract globally distributed features within the frequency
domain. The authors in [10], [26], [56], [58], [90], and [97]
introduce channel-wise attention modules that are able to
highlight dominant frequency bands, containing the most
useful information. The authors in [26] demonstrate the
effective ocean noise suppression using channel attention.
Wang et al. [13] utilize a self-attention module on top of
a shallow multiscale network. They prove that the attention
module is able to alleviate the limits of shallow networks by
increasing the recognition accuracy by 2.3%.

Another approach to overcome the small receptive field
of the CNN is addressed by the authors in [11], [50], [55],
[87], and [101] by modelling the received time sequence
using recurrent neural networks (RNN). In contrast to the
aforementioned works, these approaches focus on capturing
features distributed over the time domain rather than across
the frequency domain. In particular, the authors make use
of the Long-Short Term Memory Neural Networks (LSTM),
which reduces the influence of gradient decay of during the
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TABLE 4. Deep learning based UATR approaches evaluated using the ShpsEar dataset with five categories. The benchmark results are measured according

to the recognition provided accuracy score.

Results
Reference Architecture Feature Additional Dataset
[Accuracy]
Log Mel Spectrogram
g‘(’)’;gl )etgajﬂ CNN +MFCC ; 94.3%
+ (Chroma+Contrast+Tonnetz)
Liu et al CNN Log Mel Spectrogram
" + MFCC - 94.3%
(2021) [3] (MCNN-DAN) + (Chroma+Contrast+Tonnetz)
Yi et al., CNN
(2021) [85] (MsR-CNN) MFCC - 99.25%
Luoetal., CNN
(2021) [39] (MWSA) LOFAR - 96.32%
Luo et al., RBM Spectrum 92.6%
(2021) [28] + BP + DEMON . 070
MFCC
Liu et al., + Log Mel Spectrogram, DCASE [86]
(2021) [25] CNN + CQT + GTS ImageNet 82.0%
Spectrogram
STFT + Log Mel Spectrogram
(22%32“2% ‘3[;27‘5 o + 1st deriv - 96.67%
+ 2nd deriv
Lietal., . ImageNet
(2022) [88] Transformer Filter bank AudioSet [89] 97.7%
Lietal Log Mel Spectrogram
(2022) '[’2 6] CNN + MFCC DeepShip 98.0%
+ (Chroma+Contrast+Tonnetz)
Lietal., CNN
(2022) [58] (FEM-ATNN) Waveform - 95.3%
g%g;; ?é'é] -iC-l;IgITM Log Mel Spectrogram - 92.14%
Feng et al., Transformer .
(ZOZgZ) [49] (UATR-Transf.) Log Mel Spectrogram DeepShip 96.9%
Qietal., CNN MFCC
(2023) [50] +LSTM +WT - 97.98%
%210?3&)1'[’ 60] +C-11\\I/[1\IIJP Log Mel Spectrogram - 92.6%
Yang et al., CNN Waveform i 62.21% — 82.78%
(2023) [11] +LSTM v (for all types)
(Szu(;lzgt) ?})i MLP Frequency Spectrum DeepShip 98.79%
MFCC
Yang et al. CNN .
’ + 1st deriv - 97.7%
(2023) [6] (LW-SEResNet10) +2nd deriv
ggg%eg 1‘3{ (CENTNC 0 STFT custom 0.99 weighted avg F1
Wu et al Filterbank
(2023) [i’S] CNN + 1st deriv ImageNet 95.0%
+ 2nd deriv
MFCC
Chen et al. CNN .
: - + 1st deriv - 95.8%
(2024) [90] (ARescat) +2nd deriv
Feng ctal, CNN E/Igggc - 98.34%
(2024) [91] +STET
Feng et al., Transformer . 67.89%
(2024) [92] (UATR-Transf.) Log Mel Spectrogram DeepShip (on 10% of the dataset)
Liu et al., CNN
(2024) [93] (RACNN) MFCC - 99.44%
gggi;{;ﬂj’ ;Fsri/r;;f)ormer Log Mel Spectrogram custom 88.64%

training process of common recurrent neural networks [80].
The authors in [101] underline the effective extraction of
temporally correlated features from time-frequency repre-
sentations by introducing recurrence. This improved time
sequence modelling capability is additionally supported by
the research results of [50] and [87]. Yang et al. [11]
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demonstrate that these temporally related features can also
be extracted from the time domain signal.

Another more recent approach to overcome the small
receptive size of CNNs circumvent the usage of con-
volution operators. The first transformer architectures in
the UATR domain were introduced by [49] with the
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TABLE 5. Deep learning based UATR approaches evaluated using the ShipsEar dataset with nine categories. The benchmark results are measured
according to the recognition provided accuracy score.

Results
Reference Architecture Feature Additional Dataset
[Accuracy]
Xie et al., Log Mel Spectrogram DeepShip
(2023) [5] CNN +CQT st 85.34%

TABLE 6. Deep learning based UATR approaches evaluated using the ShipsEar dataset with twelve categories. The benchmark results are measured
according to the recognition provided accuracy score.

