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ABSTRACT Radar signal recognition is an important topic in electronic countermeasures. However, with
the growing complexity of the electromagnetic environment, accurately identifying radar signals faces
great challenges, and insufficient feature extraction is a core factor leading to this issue. In this paper,
we proposed a novel method for radar signal recognition based on multi-task learning (MTL) to tackle
with the feature extraction problem. The method combines feature enhancement and signal recognition
tasks for joint learning, improving model performance by comprehensive utilization of their correlation and
feature sharing. Specifically, we adopt a feature enhancement network based on an autoencoder framework to
enhance time-frequency features of radar signals. Then the learned representations are used to achieve signal
classification with a deep residual network. Finally, this model, as a collaborative optimization algorithm,
is end-to-end trained with interactive constrains using our designed loss function. Extensive experiments,
including performance comparison, ablation experiments, recognition performance of multi-component
radar signals, and hardware-in-the-loop simulation experiment are conducted to validate the effectiveness
of the proposed method in different scenarios.

INDEX TERMS Deep learning, multi-task learning (MTL), radar signal recognition, feature enhancement,
loss function.

I. INTRODUCTION
Radar signal recognition is an essential component of
electronic reconnaissance, with the primary objective of
identifying and characterizing the electromagnetic emis-
sions transmitted by radar systems [1], [2]. Radar signal
recognition plays a pivotal role in modern electronic
countermeasures, encompassing tasks such as target detec-
tion, classification, and threat assessment [3]. With the
proliferation of radar-equipped platforms and the increas-
ing sophistication of electronic warfare tactics, identifying
different radar signals accurately has become paramount.
However, this task is inherently challenging due to the
diverse and evolving nature of radar signals, coupled with
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the increasing complex electromagnetic environment [4].
Traditional methodsmainly depended on signal characteristic
parameters such as pulse descriptionwords (PWD) to identify
radar signals [5], often struggle to cope with the intricacies
of modern radar waveforms [6], especially in low signal-
to-noise ratio (SNR) environments. In this context, deep
learning techniques have emerged to tackle the complexities
of radar signal recognition due to its success in other research
fields [7].
Recently, a large number of works based on deep neural

networks (DNNs) have been proposed, which leverage the
power of data-driven models to enhance the performance
and adaptability of radar signal recognition methods, thereby
bolstering the effectiveness of electronic warfare operations
[8], [9], [10]. On one hand, many methods adopt DNNs
to extract time-domain features for signal modulation
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recognition [11], [12], [13], [14], [15]. For example,Wei et al.
[12] proposed a method for extracting time-domain features
using a combination of a convolutional neural network (CNN)
and a long short-term memory (LSTM) network. These
features were then utilized by a DNN for signal classification.
Subsequently, various DNN models, such as CGDNet [14],
CSRDNN [15], have been proposed to perform feature
extraction from time-domain signal waveform formodulation
recognition. Through an end-to-end approach, these methods
directly extract effective features from the original signal
for modulation recognition. However, time-domain signals
cannot directly reflect changes in frequency components,
making it difficult to analyze the spectral characteristics
and frequency changes in the signal. On the other hand,
time-frequency analysis (TFA) methods [16], [17], [18], [19]
are widely used to extract time-frequency characteristics of
signals for modularity recognition. Huynh-The et al. [20]
utilized the Choi-Williams distribution (CWD) to extract
radar signal characteristics. Walenczykowska et al. [21]
extracted time-domain features from continue wavelet trans-
form time-frequency images (CWT-TFIs). Then, a number
of multi-channel fusion neural networks have been proposed,
which are used to integrate different time-frequency features
to achieve better recognition performance [22], [23], [24].
Time-frequency features can capture signal variations in
both the time and frequency domains, offering a more com-
prehensive depiction of frequency fluctuations and energy
distribution within the signal. This time-frequency represen-
tation proves advantageous for the signal recognition task.
However, the feature information provided by time-frequency
representation is still limited, as in complex electronic
warfare environments, radar signals often comprise multiple
frequency components and exhibit time-varying frequency
characteristics. Traditional TFA-based methods often utilize
fixed basis functions, which may not adequately capture all
the time-frequency characteristics of radar signals. Therefore,
some works have been proposed to enhance TFIs [25], [26],
[27]. For example, literatures [25] and [26] presented a TFI
enhancement method based on neural networks for high-
resolution TFIs. Pan et al. [27] proposed a TFA-Net to learn
basis functions via neural networks and convert time-domain
signals into TFIs.

