
Received 8 August 2024, accepted 5 October 2024, date of publication 14 October 2024, date of current version 24 October 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3479729

Using Ambient Sensors for Proximity and Relay
Attack Detection in NFC Transactions:
A Reproducibility Study
KONSTANTINOS MARKANTONAKIS 1, JULIA A. MEISTER 2, IAKOVOS GURULIAN 3,
CARLTON SHEPHERD 4, RAJA NAEEM AKRAM 5, SARAH HANI ABU GHAZALAH 6,
MUMRAIZ KASI 7, DAMIEN SAUVERON 8, AND GERHARD HANCKE 9, (Fellow, IEEE)
1Information Security Group, Smart Card and IoT Security Centre, Royal Holloway, University of London, TW20 0EX Egham, U.K.
2School of Computing, Engineering and Mathematics, University of Brighton, BN1 9PH Brighton, U.K.
3TEKA Systems S.A., 152 31 Athens, Greece
4School of Computing, Newcastle University, NE1 7RU Newcastle upon Tyne, U.K.
5Department of Computer Science, University of Aberdeen, AB24 3FX Aberdeen, U.K.
6Information Security and Cyber Security Unit, King Khalid University, Abha 62521, Saudi Arabia
7Department of Computer Science, FICT, BUITEMS, Quetta 87300, Pakistan
8Department of Computer Science, University of Limoges, 23204 Limoges, France
9Department of Computer Science, City University of Hong Kong, Hong Kong

Corresponding author: Konstantinos Markantonakis (k.markantonakis@rhul.ac.uk)

This work was supported by the Deanship of Research and Graduate Studies at King Khalid University through Small Group Research
under Grant RGP1/349/45.

This work involved human subjects or animals in its research. Approval of all ethical and experimental procedures and protocols was
granted by the College Research Ethics Committee (REC), Royal Holloway, University of London, U.K.

ABSTRACT Near-Field Communication (NFC) has enabled mobile devices to emulate contactless smart
cards, which has also rendered them susceptible to relay attacks. Numerous countermeasures have been
proposed that use ambient sensors as an anti-relay mechanism. However, there are concerns regarding
their efficacy in time-critical scenarios, such as transport ticketing and contactless payments. This paper
empirically and comprehensively evaluates whether ambient sensors are an effective anti-relay mechanism
for such NFC-based contactless transactions. To this end, we examine 17 sensors available via the Android
platform. Each sensor, where feasible, was used to record measurements in 1,000 contactless transactions
with 252 users across four physical locations. We then conduct an extensive four-part evaluation using
similarity metrics, traditional machine learning models, and deep learning methods used in existing work
and beyond. We conclude that mobile ambient sensors are currently unsuitable for detecting relay attacks
on NFC contactless transactions under realistic timing constraints, contrary to the suggestions and proposals
made in existing work.

INDEX TERMS Near field communication (NFC), contactless transactions, relay attacks, ambient sensors,
security, mobile payment.

I. INTRODUCTION
Contactless smart cards are susceptible to relay attacks [1],
[2], [3], as are NFC-enabled mobile phones [4], [5], [6],
[7]. A relay attack is a passive man-in-the-middle attack in
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which an attacker extends the distance between a genuine
payment terminal (point-of-service) and genuine contactless
smart card (or NFC-enabled mobile device). This attack can
enable a malicious user to access services for which the
genuine user is eligible, such as paying for goods or accessing
a building with physical access controls. Quantifying the
number of fraudulent activities where relay attacks are used

150372

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0003-3975-9033
https://orcid.org/0000-0003-2951-7217
https://orcid.org/0000-0003-2919-8842
https://orcid.org/0000-0002-7366-9034
https://orcid.org/0000-0002-2789-4628
https://orcid.org/0000-0003-4162-9529
https://orcid.org/0000-0002-0218-5323
https://orcid.org/0000-0001-7948-6143
https://orcid.org/0000-0002-2388-3542
https://orcid.org/0000-0002-7952-0038


K. Markantonakis et al.: Using Ambient Sensors for Proximity and Relay Attack Detection

is a challenging task (on both smart card and NFC mobile
phones). Evidence exists, however, that academic attacks on
smart cards have been adopted by real-world criminals [8].
For contactless smart cards, a potentially effective counter-

measure has been distance bounding protocols [9], [10]. For
NFC-enabled phones, anti-relay mechanisms have focused
on using ambient sensors for determining whether the
terminal and payment device are in a shared location
(Section II).
In this paper, we investigate the extent to which ambi-

ent sensors are actually effective under real-world timing
constraints. We explore the sensors available through the
Android platform and construct a test-bed environment
(Section III) to evaluate their effectiveness as proximity
detection mechanism for NFC-based contactless transactions
(Section IV). The aim of this work is to provide empirical
evidence of each ambient sensor’s suitability as a proximity
and relay attack detection mechanism (Section V).