Results
Reference Architecture Feature Additional Dataset
[Accuracy]

{“212)028; ?11:’1] E%l\é[ Power Spectrum Noisex-92 [95] 93.17%
Dong et al., CNN
(2022) [16] (BDAE) EMD . 75.28%

‘Waveform
Wang et al., + Log Mel Spectrogram
(2023) [13] CNN + Ist deriv - 96.8%

+ 2nd deriv

Log Mel Spectrogram
Wang et al. Transformer .

’ + 1st deriv - 96.82%
(2023) [4] (ADDTr) +2nd deriv
Wang et al CNN
v + Transformer Log Mel Spectrogram DeepShip 96.5%

(2024) [96] (DWStr)
Xie et al., CNN DeepShip
(2024) [97] (CMoE) STFT custom 86.21%
Cuietal, CNN Log Mel Spectrogram DeepShip 76.91% (15-shot)

(2024) [98]

TABLE 7. Deep learning based UATR approaches evaluated using the DeepShip dataset with five categories. The benchmark results are measured
according to the recognition provided accuracy score.

Results
Reference Architecture Feature Additional Dataset
[Accuracy]

Log Mel Spectrogram
Lietal + MFCC
(2022) [26] CNN + (Chroma ShipsEar (5) 99.0%

+ Contrast

+ Tonnetz)
Feng et al., Transformer Loe Mel Spect ShipsEar (5) 95.3%
(2022) [49] (UATR-Transf.) 0g Mel spectrogram 1pskar 270
Sun et al., .
(2023) [9] MLP Frequency Spectrum ShipsEar (5) 97.74%
Yao et al., CNN
(2023) [99] (DCGAN) MFCC - 96.37
Tian et al., CNN Waveform
(2023) [100] (MSRDNN) STFT ONC 79.5%
Xie et al., Log Mel Spectrogram ShipsEar (9)
(2023) [5] CNN +CQT custom 80.02%
Huang et al., 0.51% — 0.73% f1
(2023) [53] CNN Log Mel Spectrogram . (for all classes)
Feng et al., Transformer . 66.03%
(2024) [92] (UATR-Transf.) Log Mel Spectrogram ShipsEar (on 10% of the dataset)
Wang et al CNN
(2024g¥) 9 6j, + Transformer Log Mel Spectrogram ShipsEar 92.75%

(DWStr)

Xie et al., CNN ShipsEar
(2024) [97] (CMOoE) cQr custom 78.59%

“UATR-Transformer”, by [58] with the “STM: Spectrogram
Transformer” in 2022 and more recently by [4], [92],
[94], and [96] in 2023 and 2024, as depicted in Fig. 9.
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These purely attention based approaches demonstrate that
comparative results can be obtained without the use of any
convolutional operators. In contrast to the aforementioned
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TABLE 8. Deep learning based UATR approaches evaluated using the Ocean Networks Canada dataset. The benchmark results are measured according to

the recognition provided accuracy score.

Results
Reference Architecture Feature Additional Dataset
[Accuracy]
Yang et al., CNN
(2019) [101] + LSTM Log Mel Spectrogram 90.0%
Tian et al., CNN ‘Waveform
(2023) [100] (MSRDNN) STFT ONC 95.2%
MLP (2 10 =2 o o
. RBM (3) =3 RNN
= EE RBM
g 8 [ Transformer
RNN (5) -% = MLP
g 6 i 6
>
g—_ 5 5
o 4
G 3
CNN (26) Transformer (6) =
3, P2 2 2
Q i
11 ; 1 1

(a)

2019 2020 2021 2022 2023 2024
time [year]

(b)

FIGURE 9. Distribution of the model architectures applied in UATR (a) and the historic development of the deep learning

architectures (b) from the relevant studies corpus.

channel emphasizing attention, the Transformer makes use
of self-attention, which effectively correlates all the input
tokens against each other. All the three transformer based
approaches are build on top of the Vision Transformer (ViT)
introduced by [103] in 2020. Feng and Zhu [49] introduce
a novel tokenization scheme that includes information from
neighbouring tokens. The transformer based approaches
in [49] and [58] are built on the self-attention mechanism,
which has a quadratic computation complexity O (N>D),
where N marks the sequence length and D the dimension
of the feature vector. The authors in [13] introduce an
additive attention mechanism with linear complexity O (ND)
to reduce the computational effort required. Additionally,
[58] demonstrate pre-training of the transformer can be
achieved with cross domain pre-training on the ImageNet
and AudioSet [89] dataset, despite the large domain shift.
Therefore, addressing the issue of large data requirement,
notable to the transformer architecture [24], [58]. This is also
demonstrated for non transformer based approaches in [15].