Nevertheless, most of the current work on signal mod-
ulation recognition and time-frequency enhancement only
focuses on a single task, without considering the correlation
and dependency among multiple tasks. More recently, multi-
task learning (MTL) has shown great potential in knowledge
acquisition and modeling from serval related tasks [28], [29],
[30]. And it has been gradually introduced for the signal
analysis [31], [32], [33], [34], [35].
In this paper, we propose an alternative MTL-based

method for radar signal recognition, which considers radar
signal recognition and feature enhancement as a MTL
problem. Compared to the TFA-based methods that uses
TFIs as the input of network, the entire network takes the
time-domain representation of the radar signal as input and

is trained in an end-to-end manner to avoid the feature loss.
First, different from the time-domain feature-based methods
that directly perform a time-frequency transformation on the
signal, we introduced a feature enhancement network based
on a convolutional autoencoder framework to obtain more
distinguishable features of radar signals and generate high-
quality TFIs. Subsequently, the learned features are employed
for the signal recognition task with a deep residual network.
Finally, the two tasks are jointly optimized with a compound
objective function. By exploiting the correlation between the
two tasks, we obtain more abundant time-frequency features,
which can also provide more discriminative features for the
recognition task and improve recognition accuracy. Different
from existing MTL work [31], [32] that directly extract
features from time-domain signals, we map time-domain
signals into time-frequency space through neural networks,
which not only obtains higher-level discriminative features,
but also minimizes feature loss. The main contributions of
this paper can be summarized as follows:

1) We present a new MTL method for radar signal
recognition and time-frequency feature enhancement
to address the issue of low recognition accuracy in
radar signal recognition. It utilizes the correlation
between the feature enhancement task and the signal
recognition task to enhance both the signal features and
the performance of radar signal recognition.

2) We design a new loss function for joint learning, which
consists of mean square error (MSE) loss, perceptual
loss and cross-entropy loss. The synergy between
the different losses achieves mutual supervision and
performance complementarity between the two tasks,
significantly enhancing the overall effectiveness and
generalization capability of the MTL framework.

3) Experimental results show that the proposed method
not only effectively enhances the signal features, but
also improves the recognition accuracy of radar signals.
When the SNR is 0 dB, the recognition accuracy is
above 97%.

4) We conduct a hardware-in-the-loop simulation experi-
ment of radar signals. The experimental result verifies
the feasibility of the proposed method in real environ-
ments. The recognition rate reaches 89% at 0 dB SNR.

The paper is organized as follows: In Section II, we discuss
the related work. Section III introduces the proposed radar
signal recognition framework. In Section IV, we conduct
extensive experiments to verify the effectiveness of the
proposed method. Finally, the conclusions are given in
Section V.

II. RELATED WORK
A. RADAR SIGNAL RECOGNITION BASED ON DNNS
Radar signal recognition methods based on DNNs can be
divided into categories: time-domain feature-based methods
and TFA-based methods. For the former, O’Shea et al. [11]
first applied CNNs to automatic modulation recognition,
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achieving higher recognition accuracy compared to tradi-
tional methods. Subsequently, a large number of methods
utilizing DNNs to extract time-domain features and perform
signal modulation recognition have been proposed. Wei et al.
[12] proposed to extract time-domain features by a CNN
and a LSTM network and utilize a DNN to classify
the signals. On this basis, Xu et al. [13] presented a
multi-stream deep learning framework to extract features
from individual and combined in-phase symbols of time-
domain signals. To take advantage of the complementary
relationship between CNN, GRU, and DNN, Njoku et al. [14]
proposed the hybrid neural network (CGDNet) to effectively
improve the recognition accuracy. Zhang et al. [15] used a
CNN to expand the feature space of time-domain signals.
These features are then fed into the combined SRNNmodule,
which effectively manages the relationships between signal
features. Finally, the recognition results are obtained through
the fully connected layer. Through an end-to-end approach,
these methods directly extract effective features from the
original signal for modulation recognition. However, the
distinguishable features contained in time-domain signals are
limited, which poses a challenge to radar signal recognition
based on time domain features.

TFA-based methods [16], [17], [18], [19] are extensively
used in the modularity recognition field due to the strong
ability of time-frequency characteristics extraction. Huynh-
The et al. [20] utilized CWD to extract the characteristics of
radar signals, and designed the LPI-Net to achieve identifica-
tion of thirteen types of signals. Walenczykowska et al. [21]
obtained signal pulse repetition frequency, amplitude and
other characteristics fromCWT-TFIs, and then fed these TFIs
into a CNN for radar signal recognition. Quan et al. [36] fused
the time-frequency features from CWD-TFIs and histograms
of oriented gradient (HOG) features by a multi-layer percep-
tron (MLP) and achieved signal recognition with an SVM
classifier. Liu et al. [37] designed a triple convolutional neural
network (TCNN) to extract high-dimensional features from
SPWVD-TFIs. Then a triple loss function is employed as an
optimization strategy to enhance the discriminability between
different types of radar signals. Time-frequency features can
capture the changes in signals in both time and frequency
dimensions at the same time, providing more comprehensive
information and accomplishing accurate recognition.