A. OPERATIONAL ENVIRONMENT
We focus on NFC-based mobile applications that emulate
traditional contactless smart cards, particularly for payments
and transportation. In these domains, the use of ambient
sensing must operate within strict proximity and transaction
duration requirements. We describe these as follows:

1) Proximity: Two devices are considered to be in
proximity of each other if they are physically present
within a distance of 3-5cm [11], [12], [13].

2) Transaction Duration: The transaction must complete
within 500ms. In accordance with the EMV speci-
fications, the maximum permitted time in which a
contactless payment transaction should complete is
500ms [14], [15], [16], [17]. For transport-related
transactions, the performance requirements are similar,
where transaction times can take approximately 300ms
on average but must not exceed 500ms in total
[18], [19], [20].

B. EVALUATION SCOPE
The effectiveness of a sensor-based proximity detection
mechanism lies in the ability to discriminate between sensor
measurements from genuine and illegitimate device pairs.
The genuine pair is a terminal and mobile phone at <5cm
from each other, while the illegitimate devices are not part of
the intended transaction. Ultimately, the goal is to establish
confidence that two devices are truly in close proximity
intended by the NFC specifications (<5cm), rather than
at a longer distance due to a relay attack. Moreover, the
mechanism must also operate under a maximum transaction
duration of 500ms.

In this paper, we broadly refer to NFC-based contactless
transactions for payments due to their ubiquity and associated
financial repercussions. However, our work is also relevant
to other high-security NFC contactless services, e.g. physical
access control systems. Our main contributions are as
follows:

1) A test-bed implementation for evaluating various
sensors on Android devices in time-critical NFC
transactions.

2) A data analysis framework for evaluating ambient
sensing as an anti-relay mechanism using traditional
similarity metrics and machine and deep learning
models.

3) An empirical evaluation of the effectiveness of ambient
sensors as a proximity and relay attack detection mech-
anism.We show that ambient sensing is not suitable for
high-value NFC transactions without compromising
usability and security.

Our test-bed, data analysis and collected data sets are open-
sourced in order to assist future research.1

II. USING AMBIENT SENSING FOR CONTACTLESS
TRANSACTIONS
In this section, we briefly describe mobile contactless pay-
ments, relay attacks, and a generic architecture for deploying
ambient sensing as a proximity detection mechanism for
countering relay attacks.

A. CONTACTLESS MOBILE DEVICES AND RELAY ATTACKS
In an NFC-based mobile contactless transaction, a mobile
handset is brought into the radio frequency range (<3-
5cm) of a payment terminal through which a dialogue is
initiated. Physical contact is not necessary during this process
and, in most cases, a second factor of authentication is not
required, e.g. biometrics or Personal Identification Number
(PIN) [12].2 From the terminal’s perspective, this renders it
difficult to ascertain whether a genuine or relay device is
being used.

In a relay attack [5], [22], [23] (Fig. 1), an attacker
presents a malicious payment terminal to the victim device
and a separate masquerading payment device to the genuine
payment terminal. The goal of the attacker is to extend the
physical distance of the communication channel beyond that
which it is intended. That is, beyond the <5cm intended
for NFC-based transactions between a payment device and
terminal.

If messages are successfully relayed without detection,
an attacker can gain access to services using the victim’s
account; for example, the victim can remotely be charged
for goods and services at the attacker’s location. Distance-
bounding protocols have been suggested as a potential coun-
termeasure using tight challenge-response timings between
communicating devices with near-identical execution plat-
forms. The introduction of any significant latency suggests
the presence of intermediate hops, i.e. the relay devices [9],
[10], [24]. Unfortunately, distance-bounding protocols fail
to generalise to mobile devices with different hardware-
software configurations, such as system-on-chips (SoCs),

1Available at: https://github.com/AmbientSensorsEvaluation/Ambient-
Sensors-Proximity-Evaluation.git

2Even the use of a PIN or biometric may not thwart relay attacks
effectively, e.g. Mafia fraud attacks [21].
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CPU frequencies, operating systems (OSs), and real-time
clocks [25]. As a solution, numerous proposals—discussed
in Section II-C—have argued that ambient sensors aboard
mobile devices are an effective proximity detection method
for thwarting relay attacks.

B. AMBIENT SENSORS FOR PROXIMITY DETECTION
An ambient sensor measures a physical attribute of its
immediate surroundings, such as the temperature, light,
or humidity. Modern smartphones and tablets are equipped
with an array of such sensors (see Table 2 and Appendix A).
The physical environment surrounding a smartphone, or a
payment terminal, may provide a rich set of attributes that are
unique to that location; for example, the sound and lighting
of a quiet brightly lit room. This information is then used for
assuring that only a genuine terminal and payment instrument
pair are co-located. Relay attacks should then be detected
since the ambient environment of the genuine terminal and
payment instruments are different, which should be deducible
from their sensing measurements. This paper casts doubt on
the practical reality of this assumption.