The majority (75%) of the UATR approaches integrate
supervision into their training process. The research group
around Xinwei Luo and Yulin Feng published three papers
build on top of the Restricted Boltzmann Machine: [1], [41],
[59] in the years 2020 and 2021. In their research, the authors
were able to prove that an automated feature encoding can be
achieved by layer-wise training without the need of supervi-
sion. The target recognition was accomplished by sending the
encoded feature vector through a back-propagation network.
The authors in [101] also applied non supervised pre-training
approaches, demonstrating that the combination of CNN and
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LSTM is able to extract meaningful features without the
need of annotated data. Recently in 2023 and 2024 the first
contrastive learning approaches have gained a foothold in the
UATR domain [9], [94], [98]. Sun and Luo [9] investigated
a modified supervised version of SimCLR, a popular
contrastive learning approach from the vision domain that is
focused on self-supervised learning [104]. In their work, the
authors demonstrated the superior intra-class accumulation
and inter-class separation capability of the contrastive
approach. They compared their results to an implemented a
version of the DBM proposed in [59] and gained a recognition
accuracy of 98.79% over 77.32% with the DBM on the
ShipsEar dataset. The authors in [94] effectively integrate a
sophisticated patch-level masking technique in combination
with a Swin Transformer architecture, preventing the model
to perform basic interpolation between adjacent patches.
Nonetheless, the authors in [5] and [97] demonstrated, that
the effectiveness of contrastive learning arises with sparse
datasets. Otherwise, they are still outperformed by classic
supervised learning methods if sufficient annotated data is
given.

B. UATR FEATURE REPRESENTATIONS

This subsection aims to highlight various data representation
methods utilized in the UATR domain which are derived from
tables provided in section IV, with reference to section I1I-B.
The results are categorized into time-, frequency-, time-
frequency- and other representations and are displayed in
Fig. 10.
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Log Mel Spectrogram (19)

Spectrum (4)
Waveform (4)

S 3% | LOFAR(1
\fr’é'.' Lorar )
WT (1)
GFCC (2)
MFCC (14) EMD (2)

CQT (6)

STFT (5)

3 Time @ Frequency I Time-Frequency I other

(a)

other/ custom (5)
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Canada (2)
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5 categories (26)

DeepShip (13)
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12 categories (8)

(b)

FIGURE 10. Distribution of the data representation forms (a) and utilized datasets (b) utilized in deep learning based UATR models.

The biggest share among the utilized data representations
is taken by time-frequency representations. In total, over
three out of four approaches make use of this form of data
representation. Single time- and frequency- representations
alongside the other photometric representations such as
chroma, contrast, tonnetz and zero crossing rate are only
applied in one out of four approaches with equal shares of
four publications each. Regarding the spectral representation,
most spectrogram-based approaches transform the received
signal onto a logarithmic frequency scale like the Log-Mel
Spectrogram or MFCCs, emphasizing lower frequency com-
ponents. The choice of logarithmically scaled frequencies
representations are not subject to independent benchmarks,
but are rather present among all publicly available benchmark
results. This choice aligns with the low-frequency energy
concentration characteristic of ship-radiated noise stated in
section III. The two most utilized representations are the Log
Mel Spectrograms 30% and the derived MFCCs, 2% utilized
over half of the investigated publications. In total 61% of
the approaches are derived from a logarithmic frequency
representation such as Log Mel Spectrogram, MFCC, CQT
and GFCC. The large share of time-frequency based features
coincides with the large share of CNN based approaches (see
Fig. 9). However, the question remains whether the choice of
the data representation form is driven by the model choice.
24 of the 26 CNN approaches choose a time-frequency
representation as the input feature to their models.

Approximately half of the reviewed approaches utilize
multiple features concurrently, demonstrating superior recog-
nition performance when combining more than one feature
representation. Approaches like [5] and [25] utilize frequency
representations with different resolutions and emphasis
characteristics, whereas the authors in [4], [6], [13], [15],
[87], and [90] integrate the first and second derivatives of
the frequency over time representations to capture temporally
related properties of the signal. Additionally, the authors
in [3], [26], and [84] utilize features inspired from computer
vision based approaches like Chroma, Contrast and Tonnetz
proving the effectiveness of regarding the time-frequency
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representations as an image. These observations high-
light that single features are often insufficient to capture
all relevant signal characteristics. Notably, the study by
Tian et al. [100] illustrates that using highly diverse input
features, such as raw waveform and STFT, can signifi-
cantly enhance recognition accuracy due to their strong
complementarity.

Fig. 10 displays the distribution of the utilized datasets
for pre-training, fine-tuning and validation of the investigated
UATR approaches. Three datasets are actual passive sonar
dataset, namely ShipsEar, DeepShip and Ocean Networks
Canada and make up 84%. The ShipsEar dataset is the
most commonly utilized dataset. with a share of 59%.
However, various approaches make use of different vessel
type groupings within the same dataset. 26 publications 43%
grouped the original eleven vessel types into four groups and
two publications 3% into nine groups, plus with an extra
background noise class. In the original paper [32] the authors
also utilize the four category grouping. The objective of
eight publications 13% was to classify the original eleven
vessel types. The second most utilized dataset is the DeepShip
dataset, with 13 publications 12%. Only two publications
3% made use of the Ocean Networks Canada dataset. This
small share is caused by the fact that the Ocean Networks
Canada is an unlabelled dataset. Therefore, this dataset was
only of interest of the two approaches that investigated non
supervised learning approaches [100], [101].