B. MULTI-TASK LEARNING (MTL)
MTL is a neural network framework that achieves knowl-
edge transfer by simultaneously training multiple related
tasks, thereby improving the generalization ability of the
model [38]. Studies have shown that jointly learning multiple
tasks shows better performance than learning them indepen-
dently when tasks are related. The reason is that, when these
tasks are related, the knowledge gained from one task can
be transferred and utilized in another task, enhancing the
overall performance. Due to superiority of MTL, it has been
applied in various fields, such as language translation [39],

disease [40], and signal recognition [31], [32], [33], [34],
[35].

Jagannath et al. [31] proposed a MTL approach for modu-
lation classification and protocol recognition task. It benefits
from the mutual relation between the two tasks in improving
the recognition accuracy and the learning efficiency with
a lightweight neural network model. Huang et al. [32]
provided a MTL framework by considering radar signal
classification and signal characterization as a joint problem
to solve the issue of insufficient signal representation.
It introduces the IQ Signal Transformer (IQST) architecture
based on the attention mechanism is introduced to directly
extract features from the original signal. Wang et al. [33]
proposed a radar signal recognition method based on MTL,
using signals with different SNRs to complete the training
of multiple CNN models and enhance the recognition ability
of the network in different SNR environments. Mossad et al.
[34] designed a network based on MTL. In addition to the
main classification task, they also created 3 different tasks for
easily confused signals to reduce confusion between similar
categories. Jing et al. [35] minimized multiple losses through
multi-task learning, enabling the network to learn and extract
feature representations that are both compact and highly
discriminative, thereby enhancing the separability between
clutter and targets.

III. THE PROPOSED METHOD
In this section, we provided an overview of the basic
characteristics of the 12 radar signals employed, introduced
the overall framework of the proposed method, along with the
joint learning mechanism within the MTL framework. Next,
we present a detailed description of the various components
of the model.

A. RADAR SIGNALS AND THE PROPOSED METHOD
The signal intercepted by the radar receiver can be expressed
as:

y(t) = x(t) + w(t) = A(t)ejθ (t) + w(t) (1)

where x(t) is the radar signal, w(t) represents the additive
white Gaussian noise (AWGN), and A is the amplitude of
signal. θ (t) is the instantaneous phase of the signal, which
can be expressed in detail as θ (t) = 2π f (t)t + ϕ(t), where
f (t) and ϕ(t) are respectively the frequency modulation and
phase modulation. Therefore, formula (1) can be expressed
as:

y(t) = A(t) exp(j(2π f (t)t + ϕ(t))) + w(t) (2)

In this paper, we consider 12 typical radar signals, includ-
ing linear frequency modulation (LFM), frequency shift
keying (4FSK), binary phase shift keying (BPSK), polyphase
coded signal (FRANK, P1-P4), and multi-temporal code
signal (T1-T4). The linear frequency modulation is a type of
modulation where the instantaneous frequency of the pulse is
directly or inversely proportional to time, offering superior
range resolution and effective range. The frequency shift
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keying is characterized by a ‘‘thumbtack-shaped’’ ambiguity
function, which effectively minimizes crosstalk between
different sub-pulse segments. The binary phase shift keying
demonstrates strong anti-jamming capabilities, enhances the
Doppler resolution of the radar system, improves signal
stealth performance, and reduces loss per unit distance. The
polyphase coded signal combines the advantages of both
polyphase coded signal and linear frequency modulation,
providing excellent radar detection and range resolution capa-
bilities. In addition, multi-temporal code signal represents a
new form of polyphase coded signal, where the time occupied
by each phase in the waveform continuously changes,
distinguishing it from other polyphase coded signals. These
signals encompass a wide range of modulation and coding
techniques, each with unique characteristics that contribute
to radar signal processing.

