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ABSTRACT Deep learning has advanced object detection, but generalizing models from source to target
domains remains a challenge due to multi-level domain drift and untransferable information. To address this,
we propose a transferability-aware hierarchical domain-consistent object detector (THNet), incorporating
instance-level, pixel-level, and image-level alignment subnets for robust cross-domain detection. THNet first
aligns local foreground-transferable features through pixel-level adversarial learning and foreground-aware
attention, then captures global domain-invariant features via image-level subnet with channel-transferable
attention. Additionally, a prototype graph convolutional network alleviates instance distribution differences
by maximizing inter-class distances and minimizing intra-class distances. A domain-consistent loss
harmonizes training for better convergence in multi-level domain alignment. Extensive experiments
demonstrate that THNet outperforms state-of-the-art methods on multiple cross-domain datasets, achieving
top accuracies of 51.9%, 46.0%, 41.2%, and 51.9% across different tasks.

INDEX TERMS Cross-domain object detection, hierarchical domain alignment, domain-consistent loss,
transferable attention, adversarial learning.

I. INTRODUCTION
Applying pre-built detectors to an unfamiliar domain results
in a notable drop in performance because of domain shift
and undefined transferable information [1]. Therefore, it is
a critical and difficult task for a detector to adapt the
domain shift and focus on transferable information from
the source domain to an unseen target domain. To this end,
in this paper, we propose a transferability-aware hierarchical
domain-consistent object detector (THNet) for effective and
robust cross-domain object detection.

Existing approaches for cross-domain object detection aim
tominimize the distribution gap between the source and target
domains, and can generally be classified into two categories.
The first category of methods is to generate samples and
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labels [2], [3], [4]. For example, Inoue et al. [2] used pseudo
labels on target domain to implement fine-tuning. Although
these methods have shown remarkable performance in some
scenes, ensuring the quality of generated samples and labels
is challenging.

Approaches in the second category primarily emphasize
feature alignment at various levels [5]. The motivation of
multi-level domain alignment for cross-domain objection
detection can be shown in Fig. 1. As shown in the figure,
there are three levels of domain shift in cross-domain
object detection, which are instance-level, pixel-level and
image-level shift. The pixel-level domain shift represents the
change in the distribution of image pixel values in different
domains (see the histograms in Fig. 1). The image-level
domain shift represents the transformation of overall image
style, such as real and synthetic scenes. The instance-level
domain shift represents attribute changes of object instances
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among different domains, such as the view and color of
cars in Fig. 1. Most existing methods are based on two
or one-level feature alignment [6], [7], [8]. For example,
Chen et al. [6] proposed an adversarial loss for aligning
both image-level and instance-level feature distributions.
Aligning the entire process of domain shift is challenging for
these two-level feature alignment methods, making it hard to
achieve satisfactory cross-domain detection results. Recent
works [9] have performed three-level domain alignment by
using adversarial learning at each level. However, these
methods usually require overwhelmingly large model and are
also difficult to converge due to different learning objectives
at different levels during training.

This paper introduces a transferability-aware hierarchi-
cal domain-consistent object detector (THNet) for robust
cross-domain object detection to overcome these limita-
tions. The architecture of the proposed method is shown
in Fig. 2. It consists of three main components, i.e.,
instance-level, pixel-level and image-level domain alignment
subnets. This construction can help the THNet to learn
domain-invariant feature space at three levels, respectively,
so that obtain more robust domain-adaption performance.
Furthermore, to alleviate the effect of negative transfer
in three-level domain alignment, we additionally introduce
two attention-based transferable modules in pixel-level and
image-level feature alignment, respectively. The twomodules
can help to model the foreground-transferable features and
alleviate untransferable features for more proper three-level
domain adaption. For training, we introduce a joint multi-loss
optimization objective composed of three-level losses and
a domain-consistent regularization loss for optimizing the
THNet properly.

The contributions of this research can be listed as follows:
1) We propose a transferability-aware hierarchical

domain-consistent object detector, called THNet,
to obtain multi-level transferable foreground repre-
sentation and robust cross-domain object detection.
Extensive experiments show that the THNet demon-
strate that THNet surpasses current state-of-the-art
methods, achieving top accuracies of 51.9%, 46.0%,
41.2% and 51.9% on different cross-domain detection
tasks, respectively.

2) We introduce two attention-based modules, i.e.,
the foreground-aware attention module (FAM) and
channel-transferable attention module(CTM), to make
the THNet have the ability to select foreground-
transferable features for the pixel-level and image-
level feature alignment, respectively. Both the two
techniques effectively tackle the problem of negative
transfer in multi-level domain adaption and improve
the performance of obtaining both local and global
transferable information that can also help to obtain
positive transfer in the instance-level alignment.

3) In order to alleviate the hard convergence problem
caused by multi-level domain adaption model with
adversarial learning, a domain-consistent

regularization loss is introduced to harmonize the
adaptation training between pixel-level and image-
level alignment.