Pre-training has become a viable approach in UATR [4],
[51, [15], [25], [26], [41], [49], [88] to overcome the data
scarcity issue, implying that the given datasets are not
sufficient to capture all feature variations of ship radiated
noise. The number of publications pre-training on cross
domain Datasets, such as ImageNet, AudioSet, DCASE and
Noisex-92 [4], [15], [25], [41], [88] outweigh the number
of research works pre-training on actual sonar data [26],
[49], [101] five to three. In [15] the authors were able to
increase the recognition accuracy by 2.3% by pre-training
on the ImageNet dataset indicating that similar features are
present in time-frequency representations of ship radiated
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noise and general images. Especially the transformer based
approaches [4], [88] rely heavily on sufficient pre-training
with a large data corpus like ImageNet and AudioSet due
to the high training data requirements of the Transformer
architecture [24], [88]. The authors of [88] were able to
increase the recognition accuracy from 85.7% up to 97.7%
by pre-training on ImageNet and AudioSet.

The generalization capability is an often discussed topic
in the UATR domain [9], [24], [25], [28], [100], [105].
Despite being an aware issue, not many approaches undergo
deep investigations on the generalization capabilities of their
proposed methods. The general approach is to train and
evaluated only a single dataset (23 publications). This is
especially dangerous as a common approach to enhance
the available sample quantity is to subsample the recorded
files into fixed size with overlapping frames. A naive
assignment of the subsampled frames into a train, test-
and validation dataset is successive to data leakage [5].
This information leakage diminishes the validity of potential
generalization statements. The results given by [10], [14],
and [85] have to be taken under a grain of salt regarding
this aspect of data leakage. This supposition could be
counteracted with a detailed description of the data prepa-
ration process, which is not given or fully comprehensible.
Only nine of the investigated publications cross-evaluated
their models on different available underwater acoustic
datasets [5], [9], [49], [100], [105], whereas the authors
in [56] evaluated their results on a custom, not accessible
dataset. An impact to the results on the evaluation dataset
compared to the single-dataset approaches in not visible in the
tables 4, 5, 6, 7, and 8.

Few-Shot learning methods, where the objective is to train
on as few target samples as possible, have also been the
subject of recent publications. The authors in [92] and [98]
investigate the recognition performance on fine-tuning on
only a handful of samples. The authors in [98] consider
fine-tuning sets consisting of only 3, 5, 10, or 15 examples
per class in the downstream task. The authors in [92] fine-tune
on 10% of the original dataset. These approaches have shown
promising results on the transfer ability of well pre-trained
networks.

C. SUMMARY OF DEEP LEARNING BASED APPROACHES
To gain a better overview of the different methodical
approaches given in UATR research, table 9 gives a structural
summary of the aforementioned publications.

The literature review of this section reveals several key
findings and corresponding suggested research articles in the
domain of deep learning-based recognition of underwater
acoustic targets:

1) Global Features. Ship-radiated noise is characterized
by globally extended features. Traditional Convolu-
tional Neural Network (CNN)-based methods, which
are adept at extracting local features, have been
successfully extended to capture broader contextual
information through various techniques. These include
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2)

3)

the use of attention mechanisms, multi-spectral fea-
tures, and recurrent neural network structures that
incorporate extended temporal contexts. Transformer-
based approaches, with their inherent self-attention
mechanisms, naturally excel at detecting global fea-
tures across the input sequence. At the feature extrac-
tion level, incorporating first- and second-order time
derivatives of input spectrograms effectively captures
short-term temporal effects, such as reverberation. The
presence of globally extended features is addition-
ally supported by the broadband characteristics of
ship-radiated noise discussed in Section III. The study
by Feng and Zhu [49] illustrates the use of Trans-
formers to identify global features in this context. For
research that incorporates a global perspective in their
approach, Chen et al. [90] present a CNN-based method
augmented with an attention mechanism, while Yang
et al. [6] provide a comprehensive Transformer-based
approach. Additionally, Zhang et al. [87] demonstrate
that architectures incorporating recurrent structures
can enhance recognition performance by leveraging
stronger temporal sequence modelling capabilities.
Auditory based Features Ship-radiated noise pre-
dominantly occupies the low-frequency spectrum. This
characteristic is evidenced by the widespread use of
logarithmic frequency scaling in various approaches,
which is consistent with the theoretical framework
outlined in our manuscript. Although ship-radiated
noise has distinct properties, its concentration in
the lower frequency range is analogous to the pat-
terns observed in other auditory-based deep learning
applications, such as speech processing [106], [107].
Consequently, we recommend leveraging the rapidly
evolving methodologies from speech processing when
designing recognition systems for ship-radiated noise.
The studies by [6], [55], and [96] highlight the superior
effectiveness of logarithmically spaced spectrograms
over linearly spaced ones for capturing relevant fea-
tures in such contexts.