In radar signal recognition, the recognition performance is
closely related to the extracted signal features. Traditional
methods often rely on signal statistics, such as correlation
function and power spectrum density, which reflect some
intrinsic characteristics of the signal. TFA methods, such
as short-time Fourier transform (STFT) and multisyn-
chrosqueezing transform (MSST), are widely used to map
signals from the time domain to the time-frequency domain,
thereby revealing the time and frequency information of the
signal. However, while these methods can extract certain
signal features effectively, they may suffer from insufficient
feature extraction when dealing with complex signals, result-
ing in low recognition accuracy. To address this issue, the
proposed method jointly trains signal feature enhancement
and radar signal recognition as related tasks. The overall
framework is shown in Figure 1. For feature enhancement
task, several modules are designed to capture richer radar
signal features. In contrast to TFA methods, which rely on
fixed basis functions, the feature mapping module leverages
multiple groups of convolution kernels, allowing the network
to learn diverse sets of basis functions that enhance radar
feature extraction. Additionally, a convolutional autoencoder-
based feature enhancement module further extracts the signal
features. We take the latent representations learned by the
convolutional autoencoder as input, employ a deep residual
network for deep feature extraction, and complete the signal
modulation recognition task. the proposed model is trained
end-to-end with a unified loss function constraint, facilitating
collaborative learning across multiple tasks. By sharing parts
of the network, this approach encourages the model to learn
more generalized feature representations.

B. FEATURE ENHANCEMENT TASK
The feature enhancement task aims to enhance the quality
and discriminative power of the extracted features from
raw time-domain radar signals, thereby improving the
performance of subsequent modulation recognition. Inspired
by [27], we develop a time-frequency feature enhancement
network based on the convolutional autoencoder framework
for the feature enhancement task. It consists of a feature

mapping module and a feature enhancement module. First,
original time-domain radar signals are mapped into the
time-frequency space by the feature mappingmodule, so as to
obtain multiple sets of feature maps containing rich features.
Subsequently, multiple time-frequency features are enhanced
through the feature enhancement module. The details of the
featuremappingmodule and feature enhancementmodule are
described as follows.

1) FEATURE MAPPING MODULE
In order to obtain more discriminative features of radar
signals, we utilized the feature mapping module containing a
1D convolutional layer to map the original time-domain radar
signals into the time-frequency space. It realized adaptive
learning of STFT matrix weights through CNNs.

First, as neural networks have a powerful ability of feature
extraction, we use convolution kernels to adaptively learn
the Fourier basis functions. The number and size of the
convolution kernels are fi and 1 × Ls, respectively. It can be
expressed as:

S(k) =

Ls−1∑
n=0

s(n)Wk (n), k = 0, 1, . . . , fi − 1 (3)

where Wk denotes the k-th convolution kernel. The convolu-
tion process is shown in Figure 2.

Then, in order to reflect the time-varying characteristics
of the signal, we performed a windowing processing in the
feature mapping module. The window size is set to Lw and
the stride is 1. After padding zero, the signal is divided
into N segments, denoted as sl(n), l = 1, 2, . . . ,N , n =

1, 2, . . . ,Lw. Taking the l-th segment as an example, the
convolution result is defined as:

Sl(k) =

Lw−1∑
n=0

sl(n)Wk (n), k = 0, 1, . . . , fi − 1 (4)

where Lw is the window length, sl represents the l-th signal
intercepted by the window.

The specific process of the feature mapping module is
further illustrated in Figure 3. Each segment of the signal
truncated by the window is sequentially convolved to obtain
features with length fi in frequency domain. Then all the
frequency features are concentrated to form a time-frequency
feature map with the size of N × fi. Furthermore, to explore
other more useful basis functions, the number of convolution
kernels is increased toC×fi, andC groups of time-frequency
feature maps, which obtain richer identification features are
finally obtained.

2) FEATURE ENHANCEMENT MODULE
By the feature mapping module, we obtained multiple feature
maps based on different types of basis functions, which carry
different feature information. Next, we design the feature
enhancement module to further enhance the time-frequency
features, and finally obtain a concentrated TFI. The feature
enhancement module mainly consists of 20 2D convolutional
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FIGURE 1. The overall structure of the proposed method.

FIGURE 2. Feature mapping process for a signal of length Ls.

FIGURE 3. Feature mapping process using sliding windows.

layers and 20 symmetric 2D deconvolutional layers. Each
layer is followed by a rectified linear unit (ReLU) layer.
The convolutional layers play the role of feature extraction,
capturing the important features of image while removing
noise. And the deconvolutional layers recover the image
based on the extracted features. In addition, the gradual
deepening of the network may lead to the loss of features,
which is not conducive for deconvolutional layers to recover
the image. Therefore, we add skip connections between every
two convolutional layers and the mirrored deconvolutional
layers, so that some features extracted in the convolutional
layers can be directly passed to the deconvolutional layers
without being processed by the intermediate layers. Thus,
more details of images are retained, which helps decon-
volutional layers recover the image better. A transposed
convolutional layer is added at the end of the module to
integrate the complementary information of all images and
finally obtain a concentrated TFI. The TFIs generated by
the module are shown in Figure 4. For clarity, the network
parameters of the feature enhancement module are provided
in Table 1.