Three models exist in which sensing-based proximity
detection may be deployed. The entities are illustrated in
Fig. 2 and the models are described as follows:

FIGURE 1. Overview of a relay attack.

FIGURE 2. Generic deployments of ambient sensor-based proximity
detection mechanisms.

1) Independent Reporting. Both the mobile device
and payment terminal collect sensor measurements
independently and transmit these to a trusted authority
(depicted as solid lines in Fig. 2). The authority
compares the sensor measurements, based on some
predefined comparison algorithm with a set margin of
error (threshold), and decides whether the devices are
within sufficient proximity.

2) Payment Terminal Dependent Reporting. The
mobile encrypts its sensor measurements with a shared
key between itself and the trusted authority, and
transmits the encrypted measurements to the payment
terminal. Next, the terminal sends the mobile device’s
measurements and its own to the trusted authority for
comparison (shown as a dot-dashed line in Fig. 2).

3) Payment Terminal (Localised) Evaluation. The
mobile device securely transmits its ownmeasurements
to the payment terminal, which compares them with its
own measurements to decide whether the phone is in
proximity.

The deployment architecture falls under one of these
scenarios irrespective of how the user interacts with the
terminal.

C. RELATED WORK
Several proposals have been developed for sensing-based
proximity and relay attack detection. These proposals are
described forthwith.

Ma et al. [26] showed how location-related data, namely
using GPS (Global Positioning System), can be used to
determine the proximity of two NFC mobile phones. The
authors used a ten-second window with location information
collected every second, which was subsequently compared
across various devices. The authors report a high success rate
in identifying devices within close proximity.

Halevi et al. [27] demonstrated the suitability of ambient
sound and light for proximity detection. Here, the authors
analyse measurements collected for 2 and 30 seconds
duration for light and audio respectively using a range of
similarity comparison algorithms. Although the scenarios
are identical, the transaction duration does not conform
to industry requirements for NFC-based contactless mobile
transactions (Section I-A). While the authors do not specify
the number of transactions recorded at each location, the
experiments show a high success rate of detecting co-located
devices in various environments.

Varshavsky et al. [28] based their proximity detection
mechanism on the shared radio environment of devices—
the presence of WiFi access points and associated signal
strengths—using the application of secure device pairing.
This approach produced low error rates, recommending it
as a proximity detection mechanism. While their paper did
not focus on NFC-basedmobile transactions, their techniques
and methodology may still be applicable.

Urien and Piramuthu [29] use ambient temperature with an
RFID/NFC authentication protocol for proximity detection.
Using this method, they establish a secure channel by
combining the timing channels in RFID, traditionally used
in distance bounding protocols, in conjunction with ambient
temperature. Their proposal, however, was neither imple-
mented nor practically evaluated; there is no experimental
evidence to judge its efficacy.

Mehrnezhad et al. [30] proposed the use of an accelerom-
eter to provide assurance that the mobile phone is within
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proximity of the payment terminal. Their proposal requires
the user to tap the payment terminal twice in succession,
after which the sensor streams of the device and the payment
terminal are compared for similarity. It is difficult to deduce
the exact time needed to complete a transaction in its entirety,
but the authors use recording durations of 0.6–1.5 seconds.

TABLE 1. Sensing-based anti-relay mechanisms.

Truong et al. [31] evaluated four different sensors
across recording durations of 10-120 seconds. Although
the results were positive, such a long recording duration
renders them unsuitable for realistic NFC-based mobile
transactions. Moreover, the data collection set-up did not
emulate a contactless transaction, either in the context of
banking, transport or access control. However, the authors did
discuss the impact of transaction duration on the real-world
applicability of the results. For usability, the authors suggest
that transaction durations should be minimised to the range of
5-15 seconds. They also conclud that measurements recorded
beyond 10 seconds did not improve effectiveness.

Shrestha et al. [32] used bespoke hardware known as
Sensordrone, with a number of ambient sensors, but did
not evaluate the commodity ambient sensors available on
commercial handsets, did not provide the sample duration,
and only mentioned that data from each sensor was collected
for a few seconds. It is difficult to evaluate the proposed
technique in the context of NFC contactless mobile transac-
tions in the banking and transport sector under their specified
requirements. The results related to barometric air pressure
were similar to what we have calculated. Sensors like
Precision Gas and Altitude are not available on commodity
off the shelf Android smart phones.

Choi et al. [33] propose an audio-based proximity detection
for thwarting relay attacks on contactless car key fobs.
The scheme measures the ambient sound surrounding an
emulated key fob—using a Raspberry Pi with a microphone

peripheral—and an automotive authentication module emu-
lated by a laptop. Recordings of 1–5 seconds are evaluated in
three static environments, which are compared for similarity
using the Euclidean distance, correlation, and cosine similar-
ity. The best case equal error rate (EER) was 0.0024 using
correlation similarity. While the scheme is proposed as an
anti-relay mechanism, the authors did not use a relay attack
setup during its evaluation.