Feature Fusion The extensive use of feature fusion
techniques highlights the complexity of acoustic data
and suggests that single features alone are inadequate
to fully characterize the acoustic signals. Integrating
multiple features at different scales, or combining
features with distinct properties — such as fusing
raw, time-domain signals with their corresponding
frequency representations — has consistently been
shown to outperform approaches relying on single fea-
tures. For instance, Tian et al. [100] demonstrated the
effectiveness of combining frequency-based features
with raw waveform signals, validating the advantages
of using diverse input features in conjunction. Another
common fusion technique involves incorporating tem-
poral derivatives of the time-frequency representations.
This approach has been shown to improve recognition
accuracy by up to 5% when using Transformer
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TABLE 9. Systematic overview of classical-, and deep learning based approaches according to the applied method and utilized dataset.

4)

5)

Utilized dataset

Approach Method Description
ShipsEar DeepShip other
SVM Waveform [61]
Classical Approaches Time-Frequency (621, [72], [76], [77]
GMM [32]
Fuzzy Logic [63]
MLP [9] 19]
shallow net [13], [85]
CNN ResNet [31, [5], [6], [15], [26], [501, [92] | [51,[26],[97]1,199] | [51,[97]
Attention [10], [26], [56], [58], [90], [97] [10], [26], [97] [10], [97]
RNN LSTM [11], [501, [551, [87] [101]
Transformer UATR, STM, SWIN [4], [49], [58], [92], [94] [491, [92], [96] [94]
temp. derivatives [4], [6], [13], [15], [90]
Deep Learning Multi-Features Spectral [51, [13], [25], [85] [100] [100]
Image Features [31, [26], [84] [26]
PreTraining Sonar Data [26], [49] [26], [49] [101]
Non Sonar Data [4], [15], [25], [41], [88]
Unsupervised Learning ~ DBM [41], [59]
Contrastive Learning Contrastive Coding, SimCLR | [5], [9] [5], [9] [5]
Few-Shot CNN, Transformer [92], [98] [92]

architectures [4], and it is also effective in CNNs [6]
and recurrent neural networks [87]. Furthermore,
Wang et al. [13] demonstrated a potential increase in
recognition accuracy by up to 12.5% through the fusion
of raw waveforms with log Mel spectrograms and their
corresponding derivatives.

Cross-Domain Analogies. The integration of
image-based features such as chroma, contrast, and
tonnetz [3], [84], as well as the successful pre-training
on image datasets, suggests the existence of common
low-level properties between general image represen-
tations and the time-frequency representations of ship-
radiated noise. Pre-training on large-scale datasets,
such as ImageNet, has proven highly beneficial for
Transformer-based approaches [88], and has also
been applied to CNN architectures [15]. While the
effectiveness of pre-training on image data has been
substantiated in various studies, Li et al. [88] further
demonstrated that pre-training on acoustic data from
AudioSet yields superior performance compared to
image-based pre-training for acoustic recognition
tasks.

Data Scarcity Pre-training, along with semi-
supervised and unsupervised learning approaches,
presents promising solutions to the challenge of
limited data availability in underwater acoustic
target recognition. These methods enable models to
utilize existing unlabelled data, extract generalizable
features, and reduce reliance on extensive labelled
datasets. Unsupervised learning, in particular, has
emerged as a productive research direction. Studies
by Luo et al. [41], [59] and Feng and Luo [1] have
demonstrated the successful extraction of meaningful
features from unannotated data. More recently,
contrastive learning methods have gained prominence
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6)

within the unsupervised learning domain. Sun and
Luo [9] achieved an impressive recognition accuracy
of 98.79%, highlighting the effectiveness of their
approach in intra-class aggregation and inter-class
separation. In addition, Feng et al. [92] showcased the
few-shot recognition capabilities of their Transformer-
based approach, achieving a recognition accuracy
of up to 67.89% using only 10% of the ShipsEar
dataset. Similarly, Cui et al. [98] demonstrated a
15-shot scenario on the DeepShip dataset, achieving
a recognition accuracy of up to 79.91%.
Generalisation Stability is a critical factor in the
evaluation of recognition systems, particularly given
the challenges associated with generalisation to unseen
data across all deep learning domains. The complex
nature of underwater acoustics and the numerous fac-
tors that can influence the received signal underscore
the importance of this evaluation criterion. However,
we identified that numerous articles focus on achieving
high recognition results on single datasets. While these
approaches give good results, they rarely address one of
the most discussed difficulties of UATR. We therefore
recommend that readers prioritize studies that evaluate
their approaches on multiple sonar datasets, such as
those given by [5], [9], [49], [100], and [105], despite
not always achieving the highest benchmark results.