C. RADAR SIGNAL RECOGNITION TASK
The proposed method obtains time-frequency features of
radar signal through the feature enhancement process based

FIGURE 4. Images generated by the decoders.

TABLE 1. Parameters of network in the feature enhancement module.

on CNNs. Subsequently, we utilize these features to achieve
the radar signal recognition task. In order to illustrate the
superiority of the feature maps, we compare them with the
MSST-TFIs. Figure 5 and Figure 6 illustrate MSST-TFIs and
the feature maps of Frank and P3 at an SNR of 20 dB, respec-
tively. For Frank and P3, the corresponding MSST-TFIs
are similar, which gives rise to signal confusion. However,
as can be seen from Figure 6, the difference between them
is more significant after the feature enhancement module.
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As shown in Figure 6 (a), the feature map of the FRANK
code is ‘‘staircase’’ shaped, while the feature map of P3 in
Figure 6 (b) is very smooth, which helps the network to
correctly distinguish them.

In our MTL model, the time-frequency features are
extracted from the convolutional layers of feature enhance-
ment module, which still belongs to shallow feature repre-
sentation and cannot be directly used for signal recognition.
Therefore, we employ a deep residual network for deep
feature learning and signal modulation classification. Specif-
ically, ResNet50 is chosen to extract deep time-frequency
features and a softmax classifier is used to implement the
recognition task.

D. MULTI-TASK LEARNING AND JOINT OPTIMIZATION
To jointly optimize two distinct target tasks by sharing
parameters between the aforementioned tasks, we devised
a MTL framework based on the hard parameter sharing
strategy. As shown in Figure 1, the two tasks share the
feature mapping module and the convolutional layers in
the proposed MTL model, which is used to learn common
feature representations from raw signals. The proposed MTL
model is trained in an end-to-end manner by optimizing a
multi-task objective function. To ensure the model effectively
optimizes for different objectives, we introduce a novel loss
function designed to achieve a more balanced and interactive
optimization between the two tasks.

Specifically, to enhance the performance of the feature
enhancement task, we employ the MSE loss [41] and the
perceptual loss [42] as the objective function for the task. This
approach ensures both pixel-level accuracy and visual fidelity
in generating TFIs. MSE is a loss function based on pixels,

FIGURE 5. TFIs of FRANK and P3 obtained by MSST method.

FIGURE 6. Feature maps of FRANK and P3 obtained by the proposed
method.

which is formulated as:

LMSE
(
y, y′

)
=

1
n

n∑
i=1

(
yi − y′i

)2 (5)

where n represents the total number of pixel points in an
image, yi is the i-th pixel in the target image, yi′ is the i-th
pixel in the generated image.

Moreover, the basic idea of perceptual loss is to compare
the differences of the high-level features between the
generated image and the target image, which are extracted
by a pre-trained VGG16. For the j-th layer of the VGG16
network, the loss of the image is given by:

Lossϕ,j
feat

(
y, y′

)
=

1
CjHjWj

∥∥ϕj(y) − ϕj
(
y′

)∥∥2
2 (6)

where ϕ represents VGG16 network, j is the layer index,
ϕj

(
y′

)
, ϕj(y) are the features of the generated image and

the target image through the j-th layer of VGG16 network,
respectively, andCj,Hj,Wj is the channel, height, width of the
feature of the j-th layer.The loss functions of each layer are
added to obtain the whole perceptual loss, which is expressed
as:

Lfeat =

N∑
j=0

Lossϕ,j
feat

(
y, y′

)
(7)

where N is the total layer number of the VGG16 network.
In addition, we employ the cross-entropy loss to optimize

the recognition task, which calculates the loss between the
predicted label and the given label. The cross-entropy loss is
formulated as:

Lc =
1
n

n∑
i=1

Li = −
1
n

n∑
i=1

M∑
c=1

yic log (pic) (8)

where M is the total number of signal categories, yic is
the symbolic function (takes 1 if the true class of i-th
signal is equal to c, otherwise takes 0), pic is the predicted
probability that the i-th signal belongs to the c-th category.
Finally, we jointly optimize the proposed MTL model with a
compound objection function. The total loss of the model is
summarized as:

Ls = αLMSE + βLfeat + γLc (9)

where α, β, γ are balance weights used to control the
ratio of the three loss functions. The proposed MTL method
minimizes Ls by adjusting model parameters so that the
two relative tasks can be improved mutually. On the one
hand, the features learned by the feature enhancement task
facilitate the judgment of the recognition network, thereby
improving the recognition performance. On the other hand,
the feedback from the recognition network also enables the
feature enhancement network to learn more representative
features. The mutual reinforcement between the two tasks
contributes to the improvement of radar signal recognition
performance.
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IV. EXPERIMENTS
A. DATASET PREPARATION
In our experiments, we use 12 categories of classical radar
signals to validate the effectiveness of the proposed model.
We generated this dataset through simulation with different
parameter settings, which includes 4FSK, BPSK, LFM,
FRANK, P1, P2, P3, P4, T1, T2, T3 and T4. The uniform
distribution based on the sampling frequency fs is represented
by U (·). For example, U (1/3, 1/2) is a random number in
the range of (fs/3, fs/2). The sampling frequency fs is set to
200MHz. The detailed settings of radar signal parameters are
shown in Table 2. 200 training samples and 80 test samples
were generated for each signal type under each SNR. All
the samples are added with Gaussian white noise, and the
SNRs vary from 0 dB to 20 dB. The dataset consists of
a training set of 26,400 samples and a test set of 10,560
samples. All methods were conducted in Pytorch with a 16-
core CPU and a single GeForce RTX 3090 GPU. For further
research, the code for dataset and MTL model is available at
https://github.com/stu-cjlu-sp/rsrc-for-pub/tree/main/MTL.

TABLE 2. The settings of radar signal parameters.

B. PERFORMANCE COMPARISON
To evaluate the performance of the proposed MTL method,
we compare it with several existing algorithms that
take time-domain signals as input. Four representative
approaches are selected as baselines, named CLDNN [12],
MCLDNN [13], DPM-SCNN [43], CSRDNN [15], respec-
tively. The experimental results are shown in Figure 7.
It can be observed that the proposed MTL method achieves
higher recognition accuracy than the baselines. For CLDNN
and MCLDNN, the recognition precision is relatively low.
The reason is that both of them stack CNN, LSTM,
and DNN, and primarily focus on time-domain features,
which cannot fully capture frequency-domain information.
However, the proposed method maps time-domain signals to
the time-frequency domain, which can capture both temporal
dependencies and detailed frequency-domain information,
providing more discriminative features for recognition. The

recognition performance of CSRDNN is relatively better
than that of CLDNN and MCLDNN, as each recurrent
unit in CSRDNN extracts different temporal features.
However, its feature fusion capabilities are limited. Our
model enhances the fusion of features from multiple tasks
by sharing feature extraction layers, thereby enhancing
the multi-task collaborative processing capability of the
model and ultimately improving the recognition accuracy.
DPM-SCNN significantly improved recognition accuracy via
extracting the real part, imaginary part, amplitude and phase
of the original signal. However, the preprocessing leads
to the feature loss, which is not conducive to recognition.
In contrast, the proposed MTL framework can identify all
signals with an accuracy of over 97% at an SNR of 0 dB, far
exceeding other baselines. In the feature enhancement task,
we map the time domain signal to the time-frequency space
to obtain richer signal features. In addition, we use end-to-
end training to reduce the feature loss caused by pre-training.
More importantly, we balance the two tasks through the
designed joint loss function to achieve overall performance
improvement.

FIGURE 7. Performance comparison with methods based on time-domain
features.

Simultaneously, we compare the proposed method with
other TFA-basedmethods, including LPI-Net [20], and CWT-
CNN [21], which are based on CWD and CWT respectively.
Besides, a method based on dual-channel CNN [36] was
selected for comparison. As the MSST TFIs are regarded as
the target images, we also designed a MSST-based approach
for comparison. Specifically, the time-frequency features of
radar signals are extracted by MSST, which are fed into
the ResNet50 for signal recognition. As shown in Figure 8,
the proposed MTL method shows a stronger ability in
identifying radar signals than TFA-based methods. It is due
to the fact that TFA-based methods often rely on fixed basis
functions for time-frequency transformations. While these
methods can effectively extract time-frequency information,
the inflexibility of the basis functions limits their ability to
handle complex and varied signals. In contrast, the proposed
MTL method introduces multiple sets of convolutional
kernels to learn a variety of basis functions, enabling it to
flexibly adapt to complex signal variations and extract more
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FIGURE 8. Performance comparison with TFA-based methods.

comprehensive and diverse time-frequency features, which
improves the ability to distinguish signals and finally achieve
high recognition accuracy.