We summarise these proposals in Table 1, using measure-
ment sampling durations to determine whether each approach
is suitable for mobile contactless transactions. ‘Unlikely’
approaches require significant sampling times beyond rea-
sonable limits for contactless transactions. Proposals with
more reasonable durations are denoted ‘More Likely’ in
Table 1. It is important to note that even these schemes
may not be suitable for domains where strict transaction
completion limits are imposed (see Section I-A). In these
situations, the goal is to maximise customer throughput,
e.g. at transport barriers and point-of-sales. An optimal
transaction duration is, therefore, in the magnitude of
milliseconds, not seconds.

We observe that no proposed relay detection scheme
has evaluated sampling durations suitable for time-critical
contactless transactions, i.e. ≤500ms. As a result, we do
not repeat these proposals as the existing literature suggests,
as their set-ups do not reflect conventional NFC-based
transactions. This is due to the use of exceptionally long
transaction durations [26], [27], [28], [31]; requiring the user
to perform specific gestures, e.g. double-tapping a payment
terminal [30]; or the use of non-standard hardware [32].
We evaluate whether ambient sensors in principal could be
used for proximity and relay attack detection for NFC con-
tactless transactions using off-the-shelf hardware and stan-
dard transaction behaviour. In this vein, Gurulian et al. [34]
and Shepherd et al. [35] questioned the effectiveness of relay
attack-based detection methods using ambient sensors. The
authors utilise an extensive range of sensors available on
Android devices in different environments, showing how
sensor information between a legitimate device pair, i.e. a PoS
terminal and payment handset, could not be differentiated
from an illicit pair using traditional similarity learning and
machine learning (i.e. data from a device pair in different
locations). In this paper, we extend these results by applying
deep learning via convolutional (CNNs) and recurrent neural
networks (RNNs). The conclusions are further reinforced.
Neither traditional machine learning nor deep learning in
our study can discriminate between legitimate and illicit
device pairs from sensor data captured within a realistic
time period.

In wider literature, a large body of work has investigated
using mutually acquired sensor measurements for secure
device pairing and two-factor authentication. While these
schemes use similar sensing modalities, e.g. magnetome-
ters [36] and sound [37], these are separate problems with
large device distances (>1m) and measurement times than
NFC contactless transactions. We refer the reader to work
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by Conti and Lal [38] for a comprehensive survey of these
schemes.

III. FRAMEWORK FOR EVALUATING AMBIENT SENSORS
In this section, we describe the developed test-bed for testing,
analysing, and evaluating the effectiveness of mobile sensors
as a proximity detection mechanism. The results of the
evaluation are presented in Section IV.

A. TEST-BED ARCHITECTURE
We developed an experimentation test-bed to collect empir-
ical data for evaluating each sensor. Two applications were
implemented and installed on a pair of Android devices:
one emulating a payment terminal (PT) and the other acting
as the payment instrument (PI), or a mobile phone. When
the devices come sufficiently close, an NFC connection is
established and both begin recording data using a specified
sensor. After collecting measurements for 500ms, in line with
the requirements specified in Section I-A, each device stores
the recorded data in a local database. During field trials, one
mobile phone was fixed as a terminal and the second mobile
phone was free of any restrictions.

Fig. 3 shows this in greater detail. Bringing the two devices
together (< 3cm) causes the PT application to send the first
message to the PI over NFC, statingwhich sensor it uses in the
transaction and a unique transaction ID. After this message is
received by the PI, both applications initiate the process to
record a sensor for 500ms.

FIGURE 3. Measurement recording overview.

After collecting the measurements, the PI validates the
data it received from the terminal—whether the transaction
ID and chosen sensor match that of the terminal (shown
in message one in Figure 3)—and returns an acceptance
or rejection message accordingly. This validation process
ensures that both devices were recording data from the same
sensor. Finally, PT performs the same process, ensuring that
both devices used the same transaction ID and recorded from

the same sensor. The measurement is rejected in the event
that devices recorded data for differing transaction IDs or
sensors. Upon validation, the devices save the measurements
in their local databases. The database is designed to hold
measurements for each transaction, which are used in the off-
line analysis of each sensor.

B. DATA COLLECTION FRAMEWORK
We tested each sensor in four different locations around the
university—the lab, cafeteria, dining hall and library—to
account for the influence of different physical locations on
sensor measurements. A field trial was conducted in each
location with 252 participants3 who each conducted a varying
number of transactions. Each participant used the PI provided
by us and was given free reign with how they interacted
with the PT for each transaction; they could tap it once, hold
it extremely close without touching, tap and hold it to the
device, etc. This was to closely replicate the conditions in
which they would conduct a regular contactless transaction.
The data collection at each of the locations was collected over
an eight hours period (0900-1700hours) with irregular gaps
between transactions over the course of four days.

TABLE 2. Sensor availability.