V. REPRODUCIBILITY AND TRANSPARENCY

While

all the investigated approaches provide sufficient

description of the applied architectures and data pre-
processing steps, not a single source code is made available in
the regarded publications. Despite the sufficient descriptions,
the reproducibility of the approaches are severely limited as
the manual implementation and rebuilding of the proposed
models are theoretically doable, yet remain immensely time

154111



IEEE Access

N. Miiller et al.: Navigating the Depths: A Comprehensive Survey of Deep Learning for Passive UATR

and labour-intensive and error-prone. Transparency and open
source characteristic is a major contributor to the prosperous
development of Al in numerous fields [108]. However,
the UATR field lacks this transparency characteristic. This
unfortunate property can be explained as sonar processing
remains a niche field where many defence industries take
part. Licensing issues could hinder the source code provision
as it would result in a conflict of interest. In addition, most
custom datasets remain confidential, as sonar- and especially
UATR-applications are mainly of interest to the defence
industry.

V. COMPLEXITY COVERAGE OF THE SHIPSEAR AND
DEEPSHIP DATASET

The data distribution of ship radiated noise is very large.
In order for models to learn robust and discriminate features,
the UATR field requires sufficient amounts of training data
that cover the complex data distribution covered in section III.
Only two publicly available and annotated datasets exist to
this purpose.

The ShipsEar dataset was published in 2016 by [32]
and includes over 90 recordings of about 40 different
vessels of eleven categories. In addition to the eleven
vessel types, fishing boat, trawler, mussel boat, pilot ship,
tugboat, dredger, ro-ro, ocean liner, passenger ferry, sailboat,
motorboat, an additional class of background noise is also
made available. The recordings took place at three different
recording sites on the Atlantic coast in the northwest of
Spain. In particular, at entry routes to the port of Vigo
and other ports, as well as in the middle of the Ria de
Vigo. The dataset includes of many docking and undocking
manoeuvres, as well as some background and biological noise
contributors. The time span of the recordings was between
autumn 2012 and summer 2013.

The DeepShip dataset was published in 2021 by [33].
It includes recordings of 265 different vessels of the four
different categories: cargo, passenger ship, tanker, tugboat.
The complete data scope covers about 47 hours of recordings.
The measurements took place in the time span between
May 2016 and October 2018 at three different locations
around the Georgia delta node. Due to the long timespan,
the recordings include various background and biological
noise sources, as well as various weather and tidal conditions.
The labels were acquired using the automatic identification
system (AIS) on the basis of the location and timestamp.

Table 10 compares the ShipsEar, and DeepShip dataset
according to the intermediate- and low level features derived
in section III. The properties were derived from the original
papers. As the Ocean Networks Canada dataset is not
as common (see section IV) and as it lacks of detailed
information about the acquired signals, it is intentionally
excluded from the following comparison.

Table 10 shows that many of the intermediate- and low
level features derived in section III are covered by the two
dataset to some extent. As the ShipsEar dataset was acquired
in a close distance to a port, many docking and undocking
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manoeuvres, as well as continuously moving vessels are
present in the dataset. The operational states covered by the
DeepShip dataset are mostly vessels passing by. However, the
DeepShip dataset includes targets in a radius of 2 km, whereas
the ShipsEar only covers targets in a relatively close distance
of less than 300 m. In terms of variety in vessel numbers,
the DeepShip datasets clearly outweigh the ShipsEar dataset,
with 265 over roughly 40 recorded vessels. However, the
ShipsEar dataset offers more variability in the different vessel
types, where eleven different vessel types are recorded over
only four different in the DeepShip dataset. Both datasets
cover various weather and temperature conditions. While the
ShipsEar dataset offers recordings of wind and rain noise
without the presence of vessel noise, the DeepShip recordings
always include the vessel noises on top. As the DeepShip
dataset was acquired over two and a half years, more variety
in weather and temperature conditions are expected than in
the ShipsEar dataset, which was only acquired over half a
year. Regardless, it is important to mention that this is not
clearly stated in the dataset descriptions. Both datasets were
acquired over three different on-site locations. Nonetheless,
the recordings sites are geographically close, where similar
salinity, marine life, current, and seabed conditions are
expected. Both datasets mention other noise contributors,
including some anthropogenic noises like a suction dredge
in the ShipsEar dataset. However, the presence of these noise
sources are only roughly mentioned as they are considered
“to be expected” and not described in detail. Concerning
recording properties, the DeepShip dataset clearly offers a
larger quantity of recordings of up to 47 h over approximately
3 h provided by the ShipsEar dataset.

As stated above, both datasets cover many of the
intermediate- and low level influences of underwater acous-
tics. Nevertheless, the variability of these conditions are only
given in only a handful of occasions. Additionally, these alter-
nating conditions are mostly present as a single occasions and
not contemporaneous with other influences. Understandably,
this is an almost impossible task to accomplish. The lack
of sufficient variability however impedes the development
of models that learn good generalizable features [25], [28],
[100]. This is also reflected in the literature, where only
six approaches cross-validate their results on other acoustic
datasets [5], [9], [49], [56], [100], [105]. Table 11 displays the
mean, minimum, maximum, standard deviation accuracies,
and the top three publication references that achieve the
highest results on the corresponding benchmarks.