4) To further demonstrate the robustness of our method
on cross-weather object detection, a new cross-domain
dataset is conducted in this paper, called Foggy Dior,
which is composed of 12,225 foggy remote sensing
images. We use Matlab to simulate foggy remote
sensing scenarios on the Dior dataset [10]. We will
release the dataset and source code after the acceptance
of the paper.

II. RELATED WORK
Numerous excellent work have been proposed for domain
adaptive object detection; in this section, we review those
methods and discuss their shortcomings and advantages.

A. OBJECT DETECTION
With the continuous progress of convolutional neutral
network (CNN) based methods in image recognition task,
its application in object detection has also made amazing
progress. At present, object detection methods are primarily
categorized into two-stage detection and one-stage detection.
As the first two-stage method, R-CNN [11] successfully
introduces CNN into object detection tasks; the later Fast
R-CNN [12] is implemented on the basis of R-CNN
for end-to-end training. Faster R-CNN [13] introduces
region proposal network to achieve faster detection. One-
stage detection methods, like YOLO [14] and SSD [15],
classify and localize the objects at the same time directly.
However, due to the complexity and variability of real-world
scenes, especially in cross-domain object detection tasks,
where the source domain contains both bounding box and
class annotations but the target domain lacks both, these
general detection methods struggle to adapt to diverse real
environments.

B. DOMAIN ADAPTATION
Domain adaptation [16], [17] has been increasingly attracting
attention recently. Domain adaptation is a transfer learning
method for dealing with domain transfer and lack of labels.
That problem could be described as follows: The data
distributions differ between the source and target domains,
with the source domain having abundant labeled samples
and the target domain having very limited labeled samples.
For domain adaptation, a typical method is to estimate the
domain gap and minimize it [18], [19]. DDC [18] is to
find a kernel function, mapping both the source domain
and the target domain to a Hilbert space with reproducing
kernel, calculating the distance of the two domains in this
space and minimizing it. Moreover, some recent researchers
implement adversarial methods to obtain invariant features
cross domains [19]. The improvement of DANN is CAN [20],
which divides a whole CNN into several blocks, and then
adds a discriminator to each block. In this way, the model
ensures that the characteristics of the variables of the domain
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FIGURE 1. The motivation of multi-level domain alignment for cross-domain objection
detection. The samples come from SIM 10k to Cityscapes.

FIGURE 2. The framework of THNet. Our method performs hierarchical feature-transferable alignment (i.e.,
instance-level, pixel-level and image-level) for mutually-reinforced domain adaption. Note: CovE1 and CovE2 represent
the shallow and deep layers of the backbone, respectively, GRL represents the gradient reversal layer, FAM represents the
foreground-aware attention module, CTM represents channel-transferable attention module, and PGCN represents
prototype graph convolutional network.

are learned at different levels. In addition, reconstruction-
based methods are improved to realize domain adaptation.
DRCN [21] implements an encoder and a decoder to generate
features closer to the target domain. However, this study
focuses on a more challenging object detection task, where
both the location and category of the object are unknown and
must be accurately predicted.

C. DOMAIN ADAPTIVE OBJECT DETECTION
To mitigate performance degradation due to domain shift,
existing cross-domain object detection methods are generally
classified into two categories. The first category is fine-tuning
methods based on generating samples and labels on target
domain. Inoue et al. [2] utilized the model trained on
source domain to predict pseudo labels, so that the labels
can be used on target domain data for finetuning the
model. RoyChowdhury et al. [3] improved the detection
model’s adaptability in the target domain by fine-tuning
with soft labels. Wang et al. [4] and Arruda et al. [22]
proposed a generator network to better understand the feature

differences between the source and target domains. While
these approaches have demonstrated effectiveness in certain
scenarios, maintaining the quality of generated images and
labels remains challenging.

The other category of cross-domain object detection
methods focus on domain feature alignment in different
levels, which is divided into the pixel, the image, and
the instance level [5]. Most of this kind of methods are
based on one or two-level alignment. For example, [8]
sought to integrate category information into the domain
adaptation process by introducing memory-guided attention
for category-aware domain adaptation. Chen et al. [6] utilized
adversarial loss to direct domain adaptation for alignment at
both the image level and instance level. Reference [5] realized
similar work at three levels at the same time. Xu et al. [7]
constructed graph networks to extract category proto-
types and induce instance-level domain alignment. Besides,
Chen et al. [9] proposed adversarial learning and regu-
larization for alignment at three levels at the same time.
Despite promising results, further improvement faces several
limitations. Firstly, the complexity of cross-domain object
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detection makes it challenging for single or dual-level feature
alignment methods to fully address domain shift throughout
the detection process, thereby limiting the effectiveness
of domain adaptation learning. Secondly, the training of
three-level feature alignment methods is difficult to converge
due to the intricate structure and numerous parameters. More-
over, most existing methods neglect to select transferable
features, which may leads to negative transfer. Therefore,
effectively multi-level domain adaption with transferable
foreground feature selection is still an opening research
problem [23].