Four devices were used in the experiments, forming two
PT–PI pairs. The first pair consisted of two Nexus 9 tablets,
while the second pair comprised two Android smartphones:
a Nexus 5, assuming the role of the payment terminal, and
a Samsung Galaxy S5 mini (SGS5 mini), which acted as the
payment instrument. The availability of the sensors on each
device is shown in Table 2.

3Informed Consent: No personal data was collected from individual
participants. The mobile phone used by individual participants was provided
by the researchers. Furthermore, the study’s nature and the data collected
during the study were explained to the participants beforehand. Based on
this, they could continue to participate in the study if they consented.
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A minimum of 1,000 transactions were recorded for
each sensor, comprising measurement pairs for which both
PT and PI have valid sensor data. Some sensors, such
as Bluetooth, GPS, Rotation Vector and WiFi—although
present on the devices—returned no or extremely few data
points within the 500ms timeframe (>99% sensor failure4).
Additionally, two sensors (humidity and temperature) are
relatively uncommon among Android devices and none of
our initial test devices possessed them. For completeness,
we employed two Samsung Galaxy S4 (SGS4) smartphones
that contained them; however, only 6% transactions using
these sensors contained any measurements at all when
recorded for 500ms. Consequently, we omitted these sensors
from subsequent analysis.

The recorded sensor measurements were stored in XML
form in each database. A new child element was created
containing the sequence ID of the measurement, the times-
tamp (initialised to zero at the start of the transaction), along
with the data for each returned measurement. The sequence
ID consisted of the date and time the transaction occurred,
the location in which it was captured, and a transaction
ID. The transaction ID is a random, 7-byte string generated
by the terminal used to link the measurements of each
device to produce a PT–PI pair. Occasionally, the NFC
connection was disrupted, primarily when the devices were
moved apart before the transactionwas completed. To address
this, the transaction ID was used in conjunction with the
sequence ID to detect and exclude these measurements prior
to analysis.

IV. AMBIENT SENSOR EVALUATION
We now describe our data analysis and evaluation methodol-
ogy using three approaches based on existing literature (see
Section II-C) and beyond.
The first approach evaluates sensor data using sim-

ple, threshold-based similarity metrics used in existing
literature. The second uses traditional supervised machine
learning algorithms, e.g. logistic regression and support
vector machines (SVMs), for classifying transaction pairs as
(il-)legitimate. For the third approach, we examine the use
of deep learning for classifying measurement transaction
pairs.

After retrieving the databases from PT and PI, the set of all
transactions, T , was produced using the shared IDs generated
during data collection. Each transaction can be represented as
a shared set of PT and PI measurements, PTi and PIi, with the
same shared ID, i. We refer to this as Ti = (PTi,PIi). Note
that each device measures each sensor at potentially different
time intervals (accounting for clock variances), which may
produce an unknown total number of measurements for each
device per transaction. As such, the number of measurements
in PTi is not necessarily that of PIi. We discuss later how
the effect of missing and inconsistent samples was mitigated
using interpolation.

4Detailed in Section IV-A2 and Table 4.

A. METHOD 1: SIMILARITY ANALYSIS AND EVALUATION
This first evaluation method uses simple similarity analysis
of (PTi,PIi). This is measured differently according to sensor
type due to the differences in coordinate systems and dimen-
sions used between sensors (see Appendix A). Measurements
are recorded in three dimensions for the accelerometer, for
example, while location returns a longitude-latitude pair on
Earth. Due to this, we devised three methods of dealing with
the diversity of reported measurements.

2r arcsin

(√
sin2

φ2 − φ1

2
+ cosφ1 cosφ2 sin2

λ2 − λ1

2

)
(1)

MAE(PTi,PIi) =
1
N

N∑
j=0

|PTi,j − PIi,j| (2)

corr(PTi,PIi) =
covariance(PTi,PIi)

σPTi · σPIi
(3)

M =

√
x2 + y2 + z2 (4)

For the network location, we used the Haversine formula
(Eq. 1), which measures the geographic distance between two
latitude and longitude pairs, {(φ1, λ1), (φ2, λ2)}. In Eq. 1, r
represents the radius of Earth. For the remaining sensors, the
similarity of transaction measurements was measured using
the Mean Absolute Error (MAE, Eq. 2) and Correlation
Coefficient (Eq. 3), as used in [30], [33], between the signals
of PTi and PIi. This was performed after linear interpolation
to mitigate the effects of inconsistent clocks between devices.

To complicate matters, certain sensors—the accelerom-
eter, gyroscope, magnetic field, rotation vector and GRV
sensors—produce three-dimensional measurement vectors
comprising x, y and z components. In these instances,
the vector magnitude (Eq. 4) was used as a general-
purpose method for producing a single, combined value prior
to computing the MAE and correlation coefficient. Next,
MAE was computed by applying Eq. 2 directly, while for
correlation, this was found aftermeasuring the covariance and
computing the standard deviations, σPTi and σPIi , of the data
points in PTi and PIi.