VIi. RESEARCH GAPS AND FUTURE DIRECTIONS

Deriving recognition systems purely from data using deep
learning has given promising results in the UATR field.
Nonetheless, some key issues could be addressed to encour-
age further development, especially when comparing to
more popular research domains such as computer vision
and natural language processing. A significant amount of
publications was not considered in this work, as they were not
comparable in terms of dataset usage (see Fig. 1). As stated
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TABLE 10. Comparison of the two most widely utilized passive sonar datasets in the UATR field regarding the low- and intermediate- level features

derived in section III.

Influence ShipsEar DeepShip
Intermediate
High Level Score Comments Score Comments
Level
Operational ships maneuvering . 298
- 3 in port, de- and 1 3;2221}; pass-by
State accelerating, pass-by o
Position/ targeted hydrophones .
- max. 350 m | at vessels for high max. 2000 m gli(ly recc?.rded m
Distance SNR m radius
A recorded 11 different
‘ Propulsion vessel types recorded 4 different
Vessel design, System 20 (assigned ) 265 vessel types
. to 4 categories)
condition
Propeller
and, type
Hull
Wind yes single recording yes
- without vessels recordings with
Weather Rain yes yes vessel noise
Thunder - - yes
other - - -
not directly not directly
mentioned, mentioned,
Temperature @) only 2 seasons @ all 4 seasons
are covered are covered
three different three different
Salinity - geographical close - geographical close
locations locations
Region . inferred from
Depth max. 45 m - min. 175 m hydrophone depth
Seabed 1 some rocks 2 sand and silt
Marine Life yes - yes -
single recording
Current yes without vessels yes )
Time Seasons 2 - 10 -
suction dredge
Other Noises (yes) waves crashing (yes) only mentioned
against port wall
Recording Duration approx. 3 h - approx. 47 h -
Background yes - yes -

in [14] and [21] the largest leap forward of the UATR
domain will be achieved by creating more versatile, available
and curated datasets. Additionally, more transparency in the
UATR field is desirable, as this would undoubtedly increase
the reproducibility of the proposed methods, on which future
researchers can easily build upon. Adding to this, it is
essential to give insight on why the code publication might
not be possible, i.e. in terms of licensing and conflict of
interest.

Furthermore, the developed architectures and data repre-
sentations shown in section IV demonstrate that a lot of
focus is either put on increasing the information content
of the utilized data representations or in the creation
of highly engineered and sophisticated feature extractors.
Many approaches use time-frequency to cope with the
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CNNs image-like input, and therefore craft a suitable
input feature through multifeature fusion. This hints that
the time-frequency representations strongly compresses the
original signal, where a lot of information is lost. Creating
time-frequency representations is always accompanied by a
balance between time- and frequency resolution. This is not
evident from pure waveform approaches. As it can be seen in
Fig. 5 a lot of information is contained in the phase, which is
neglected when using the magnitude of the time-frequency
representations. Additionally, the crafting of these features
also requires domain knowledge for the parameter selection,
such as window size, windowing function, and number of
frequency bins. Therefore, more focus should be put on
extracting meaningful features from the data representations
that offer the highest information density.
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TABLE 11. The minimal, maximal, mean and standard deviation of the achieved accuracies in the corresponding benchmarks. Note, the results from [10],
[14], and [85] were not considered in this analysis due to the incomparable results caused by data leakage, as well as the publications that did not
provide an accuracy score and the approaches that provided few-shot classification results [92], [98].

mean accuracy min. accuracy

max. accuracy

standard deviation  top three publications

Dataset (%] (%] [%] (%] [reference]

ShipsEar

5 categories 94.39 7249 99.44 5.96 [13], [56], [93]

gupstar 8534 85.34 85.34 0.00 (5], -, -
categories

ShipsEar

12 categories 87.48 75.28 96.82 8.78 [4], [16], [58]

DeepShip 89.90 78.59 99.0 8.34 [81, [9], [99]

TABLE 12. Bibliographic metrics of the included publications and Journals. Numbers derived from https://www.scimagojr.com/journalrank.php, (last

accessed: 30.04.2024, 11:23).