III. PROPOSED METHOD
This study introduces a transferability-aware hierarchi-
cal domain-consistent object detector (THNet) for robust
cross-domain object detection. Fig. 2 shows the overall
structure of our proposed method. The THNet first employs
VGG16 [24] or ResNet50 [25] as the backbone to respec-
tively extract pixel-level and image-level features in different
cross-domain tasks, then uses instance-level, pixel-level and
image-level domain alignment subnets to align three-level
transferable features and address domain shift in different
levels. In the image-level and pixel-level domain alignment,
two attention-based transferable modules, namely FAM and
CTM, are proposed to alleviate negative transfer and further
obtain robust transferable foreground features for more
proper alignment at each level. To make the network train in
an end-to-end procedure, this study propose a novel domain-
consistent loss to help the THNet to optimize and thus achieve
more robust cross-domain object detection performance.

A. BACKBONE FOR FEATURE EXTRACTION
To extract features of different levels for domain alignment,
we first use the VGG16 [24] or the ResNet50 [25] as the
backbone for feature extraction in different cross-domain
tasks. In practice, the VGG16 is used for the Synthetic-to-
Real task, while the ResNet50 is used for the Cross-Camera
and the Normal-to-Foggy tasks. As shown in Fig. 2,
following [26], we utilize the shallow layers of the backbone,
named CovE1, to extract local features F1 for pixel-level
alignment, and the deep layers of the backbone, named
as CovE2, to extract global features F2 for image-level
alignment. Using the shallow-layer and deep-layer features as
input, we employ instance-level, pixel-level and image-level
domain alignment subnets to perform domain alignment
learning on them, respectively.

B. FOREGROUND-TRANSFERABLE PIXEL-LEVEL DOMAIN
ALIGNMENT
For pixel-level domain alignment, we employ two adaptation
modules: a foreground-aware attention module and pixel-
level adversarial learning, to discover and learn pixel-level
transferable features for aligning foreground-transferable
information and achieving pixel-level domain adaption. The
detailed architecture is shown in Fig. 3.

1) FOREGROUND-AWARE ATTENTION FOR PIXEL TRANSFER
Since local information in pixel-level extracted from the
backbone is not all transferable, such as the background or
noise in raw images, forcefully aligning the untransferable
information can result in negative transfer [23]. However,
identifying and separating the untransferable feature from
transferable feature can be difficult, since it is non-trivial to
define what is transferable and what is the untransferable
feature. To address the problem, we employ the FAM
to help to discover foreground-transferable information
without defining the untransferable and transferable features
explicitly. The overall pipeline of FAM can be found in Fig. 3.
More specifically, given a feature map F1 extracted

from the CovE1 of the backbone as input, we first apply
an average-pooling layer and a max-pooling operation for
feature down-sampling, and then use a 1 × 1 convolution
and element-wise multiplication to obtain a foreground-
transferable map F ′

1 via learning spatial attention. The
obtained foreground-transferable map F ′

1 can be calculated
as:

F ′

1 = A(F1) ⊗ F1, (1)

where A(•) represents the FAM operation and ⊗ represents
the element-wise multiplication. Through the above process,
the F ′

1 can effectively separate the foreground information
from the background. This indicates the negative transfer
could be suppressed, so that we can achieve pixel-level
domain alignment in a more effective way.

2) PIXEL-LEVEL ADVERSARIAL LEARNING FOR FEATURE
ALIGNMENT
With the foreground-transferable information F ′

1, we further
use pixel-level adversarial learning to align local domain-
invariant features. The pixel-level adversarial learning con-
sists of a pixel-level domain classifier and a gradient
reversal layer (GRL) [27]. In practice, the pixel-level domain
classifier Cpix attempts to discern whether the foreground-
transferable feature F ′

1 is from the source domain or target
domain, while the CovE1 aims to fool the classifier. The Cpix
and CovE1 are connected by the GRL to reverse the gradient
flowing through the CovE1. Mathematically, the pixel-level
adversarial loss function Lpix is given by:

Lpixs = min
θCpix

max
θCovE1

1
nsHW

ns∑
i=1

W∑
w=1

H∑
h=1

Cpix(F ′

1si)
2
wh, (2)

Lpixt = min
θCpix

max
θCovE1

1
ntHW

nt∑
i=1

W∑
w=1

H∑
h=1

(1 − Cpix(F ′

1ti)
2
wh), (3)

Lpix =
1
2
(Lpixs + Lpixt ), (4)

here, s and t represent the source and target domains,
respectively. n is input image amount. F ′

1ti and F
′

1si represent
the ith foreground-transferable feature map of the target
and source domain, respectively, with the size of H × W .
The coordinates of the feature maps are w and h. During
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FIGURE 3. The diagram of pixel-level domain alignment subnet.

training, the network optimizes the parameters θCovE1 of
the backbone’s shallow layers by maximizing the loss,
while simultaneously minimizing the loss to optimize the
parameters θCpix of the domain classifier. By integrating
adversarial learning with the foreground-aware attention
mechanism, the pixel-level domain alignment subnet can
acquire the local domain-invariant features with foreground-
transferable information.