1) CALCULATING THE FPR, FNR AND EER
A Python application was developed for analysing the
transaction measurements from the application databases; the
NumPy and SciPy libraries [39] were used for implementing
the similarity functions. Using this application, we calculated
the MAE(PTi,PIi) and corr(PTi,PIi) for each successful
transaction. Next, we calculated the False Positive Rate
(FPR), False Negative Rate (FNR) and equal error rate (EER)
of each sensor by the testing MAE and corr values of
genuine pairs, (PTi,PIi), against the MAE and corr values
of unauthorised pairs (PTi,PIj) with a threshold, t . An ideal
similarity metric, V , would produce V (PTi,PIi) < t and
V (PTi,PIj) > t for all possible pairs. We constructed
these unauthorised pairs by exhaustively matching each PTi
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with every PIj measurement belonging to another transaction
(i ̸= j). The FPR and FNR are calculated using Eq. 5,
where FP, FN , TP and TN represent the number of False
Positives, False Negatives, True Positives and True Negatives
respectively for a given threshold.

FPR =
FP

FP+ TN
FNR =

FN
FN + TP

(5)

2) INDIVIDUAL SENSOR RESULTS
Our evaluation investigates to what extent legitimate and
illegitimate transactions can be identified using these sim-
ple similarity metrics using a time-constrained transaction
duration (500ms). For a transaction between two co-located
devices, MAE(PTi,PIi) ≈ 0 and corr(PTi,PIi) ≈ 1, while
for a PT and a PI device in differing locations, (PTi,PIj), the
distance and correlation should be sufficiently distinct. This
distinctiveness is determined by finding a suitable threshold,
t , that permits all legitimate transactions while denying
those which are illegitimate; that is, Vi(PTi,PIi) < t and
Vij(PTi,PIj) > t . For each individual sensor, we aim to find
an optimal value of t , its error rate and reliability, i.e. whether
it collected measurements consistently and correctly across
1,000 transactions.

TABLE 3. Threshold-based analysis: EERs and thresholds.

We generate FPR and FNR curves for MAE and corr for
every sensor for which we were able to collect data. The point
of intersection for these curves provides an EER threshold for
MAE and corr : the rate at which the acceptance and rejection
errors are equal.

Practically speaking, a single threshold would be used
in a wide-scale deployment of a sensing-based proximity
detection mechanism. The terminal (or third party) would
store this threshold (Section II-B). If the similarity of the
terminal’s and device’s sensor measurements was within this,
then the transaction is assumed to be legitimate. However,
setting a threshold of this nature invariably incurs some
rate of false positives and false negatives. The intersection
of FPR and FNR, or equal error rate (EER), is the point
where equal consideration is given to illicit transactions
being classed as genuine (false positives) and the rate at
which genuine transactions are rejected (false negatives).
A threshold with a higher FPR provides a large working space
to the attacker, whereas a higher FNRwill reduce the usability
of the scheme, potentially frustrating consumers by rejecting

legitimate transactions. Table 3 lists the optimum thresholds
and associated EERs for each tested sensor.

TABLE 4. Sensor- and transaction-level reliability analysis.

As a further investigation, we also evaluated the reliability
of the selected sensors. At times, transactions during field
trials were not registered during this process, usually due
to the user moving the handset away too quickly. This was
the primary cause of transaction failures, i.e. no shared
measurements between the PT and PI.5 The sensor failure rate
represents the situation when the transaction was successfully
completed on both the PT and PI, but where one or both
devices failed to record any data in the 500ms timeframe.
The percentage of transaction failures relates to the total
transactions, while sensor failures are measured with respect
to the number of successful transactions. Table 4 presents our
findings regarding the proportion of failed transactions and
sensor failures. In general, the transaction failure rate implies
potential usability issues when using each sensor for NFC-
based contactless transactions, while the sensor failure rate
reflects their reliability.

B. METHOD 2: MACHINE LEARNING ANALYSIS
The distance and correlation metrics used in the previous
section give each pair of individual measurements PTi,j and
PIi,j the same weighting when PTi and PII are compared.
However, it is conceivable that not all time slots in PTi,j
and PIi,j are equally important when the task is to discrim-
inate between genuine and unauthorised transaction pairs.
Moreover, it is possible that discrimination becomes possible
by modelling complex non-linear interactions between their
individual differences, |PTi,j − PIi,j|, which cannot be
captured by simple similarity measures used in existing work.

To investigate this, we applied several supervised machine
learning algorithms to the problem, including algorithms that
are able to model (in an approximate manner) arbitrary non-
linear interactions given enough training data. The data for
learning was created by treating each pair (PTi,PIi) for a

5Failed transactions were not included in the data analysis.
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TABLE 5. Estimated EER for machine learning algorithms, obtained by repeating 10-fold cross-validation 10 times.

particular sensor as a labelled observation (x⃗, y), where the
label y is either genuine or unauthorised and the feature
vector x⃗ consists of the individual differences |PTi,j − PIi,j|
for the pair (PTi,PIi). We use equal error rate to measure
performance, using the confidence scores associated with
each model’s classifications to rank observations according
to their estimated likelihood of being genuine transactions.