mean Relevance  mean average
Journal citations score citation count

Hecites o (impact factor)
Journal of Marine Science and Engineering - MDPI 4.12 7.88 2.98
Electronics - MDPI 1.50 3.00 3.49
Frontiers in Marine Science - Frontiers Media S.A. 0.00 3.00 2.77
Geoscience and Remote Sensing Letters - IEEE 6.33 2.67 4.11
Applied Sciences - MDPI 10.67 2.67 2.92
Sensors - MDPI 4.25 2.50 4.25
IEEE Access 17.00 2.00 4.64
Multimedia Tools and Applications - Springer 0.00 2.00 4.53
Transactions on Instrumentation and Measurement - IEEE 4.00 2.00 5.60
Knowledge-Based Systems - Elsevier 5.00 2.00 8.47
IET Radar, Sonar and Navigation - Wiley 0.00 2.00 1.78
Expert System with Applications - Elsevier 0.00 2.00 9.29
Transactions on Audio, Speech, and Language Processing - IEEE/ ACM 0.00 2.00 5.40
PLoS ONE - Public Library of Science 5.00 2.00 3.11
Ocean Engineering 0.00 1.50 5.15
Entropy - MDPI 1.00 1.33 2.51
Remote Sensing - MDPI 1.33 1.33 4.55
Applied Acoustics - Elsevier 5.67 1.33 4.00

Additionally, models utilizing multiscale kernels and
attention mechanism have been shown to perform well on
extracting and highlighting more meaningful components
in the data. Especially the transformer approaches address
these issues quite differently than the CNN based approaches
achieving promising results.

At last, as the amount of available dataset is still the
largest burden of the UATR domain, other learning strategies
like self-supervised approaches that do not require annotated
labels should be investigated more deeply. These approaches
have shown remarkable success in other domains [104],
[109], [110] and offer an alternative approach to address
the data scarcity issue. Recently self-supervised approaches
have also set foot in the UATR domain [9], [94], [98] giving
promising recognition results and a possibility to circumvent
the data scarcity issue.

VIil. CONCLUSION
This survey provided an overview of comparable deep
learning based approaches in the UATR field. In total,
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40 scientific publications were assessed in detail according
to three key questions. The first questions aimed to analyse
the available literature field regarding the identification of
maritime vessels based on the emitted acoustic signature.
The results showed that the UATR field can be assigned
to the general field of engineering, computer science, envi-
ronmental engineering, and physics. These four categories
can support the literature search regarding UATR related
topics. The reader is pointed towards significant Journals
and Conferences that have a high qualitative standard regard-
ing published research works. Nonetheless, the analysis
demonstrated that the publishing field is distributed among
numerous journals of various domains, demonstrating the
lack of a major UATR related publisher.

The second contribution of this survey is the identification
of commonalities between UATR related papers regarding
model architecture, applied datasets and feature representa-
tions. The results of this study demonstrated that the majority
of research is orientated towards the computer vision domain,
applying CNN based architectures in a supervised learning
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procedure. More recently, contrastive learning approaches
and non-convolutional models like the Transformer archi-
tecture have achieved first promising results in the UATR
domain following a similar domain development as the audio
and vision domain. Nonetheless, a significant variance in
the applied architectures and corresponding modifications
is present. An identical behaviour can be seen in the data
representation usage. Generally, a lot of effort is put in the
selection of the utilized representation form. This highlights
the importance and dependency on robust and meaningful
feature representations in the UATR domain. While most
approaches utilize time-frequency representations, the cor-
responding results range from the worst to the best scoring
approaches, complicating the identification of the most
promising representation. Still, the results obtained using
deep CNN backbones like ResNets and features such as the
MEFCCs and fusion with the first and second time derivatives
tend to stand out by a handful of publications. However,
a best-performing architecture and data representation can
not be clearly derived as the number of publications are too
small, and the variance is too high to perform any meaningful
statistical analysis. This is also underlined by the lack of
transparency and reproducibility.

At last, in depth analysis on the two major public datasets
is undertaken. While all studies were evaluated on at least
one of these real world measurements, many publications
lack an in-depth analysis of the generalization capabilities of
the proposed methods, especially considering the complex
data distribution of underwater acoustics. Evaluation on
multiple benchmarks is not common, which is partially
related to the fact that only two major benchmarks exists
in the UATR field. This highlights the necessity for more
variability in available datasets and benchmarks. For the
present benchmarks, the best highest accuracy scores are
achieved on the 5 category ShipsEar dataset, followed by the
DeepShip, ShipsEar 12 categories and ShipsEar 9 categories
benchmarks with a mean recognition accuracy of 94.29%,
93.15%, 89.93%, and 85.34% respectively.

In conclusion, we demonstrated that the UATR field is
a rapidly growing research field. The study conducted in
this work highlights the great potential of purely data driven
approaches for the recognition task of maritime vessels.
Compared to the baseline of 75.4% ACC provided in [21]
utilizing a statistical model, most deep learning approaches
are able to elevate the recognition accuracy by at least 20%.

In order for the UATR field to thrive similar to other
fields like computer vision and natural language processing,
some key requirements, like minimizing data scarcity and
increasing transparency in the proposed approaches, need to
be assessed.

APPENDIX

BIBLIOGRAPHIC METRICS OF THE INCLUDED JOURNALS
Table 12 displays the bibliographic metrics utilized in
section II-D and especially in Fig. 3. The mean average
citation count (impact-factor) are derived from the “Scimage
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Journal & Country Rank™ website https://www.scimagojr.
com/journalrank.php, (last accessed: 26.02.2024, 14:55).
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