C. CHANNEL-TRANSFERABLE IMAGE-LEVEL DOMAIN
ALIGNMENT
Since the deep layer of the backbone has a larger receptive
field and more feature channels than the shallow layer,
some of the redundant channels containing noise such as
background are also not transferable and have a negative
effect on the global feature alignment. To focus on aligning
the transferable channel information, we introduce the CTM
and image-level adversarial learning into the subnet for
obtaining global transferable information and image-level
domain alignment. The architecture of the CTM is detailed
in Fig. 4.

1) CHANNEL-TRANSFERABLE ATTENTION FOR IMAGE
TRANSFER
To avoid the negative transfer caused by forcefully aligning
untransferable channels, we introduce the CTM into the
image-level feature alignment subnet for discovering trans-
ferable channel information, thus weakening the untransfer-
able channel information that includes lots of background
noises. Through the process, it can help the subnet to be more
robust in aligning global features of different domains.

As shown in Fig. 4, given the feature map F2 extracted by
the CovE2 as the input, we initially apply average-pooling
and max-pooling operations for down-sampling the channel
features F2, and then use two 1 × 1 convolutional layers
to learn the channel features for generating a channel
attention descriptor. The attention weights of the attention
descriptor represent the importance of the image global
information, i.e., a higher weight means that this channel is
more transferable. With the attention descriptor, we use an
element-wise multiplication to multiply the descriptor and
the input feature F2, for obtaining a channel-transferable

attention map. The channel-transferable attention map F ′

2 is
given by:

F ′

2 = T (F2) ⊗ F2, (5)

where T (•) represents the CTM operation. Obviously,
the weighting operation can make the channel-transferable
attention map F ′

2 contain more significant global transferable
channel information by suppressing the redundant channel
information.

2) IMAGE-LEVEL ADVERSARIAL LEARNING FOR GLOBAL
FEATURE ALIGNMENT
With the discovered global transferable channel information,
we further use an image-level adversarial learning with a
GRL and the image-level domain classifier Cimg to mitigate
the substantial disparity among image-level global features
across different domains, so that obtain global feature
alignment. The image-level domain classifier is designed
to determine which domain, while the GRL makes the
ConE2 fool the classifier via the GRL. In practice, the
GRL reverses the gradient during back propagation. As a
result, the domain classifier can not distinguish whether the
feature originates from the source or target domain, thus
obtaining image-level domain-invariant features. However,
in image level feature space, the distributions of features of
the two domains are closer to each other, which could easily
cause hard-to-classify problem. To deal with the problem,
we introduce the focal loss [28], which is to focus more on
the hard-to-classify samples in the target domain that are
similar to the feature samples in the source domain during
the training process. Here is the specific definition of the loss
function,

Limgs = −min
θCimg

max
θE

1
ns

ns∑
i=1

(1 − Cimg(F ′

2si)
γ )log(Cimg(F ′

2si)),

(6)

Limgt = −min
θCimg

max
θE

1
nt

nt∑
i=1

(Cimg(F ′

2ti)
γ )log(1 − Cimg(F ′

2ti)),

(7)

Limg =
1
2
(Limgs + Limgt ), (8)
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FIGURE 4. The diagram of image-level domain alignment subnet.

where γ is the weight parameter that makes the subnet
focus on hard-to-classify samples during training and it is
set to 5 empirically. θE denotes the parameters of the entire
backbone. F ′

2ti and F
′

2si represent the i
th output feature maps

of the CovE2 in the target and source domains, respectively.

D. INSTANCE-LEVEL DOMAIN ALIGNMENT
With local and global transferable features obtained by
pixel-level alignment and image-level alignment subnets,
region proposal network (RPN) [13] in an object detector
could localize and classify the foreground proposal regions.
However, due to the instance-level domain shift, such as
the differences of the sizes and shapes of object instances,
it is still difficult to detect accurately on the unlabeled
target domain. To deal with domain shift in object instances
between source and target domains, inspired from [7],
we introduce a prototype graph convolutional network
(PGCN) for effectively extracting and aligning category
prototypes. We define that the prototype of each category is
the instance-level feature vector of an object category
modeled by PGCN. Fig. 5 provides the pipeline of the PGCN
for instance-level domain alignment. The PGCN contains
two main steps, namely, graph convolution layer for graph
learning and category merging for prototype extraction.