In order to further verify the ability of the proposed
method in distinguishing confusing signals, we presented
confusion matrices at the SNR of -2 dB. Figure 9 (a)
shows the confusion matrix of 12 types of radar signals
based on MSST-based method. Obviously, some of the
signals are prone to confuse with each other, leading to
poor accuracy recognition. As mentioned before, FRANK
and P3 are signals easily confused. In Figure 9 (a), 24% of
P3 is misidentified as FRANK. In addition, 19% of P4 are
confused with P1. The reason is that, when the SNR is low,
the signal is easily interfered by noise, making it difficult
for the network to extract useful features and ultimately
leading to low recognition accuracy. The proposed MTL
method uses noiseless TFIs obtained by MSST as the target
TFIs for updating the matrix weights. This approach acts
as a form of denoising and has the potential in generating
more distinctive features and improving the recognition
performance. As shown in Figure 9 (b), the recognition
accuracy of both P3 and P4 increased by 21%, demonstrating
that the proposedmethod can effectively reduce the confusion
between different types of signals.

Figure 10 shows the recognition accuracy of 12modulation
types of radar signals across various SNRs. It can be observed
from Figure 10 that the recognition accuracy improves as
SNR increases. Under low SNR conditions, the proposed
MTLmethod shows excellent recognition performance, espe-
cially for T1, P2 and FRANK. The recognition accuracies of
them all maintain above 80% at the SNR of −4 dB. When
the SNR exceeds -2 dB, the proposed MTL method can
identify them with nearly 100% accuracy. This is mainly due
to their more discriminating characteristics than other types
of signals, resulting in correct judgments of the classification
network.

C. ABLATION EXPERIMENT
In this section, we conduct the ablation experiment to
analyze the mutual influence of the feature enhancement

FIGURE 9. The confusion matrix for different methods: (a) MSST-based
method, (b) The proposed MTL method.

FIGURE 10. Recognition results of 12 types of radar signals.

task and the signal recognition task. First, to verify that
the feature enhancement task contributes to signal recog-
nition, we constructed a variant, called single task-signal
recognition(ST-SR) model, to perform the single task of
signal recognition, where the deconvolutional layers are
removed from the feature enhancement module and the
features extracted by the convolution layers are directly sent
to the ResNet50 for signal recognition. Figure 11 shows
the overall recognition performance of the proposed MTL
method and ST-SR method. The recognition accuracy of
the proposed MTL method is obviously higher than that of
the ST-SR method, especially when the SNR is lower than
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FIGURE 11. Comparison with ST-SR method.

FIGURE 12. The confusion matrix for different methods: (a) ST-SR
method, (b) The proposed method.

−4 dB. It can be concluded that the feature enhancement task
has a positive impact on signal recognition. This is mainly due
to the scheme of joint training, where the enhanced images
provide more abundant features for the recognition task.

Furthermore, we employ confusion matrices to further
analyze the recognition accuracy of the two methods,
as shown in Figure 12. When the SNR is −4 dB, the ST-SR
method can easily cause signal confusion, which is presented
in Figure 12 (a). 33% of LFM were misidentified as P4,

and 24% of P3 were misidentified as T3. The main reason
is that the information that can be utilized for recognition
in the ST-SR method is limited. Thus, signals with similar
characteristics are easily confused. However, the proposed
MTL method effectively solves this problem. As shown
in Figure 12 (b), compared with the ST-SR method, the
proposed MTL method reduces the possibility of signal
confusion when the SNR is−4 dB. The accuracy rate of LFM
rises from 19% to 49%, and the accuracy rate of P3 increases
to 75%.

Besides, we define another variant, named single
task-feature enhancement (ST-FE), where the ResNet50
is removed, to assess the impact of signal recognition
task on the feature enhancement task. We employ the
structure similarity index measure (SSIM) [44] to measure
the similarity between the images generated by the proposed
method and the target images, as well as the similarity
between the images generated by the ST-FE method and the
target images. As revealed in Figure 13, the similarity of
both methods increases as the SNR rises. When the SNR is
0 dB, the similarity of the proposed method reaches 84%.
And the images generated by the proposed MTL method
are more similar to the target images than that of the ST-FE
model, proving the recognition task is beneficial to feature
extraction. The superior recognition performance can guide
the model to obtain images with high quality.

FIGURE 13. SSIM of images generated by the proposed MTL method and
ST-FE method.