When applying machine learning to a classification
problem like this, it is important to test the discriminative
ability of the model inferred by the learning algorithm to a set
of observations that have not been used. Given the number
of observations available in our datasets, a single train-test
experiment is not sufficient to establish a reliable estimate of
equal error rate. A standard procedure is to perform 10-fold
stratified cross-validation, where the data is shuffled and split
into 10 disjoint test sets each containing the same number of
observations. The data is also stratified so that the proportion
of genuine and unauthorised transactions is the same in each
set. Then the algorithm is run 10 times, once for each test
set, where the observations not in the corresponding test set
are used for training the model, and the observations in the
test set are used to measure its equal error rate. This yields
10 estimates of equal error rate, which are averaged to obtain
the final performance estimate. To reduce the variance of the
performance estimate even further, we repeat 10-fold cross-
validation 10 times, each time shuffling the data before it is
split into 10 test sets. This yields 100 estimates of equal error
rate and we report the mean and standard deviation of these
estimates for each learning algorithm and sensor.

Table 5 shows results for the six learning algorithms
we evaluated, including both parametric and non-parametric
approaches, as implemented in the WEKA machine learning
software [40]. We used default parameter settings for the
learning algorithms unless otherwise specified. The random
forest method [41] learns an ensemble classifier consisting of
100 semi-random decision trees from bootstrap replicates of
the training data. This classification method is able to model
arbitrarily complex interactions and is known to be a general-
purpose approach that performs well without parameter tun-
ing. The Naïve Bayes classifier fits a multivariate Gaussian
distribution with a diagonal covariance matrix to the data for
each classification (genuine vs. unauthorised), thus assuming
conditional independence of the features in the data, and uses
Bayes’ rule to obtain class probability estimates. Logistic

regression fits a linear model using maximum conditional
likelihood. The widely used C4.5 [42] algorithm is used
to grow decision tree classifiers. We also include linear
classification using support vector machines, which are
trained using the SMO [43] algorithm. A logistic regression
model is fit to the output of the support vector machine to
obtain class probability estimates. The last learning method
in our collection is amultilayer perceptron, an artificial neural
network (ANN) variant, with one hidden layer containing
10 units, which is trained using the MLPClassifier method
in WEKA.

The results in Table 5 are largely in line with those
observed earlier; the lowest equal error rate for each sensor
is shown in bold. No useful discriminative signal appears to
be present in the accelerometer, geometric rotation vector
(GRV), gyroscope, light, linear acceleration, gravity, and
proximity data. Decision tree-based methods give the best
results for the remaining sensors. Magnetic field, rotation
vector, and sound data provide some discriminative ability,
but the EER remains close to 30%. The best result is obtained
on the pressure data, with an EER of approximately 10%.
Pressure was also the most informative sensor in the earlier
experiments, with 27% EER for the MAE distance metric.
Although the result obtained using tree-based learning is
substantially better, the discrimination is still significantly
too inaccurate to be used as a practical proximity detection
mechanism.

C. METHOD 3: DEEP LEARNING ANALYSIS USING
FULLY-CONNECTED ARTIFICIAL NEURAL NETWORKS
(ANNS) AND SENSOR COMBINATIONS
While the use of traditional machine learning methods
showed some level of discriminative power (Section IV-B),
none were accurate enough to be used in practice. Our third
approach explored the application of deep learning in the
hope that a more abstract and complex representation of
the data would lead to more promising results. As with
Method 2, the problem of identifying transactions as either
genuine or relayed based on sensor readings is regarded
as a binary (supervised) classification problem. There are
many successful examples of deep learning techniques being
applied to classification problems in academic literature [44].
We evaluate the applicability of such techniques in the
following sub-sections.
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1) OVERVIEW
Both machine and deep learning exploit non-linear inter-
actions present in the data; however, their methodologies
and results differ due to different approaches during feature
extraction and classification. Deep learning uses representa-
tion learning to translate observations about the data into an
internal representation by changing the weights of neurons in
the model, which is used for inferring the class label of input
vectors [45]. This is opposed to traditional machine learning
techniques, which require manual feature extraction before
the training phase. The models’ basic architecture also differs
as a result. Traditional ML models can be described as a
‘shallow’ network, e.g. MLP ANNs, or no network at all (like
Bayesian or linear classifiers such as SVMs). In comparison,
deep learning networks are architected using interconnected
intermediate layers, allowing them to encode data as a
hierarchy of representations, or abstracted concepts [46].
In recent years, well-designed and well-trained deep learning
models have outperformed traditional ML counterparts in
various domains, including natural language processing
(NLP) [47], [48] and computer vision tasks [49], [50], [51].