More specifically, given the region proposals as the input,
the PGCN first extracts instance-level proposal graphs via
the graph convolution, and updates and outputs graphs that
represent all region proposals’ information of objects by
training the graph convolution layer. Then, we use the
category merging on all graphs of one object category
to obtain the instance-level category prototypes. To fully
consider the importance of different proposals, we weight the
proposal regions of each category based on the corresponding
confidence scores for obtaining the more robust category
prototypes.

Using the extracted category prototypes, referring to [7],
we employ a jointly instance-level loss Lins with an intra loss
and three inter losses, to train and optimize the PGCN, so that
align instance-level information of category prototypes.
Mathematically, the intra loss is formulated as:

Lintra =

∑0⩽i̸=j⩽nc
i=1,j=1

∥∥∥csi , ctj∥∥∥2∑0⩽i̸=j⩽nc
i=1,j=1

(9)

where s and t represent source and target domains, respec-
tively. c represents the category prototype of one certain
category, and nc is the number of categories. This objective
function employs a L2 regularization loss to minimize the
distance between the prototypes of the same class in the
source domain and the target domain. The inter loss is
formulated as:

Linter(D,D′) =

∑0⩽i̸=j⩽nc
i=1,j=1 max(0, 1 −

∥∥∥cDi , cD
′

j

∥∥∥
2
)∑0⩽i̸=j⩽nc

i=1,j=1

(10)

where D and D′ represent two same or different domains,
respectively. This objective function is used to increase the
distance between different categories across the two domains.
In general, the jointly instance-level loss Lins can be given by,

Lins =
1
3
(Linter(s,s) + Linter(t,t) + Linter(s,t)) + Lintra, (11)

where Linter(s,s) and Linter(t,t) refer to the inter-class loss
within the same domain, while Linter(s,t) represents the
inter-class loss between different domains. By aligning the
category prototypes with the intra and inter losses, we can
make instance-level domain adaption more effectively, thus
obtainingmore accurate object detection in the target domain.
Competitive experimental results in experimental part also
demonstrate that our prototype alignment method is more
effective than GRL based alignment method (about 5.4%
improvement).

E. OVERALL OPTIMIZATION OBJECTIVES
For training, the THNet has three types of optimization
objectives. The first one is the optimization objective of the
above-mentioned three-level domain alignment losses, i.e.,
Lpix , Limg, and Lins, which are described in the corresponding
sections, respectively. The second one is the proposed
domain-consistent regularization loss Lcst . The third one is
the optimization objective of the detecting loss Ldet in Faster
RCNN [13]. The total loss can be written as:

LTol = Lpix + Limg + Lins + Lcst + Ldet . (12)

Due to the similar learning mechanisms but differing
objectives in image- and pixel-level alignment, identifying
and aligning domain-invariant features becomes challenging,
complicating consistent feature space exploration across
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FIGURE 5. The detailed architecture of the instance-level domain alignment. The geometric shapes such as
circles and triangles represent different category prototypes, respectively.

domains and hindering training convergence. To address this,
we introduce a domain-consistent regularization loss Lcst
to ensure consistent optimization in pixel- and image-level
alignment:

Lcst = β

∥∥∥∥∥ 1
uv

∑
u,v

ppixuv − pimg

∥∥∥∥∥
2

, (13)

where ppixuv denotes the pixel-level classification probability
at the pixel (u, v) of the feature map, while pimg represents
the classification probability of the entire feature map.
∥∥2 is Euclidean distance used to measure the divergence
between the prediction results at two levels. In this study,
the empirical parameter β is set to 5. Minimizing Lcst aligns
the prediction results of image-level and pixel-level domains
to be consistent, so that make the network have a consistent
optimization direction during training.

The detection loss can be written as:

Ldet =
1
Ncls

∑
i

Lcls(pi, p∗
i ) + λ

1
Nreg

∑
i

p∗
i Lreg(ti, t

∗
i ) (14)

where Lcls represents the classification loss and Lreg denotes
the regression loss. p∗ is the ground-truth label and p repre-
sents the predicted classification probability. ti represents a
vector of the four parameterized coordinates of the predicted
bounding box, while t∗i corresponds to the parameterized
coordinates of the ground-truth box associated with a positive
anchor. We normalize the classification and regression losses
with Ncls, Nreg and a balanced weight λ, and refer to Faster
RCNN [13] to set them.

IV. EXPERIMENTS AND PERFORMANCE
This section presents comprehensive experimental results on
three distinct cross-domain detection tasks with significant
domain shift, including Synthetic to Real (SIM 10k [29] →

Cityscapes [30]), Cross Camera Adaptation (KITTI [31] →

Cityscapes [30]) and Normal to Foggy (Cityscapes →Foggy
Cityscapes [32] and Dior [10]→Foggy Dior).