D. RECOGNITION PERFORMANCE OF
MULTI-COMPONENT RADAR SIGNALS
To verify the applicability of the proposed method in
solving other signal processing tasks, the proposed method
is extended to the field of multi-component radar signals.
We selected 4FSK, BPSK, LFM, and FRANK (signal
parameters consistent with Table 2) and combined them in
pairs to obtain six types of multi-component signals. The
SNRof the training set is set to 0 dB to 20 dB, and 200 training
samples are generated for each signal at each SNR. The
dataset consists of a training set of 13,200 samples and a test
set of 5,280 samples. The recognition accuracy obtained by
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FIGURE 14. Recognition performance for multi-component signal.

FIGURE 15. The confusion matrix for multi-component signal.

the proposed model is shown in Figure 14. When the SNR
is 0 dB, the recognition accuracy of the proposed method
for multi-component signals is over 98%. Furthermore, the
confusion matrix for multi-component signal is presented
in Figure 15. It can be observed that the proposed method
can effectively distinguish multi-component radar signals,
demonstrating its strong transfer ability to be applied to other
signal processing tasks.

E. HARDWARE-IN-THE-LOOP SIMULATION EXPERIMENT
In order to further verify the effectiveness of the proposed
method, a hardware-in-the-loop simulation experiment plat-
form, as shown in Figure 16, was constructed to collect radar
signals in a real environment for recognition [45]. The system
works in the C band, supporting a maximum bandwidth
of 200 MHz for transmitting and receiving signals. The bit
widths of transmit and receive waveform are 16 bits each,
and the sampling rate is 3 GSa/s.
The hardware-in-the-loop simulation experiment platform

consists of a simulation host computer, a signal simulator,
a transmit antenna, a receive antenna and a signal collector.
First, the simulation host computer is responsible for
generating 12 types of radar signals with SNR ranging from
−10 dB to 10 dB. For each signal at each SNR, 80 samples

FIGURE 16. Hardware-in-the-loop simulation experiment platform for
radar radiation source signal recognition.

FIGURE 17. Recognition accuracy based on hardware-in-the-loop
simulation data.

are generated, and a total of 10,560 samples are obtained.
Each signal is labeled and sent to the signal simulator at
certain intervals. The signals are converted from digital to
analog in the signal simulator and transformed to the C
band, and then transmitted to an open area through a transmit
antenna. The receive antenna sends the received signal to the
signal collector, where signals complete down-conversion,
analog-to-digital conversion and pulse extraction, and
finally generates a hardware-in-the-loop simulation dataset.
We utilized the obtained dataset for identification to verify the
feasibility of the proposed method in a real environment. The
hardware-in-the-loop simulation data is publicly available
and can be found at https://github.com/stu-cjlu-sp/rsrc-for-
pub/tree/main/MTL/dataset/hardware-in-the-loop-
simulation-data.

Figure 17 shows the recognition result. It can be observed
that the overall recognition accuracy of the hardware-in-the-
loop simulation experiment is slightly lower than that of the
simulation experiment. It is due to the fact that the signals
collected by the hardware-in-the-loop simulation experiment
platform are affected by the radio wave propagation channel,
resulting in fluctuations in the SNR and signal fading, which
ultimately affecsts the recognition accuracy. However, the
recognition accuracy of the hardware-in-the-loop simulation
is still high when the SNR is low, which reaches 89% at an
SNR of 0 dB, indicating that the proposed method has a good
recognition accuracy in a realistic engineering application
environment.
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V. CONCLUSION
In this paper, we proposed a novel MTL-based method for
radar signal recognition. We consider feature enhancement
task and signal recognition task as a MTL problem.
By utilizing their correlation and sharing features, the
performance of the model is improved. The features learned
by the feature enhancement task are utilized for signal
modulation recognition task. Additionally, the feedback from
the recognition network also enables the feature enhancement
network to learn more representative features. Moreover,
we design a new loss function to achieve better balance
and interaction between different tasks. Experimental results
show that compared with several existing typical radar signal
recognition methods, the proposed method not only achieves
higher recognition accuracy, but also effectively enhances
the feature representation of radar signals. The hardware-
in-the-loop simulation experiment verifies that the proposed
method has high recognition accuracy in real engineering
application environments, which is of great significance in
the field of artificial intelligence. It is expected to promote the
widespread application of artificial intelligence technology in
the radar field and lay a solid foundation for the development
of future intelligent radar systems.

In future work, we will explore additional applications
of the feature enhancement task. For instance, within a
MTL framework, we can achieve precise signal parameter
measurements using enhanced time-frequency representa-
tions, allowing radar parameter estimation without prior
knowledge. This will help radar systems better distinguish
between target signals and interference signals, thereby
mitigating false alarm rates and bolstering overall system
stability.
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