A. EXPERIMENTAL SETUP
The experimental setup is implemented on a 64-bit Ubuntu
operating system with a single Geforce GTX2080Ti GPU
using the Pytorch framework. The backbone network has

TABLE 1. Experimental parameters setting.

been pre-trained on the ImageNet dataset [33]. The detailed
experimental parameters are shown in Table 1. For the
synthetic-to-real task, VGG16 [24] is used as the backbone,
while ResNet50 [25] is used in cross-camera task and normal-
to-foggy task. For training, the SGD optimizer is utilized
with an initial learning rate of 0.001. The decay rate for
the learning rate is set at 0.1, with a decay step of 5.
Additionally, a warm-up strategy for the learning rate is
employed during the first 200 training steps. For training
and testing, 256 anchors are sampled for each image, and
the ratio of positive and negative anchor samples is set to
1:1. To enhance comparison, we conducted a source-only
evaluation by training solely on the source datasets and
testing on the target datasets, utilizing Faster RCNN [13].

B. SYNTHETIC TO REAL TASK
To verify our method on the synthetic to real cross-
domain task, SIM 10k is utilized as the source domain,
with Cityscapes as the target domain. SIM 10k, containing
10,000 images, is collected from the game Grand Theft
Auto V (GTA5). Cityscapes is a traffic scene image dataset
collected by unmanned vehicle, including 2975 training
images and 500 validation images. The Fig. 6 shows
some examples from the two datasets. Obviously, there
is huge domain shift between the source domain and
the target domain, which is mainly caused by different
imaging generation methods. Following the setting of other
compared methods, for training, we utilized the common
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car category, incorporating 10,000 source samples and 2,975
target samples; for testing, the validation split of Cityscapes,
containing 500 samples, was used.

Table 2 presents a comparison between our method
and state-of-the-art methods on the two datasets, including
Source-only [13], DA [6], SW-DA [34], MTOR [35],
GPA [7], and HDCN [36]. Our method achieved 51.9%
AP for car detection, which exceeded the results of other
methods. The accuracy of our method is 7.3 percent higher
than SW-DA [34] and 5.3 percent higher than GPA [7].
It indicates that the THNet is more robust than the state-of-
the-art methods on the synthetic-to-real domain adaptation
task. Additionally, compared with HDCN [36], the AP
of THNet also improved by 0.3%. It reflects the role of
two-stage transferable attention for exploring transferable
information.

TABLE 2. Experimental results of SIM 10k → Cityscapes on the synthetic
to real cross-domain task.

Fig. 7 illustrates the typical detection results of various
methods from SIM 10k to Cityscapes, where green boxes
indicate correct detections and red boxes indicate false
detections. As shown in the Fig. 7, SW-DA, GPA and HDCN
have more wrong and missed detection results than THNet,
such as tiny cars. Conversely, even when dealing with tiny
objects, the THNet still performs well.

C. CROSS CAMERA ADAPTATION TASK
This section investigates domain adaptation across various
camera settings. The KITTI dataset serves as the source
domain, while the Cityscapes dataset is employed as the
target domain. The KITTI dataset is the largest computer
vision dataset in the automatic driving scene in the world,
which contains 7,481 training images. The Cityscapes dataset
consists of 2975 training images and 500 validation images.
Referring to the experimental setting in compared methods,
we use its validation set for target domain testing. The data
samples of the cross-camera task in the KITTI and Cityscapes
datasets are shown in Fig. 8. We can find that the shapes,
resolutions, as well as the weather, light, and the scenes in
the data from the KITTI are significantly different from the
Cityscapes.

Table 3 displays the comparison between our THNet
method and state-of-the-art methods on the common car
category across the two datasets. The proposed THNet
method achieved the highest accuracy of 46.0%. Compared
to the P-DA [37] and SC-DA [38] methods, our THNet
achieved an improvement of 2.1% and 2.4%, respectively.

The possible reason is that our method can effectively align
transferable information for three level domain adaption by
introducing two attention modules and consistent learning.
Moreover, the THNet also outperformed HDCN [36] by
0.2%, which demonstrates the efficiency of transferable
attention mechanism in our method.

TABLE 3. Experimental results (%) of the KITTI → Cityscapes on the cross
camera adaption task.

Fig. 9 illustrates typical detection results from KITTI to
Cityscapes, with green boxes indicating correct detections
and red boxes indicating false detections. The visualization
results also show that our method outperforms others
obviously. As shown, the SW-DA couldn’t detect tiny objects,
and the localization is not accurate enough. The GPA and
the HDCN detects some false results. Compared with other
methods, our THNet deals with tiny objects well and there
are few false detection results.

D. NORMAL TO FOGGY TASK
In this part, we verified our proposed method on the
Normal to Foggy cross-weather task. To thoroughly evaluate
our method, we conducted extensive experiments on two
normal-to-foggy datasets. The first one is the cross-weather
dateset with the traffic scene, where Cityscapes and Foggy
Cityscapes datasets serve as the source and target domains,
respectively. The second one is the cross-weather dateset
with the remote sensing scene, where Dior and Foggy
Dior datasets are used as the source and target domains,
respectively. For the two scenes, the proposed THNet
was tested on the validation set of the Foggy Cityscapes
and testing set of Foggy Dior, respectively. Additionally,
Fig. 10 presents some data samples on the two cross-weather
datasets.

1) CITYSCAPES TO FOGGY CITYSCAPES
Foggy Cityscapes dataset consists of 2,975 training images
and 500 validation images. The data partition of Cityscapes
is the same as that of Foggy Cityscapes. For this task,
Cityscapes was utilized as the source domain, while Foggy
Cityscapes served as the target domain, as shown in
Fig. 10 (a).

Table 4 presents a comparison between our method
and other state-of-the-art techniques. Our proposed THNet
achieved the highest mAP of 41.2%, and was 5.3% higher
than the SC-DA and 6.1% higher than the MTOR. Compared
to the second best method SCL, our THNet achieved
the significant improvement of 10.3% and 7.2% on the
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FIGURE 6. Data samples of synthetic-to-real task from the SIM 10k and Cityscapes datasets.

FIGURE 7. Detecting results of different methods on the synthetic-to-real task. Note that green rectangular boxes indicate rightly
detected targets, while red ones indicate incorrectly detected targets.

car and train categories, respectively. Moreover, the mAP
of our method in all seven categories reached the best
performance. The great performance shows the robustness
of three-level feature alignment and the applicability of

our method in the cross-weather task with the traffic
scene.

Fig. 11 displays detection results of different meth-
ods on the Cityscapes to Foggy Cityscapes task, where
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FIGURE 8. Data samples of the cross-camera task in the KITTI and Cityscapes datasets.

FIGURE 9. Detecting results of different methods on the cross-camera task. Note that green rectangular boxes indicate rightly detected
targets, while red ones denotes incorrectly detected targets.

green boxes indicate accurate detection results, whereas
red boxes denote incorrect detection results. As shown in
Fig. 11, the SW-DA missed some small objects, resulting

in low accuracy. Meanwhile, the GPA and the HDCN
encountered a serious false detection problem, when the
objects were crowded. Compared with the other methods,
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FIGURE 10. Data samples of two normal-to-foggy datasets with the traffic scene and remote sensing scene, respectively.

TABLE 4. Experimental results (%) of Cityscapes → Foggy Cityscapes on the cross-weather task.

our THNet tackled with tiny objects and crowded scenes
better.

2) DIOR TO FOGGY DIOR
For further evaluation on the cross-weather object detection,
we additionally performed the comparison experiments on
the Dior dataset to the self-built Foggy Dior dataset. Dior is
an aerospace remote sensing object detection dataset, which
has 23463 images, including 11725 training images and
11738 test images with 20 categories of objects. We used
Matlab to simulate fog on the 11725 training images and
500 randomly selected testing images from Dior dataset,
through adding noises and changing the color channel values.
We named the new dataset constructed by us as Foggy Dior,
as shown in Fig. 10(b).

Table 5 presents the comparison results of our method
against other state-of-the-art methods. Following the com-
pared method [10], we use c1 to c20 to represent the
20 categories in Foggy Dior, respectively. Our method
achieved the highest accuracy of 51.9% compared to the
leading methods. We observed that the mAP of our THNet
has a great increase of 29.2% to the GPA and 29.9% increase
to that of SW-DA. Additionally, the proposed method
outperformed the other methods on all the 20 categories.
It further proves the effectiveness of our method on the
cross-weather task even in complex remote sensing scene.

Fig. 12 displays typical detection results of different
methods (i.e., our method and the second best method GPA)
on the Dior to Foggy Dior task, where green boxes represent

correct positives. It’s shown that the baseline GPA misses
many tiny objects and shows bad performance on foggy
remote sensing scenes. Compared with the GPA, our THNet
shows great detection ability on the challenging remote
sensing cross-domain task.

E. ABLATION ANALYSIS
1) EFFECT OF EACH MODULE
Table 6 shows the ablation experiments on the SIM 10k →

Cityscapes task. We utilized the GPA detector with the
ResNet50 [25] backbone as experimental baseline. GPA is
a method for instance-level domain alignment. In Table 6,
the detection car AP gradually increases with the sequen-
tial addition of domain alignment subnets (Ins, Img, and
Pix). Adding domain-consistent regularization loss further
improved AP by 1.1%. It is clear that domain-consistent
loss effectively addresses the training disorder caused by
different learning objectives in pixel-level and image-level
alignment. Moreover, by incorporating FAM and CTM
at pixel-level and image-level alignment, respectively, the
detection performance in the target domain was significantly
enhanced by 2.0%, demonstrating the effectiveness of the
proposed transferable attention-based modules.

2) EFFECT OF DIFFERENT INSTANCE-LEVEL ALIGNMENT
MECHANISM
To explore the performance of different instance-level align-
ment mechanism, we performed comparative experiments
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FIGURE 11. Comparison results of different methods on the Cityscapes → Foggy Cityscapes cross-weather task. Note that green rectangular
boxes indicate rightly detected targets, while red ones presents incorrectly detected targets.

on SIM 10k → Cityscapes dataset in Table 7, including
adversarial learning-based domain alignment and our PGCN.
In practice, we introduced adversarial domain alignment
subnet [6] instead of PGCN in the instance-level domain
alignment of our THNet, and named as THNet* in Table 7.
The subnet [6] of THNet* is composed of a GRL and
an instance-level domain classifier to induce instance-level
domain adaptation. Table shows that the car AP of our
THNet with PGCN is 5.4% higher than THNet* with GRL.
It indicates that the PGCN can extract and align more
information of object instances.

3) EFFECT OF THE PARAMETER γ

The parameter γ of the focal loss in the image-level alignment
loss shows the influence of hard-to-classify samples during
training. To investigate the effect of γ , we assessed our
method with varying γ on the KITTI to Cityscapes task. 13,
the model attained its highest accuracy of 46.0% when γ

was set to 5. We can observed that too large γ values

gave too much attention to the hard-to-classify samples and
over-suppressed the simple ones, which can lead to a decrease
in detection accuracy. So, in the study, we set γ to 5.

4) VISUALIZATION OF FEATURE DISTRIBUTIONS AND HEAT
MAPS
Fig. 14 provides the comparison of the feature distributions
with varying settings in 2D feature space using the Barnes-
Hut t-SNE visualization scheme [41]. We visually compared
the output features from the backbone in the source and target
domains extracted by the baseline GPA and our method in
the four cross-domain tasks, respectively. Due to domain-
invariant foreground-transferable information learning in the
three-level feature alignment, compared with the baseline
GPA, our THNet method better confounded the features of
two domains on the four cross-domain tasks, leading to more
robust cross-domain detection results.

In addition, Fig. 15 shows attention visualization of the
image-level features obtained by our method and GPA,
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TABLE 5. Experimental results (%) of Dior → Foggy Dior.

FIGURE 12. Detecting results of Dior → Foggy Dior on the cross-weather detection task.

TABLE 6. Ablation study on the proposed THNet method. Note: Ins
denotes the instance-level domain alignment subnet, and Img denotes
the image-level domain alignment subnet, Pix represents the pixel-level
domain alignment subnet, Con represents the domain-consistent
regularization loss, and FAM and CTM represent whether using
foreground-aware attention module and channel-transferable module,
respectively.

TABLE 7. Comparison of different instance-level alignment mechanism.

respectively. The experiments were implemented on the
four cross-domain tasks, namely SIM 10k→Cityscapes,
KITTI→Cityscapes, Cityscapes→Foggy Cityscapes, and
Dior→Foggy Dior, respectively. As shown in Fig. 15,
the first line is the original images, the second line is
the the output feature maps of the backbone in GPA,
and the third line is the image-level feature maps in our

FIGURE 13. Ablation study on the parameter γ .

THNet, respectively. It’s shown that GPA is difficult to
discriminate the features of foreground and background,
since the background information leaded to negative transfer
during feature alignment. Obviously, we can observe that
the THNet effectively focused on the foreground information
(see the highlighted red in these maps). It indicates that by
using the FAMand CTMcan effectively alleviate the negative
transfer and thus obtain robust domain adaption detection.
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FIGURE 14. The comparison of feature distributions in source and target domains in 2D space by t-SNE feature visualization. (a) GPA, (b) our THNet.

FIGURE 15. Attention visualization on different methods in four cross-domain tasks, including SIM 10k→Cityscapes, KITTI→Cityscapes,
Cityscapes→Foggy Cityscapes, and Dior→Foggy Dior.

V. CONCLUSION AND FUTURE WORKS
This paper proposed a novel transferability-aware hierar-
chical domain-consistent object detection method, namely

THNet, for effective and robust cross-domain object detec-
tion. The THNet consists of three main components, i.e.,
instance-level, pixel-level and image-level domain alignment
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subnets, as well as two plug-and-play attention modules,
i.e., foreground-aware attention and channel-transferable
attention modules. Due to effectively and robustly align-
ing three-level features and obtaining foreground transfer-
able representations, the proposed method achieved highly
improved performance and strong robustness on several
cross-domain object detection tasks. The proposed method
reached the best performance on three cross-domain tasks
including four challenging datasets, namely SIM 10k to
Cityscapes, KITTI to Cityscapes, Cityscapes to Foggy
Cityscapes, and Dior to self-built Foggy Dior, which are
51.9%, 46.0%, 41.2%, and 51.9%, respectively.

Several unresolved issues and research challenges remain
in this domain. One key challenge lies in achieving a better
balance between accuracy and computational efficiency in
cross-domain tasks, as current methods often struggle to
maintain high performance without excessive computational
costs. In the future, a more efficient multi-head self-attention-
based Transformer will be introduced to achieve an improved
speed-accuracy trade-off.
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