2) DATA PREPARATION
AswithMethod 2, supervised learningmethodologies require
all records used for training to have a label (x⃗, y), where x⃗ is
the observation and y is the label. To that end, all legitimate
PT and PI transactions were labelled as genuine, while illicit
pairs were labelled as unauthorised.
Instead of using the original dataset, a factorial com-

bination of all sensor readings per transaction record was
generated for two reasons. Firstly, deep learning models
generally perform better when trained on more data [52].
By generating the factorial combination of readings, the total
number of records was largely increased without modifying
the information encoded in the original dataset. Secondly, it is
very likely that the most discriminating factor in identifying a
record as either genuine or unauthorised is not a single sensor,
but a combination of sensors. The factorial combination
ensures that the (unknown)most discriminating combinations
of sensors were included in the training dataset.

To train and test the model described in the next section,
the collected data was split in a random, non-contiguous
fashion. Initially, 60% of the data was allocated to the training
dataset, 20% to the validation dataset, and the final 20% forms
the testing dataset. The final models were trained on a 80%
training dataset and tested on the remaining 20%.

3) MODEL CONFIGURATION
The following results and descriptions are based on
PyTorch [53] implementations of DL models. Two models
were developed, tested and evaluated on the available
datasets. Each of the models was put through three train-
ing iterations designed to test, evaluate and select the
best performing sensor combinations for further analysis,
as described in the following.

I1: For the first iteration, the models are trained on
every dataset and their accuracy is stored for analysis.
Datasets that reach an accuracy of 70% or above
proceeded to the next iteration.

I2: The second iteration tunes the model’s hyperparame-
ters (specifically the number of hidden units and the
learning rate) via trial and error on the best-performing
sensor combinations and, again, stores their results.
The accuracy threshold is higher than previously,
models trained on the datasets now need to reach an
accuracy of 75% or above to continued to the next
iteration.

I3: Finally, the highest-performing model configurations
are trained and tested on the selected datasets ten times
to obtain the final performance estimate by averaging
their respective results.

The developed models are both feed-forward networks,
comprising an input layer, a number of hidden layers, and an
output layer that feeds into a sigmoid function to generate
a number between 0 (illegitimate) and 1 (genuine). This
allows us to not only acquire the model’s classification of a
record, but also the certainty of the model’s classification,
i.e. accuracy and loss. The difference between the models
lies in the number of hidden layers and their activation
functions (see Fig. 4). The first model, M1, is somewhat
simple with only one hidden layer connected through a
non-linear function. The second model, M2, incorporates
principles that are known to generally increase model
performance. This includes regularisation through dropout
layers to avoid overfitting [52], more hidden layers to increase
the model’s complexity and reduce underfitting [54], and
disparate activation functions to reduce the drawbacks of any
single activation function [52].

FIGURE 4. DL feed-forward model architectures. I ∈ R50, H ∈ R[10,50],
and O ∈ R1 are the input, hidden, and output layers.

4) RESULTS DISCUSSION
The models are evaluated based on the training accuracy
achieved when trained on different sensor configurations.
Both models slightly outperformed the machine learning
techniques applied in Section IV-B. While model M1 had
marginally more accurate results, as shown in Table 6,
modelM2 was generally more consistent in its high accuracy
results. In iteration I1, model M1 had 303 datasets over the
70% threshold while model M2 had 475. Model M1 also
outperformed model M2 on average in iteration I2, where it
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had 72 datasets vs. 59 over 70% accuracy. However, only
one trained M2 model succeeded in reaching the threshold
of 75%.

Using six combined sensors was the most prevalent in
the high-performing datasets, with five and seven combined
sensors tied in second place for bothmodels. It is worth noting
that the highest performing datasets for modelM1 are, for the
most part, the same three sensors in varying orders and with
slightly different model configurations, namely the linear
acceleration (Lin), gyroscope (Gyr), and rotation vector (Rot)
sensors. In contrast, the highest accuracy datasets for M2 are
larger (six to seven sensors) and more varied. This could be
ascribed to the larger architecture ofmodelM2, which enables
the formation of more complex data representations from a
greater number of features.

Furthermore, there is a trend towards more accurate results
based on the models’ configurations. Interestingly, while
50 hidden nodes and a learning rate of 0.01 is the most
common configuration for high-performing datasets with
M2 models, the top five all have a configuration of 20 hidden
nodes with a 0.01 learning rate (see Table 6). ForM1 models,
the most common configuration closely aligns with the top
results. A learning rate of 0.01 and 20 or 50 hidden nodes are
almost tied, with 0.1 learning rate and 50 hidden nodes close
behind. Despite this, the results are still not accurate enough
for practical use. Notwithstanding, there are several sensor
combinations that consistently result in >65% accuracy,
which signals some discriminative power for determining
whether a contactless transaction is genuine or illegitimate.

TABLE 6. Best-performing ANN EER results.

D. METHOD 4: A DEEP LEARNING ANALYSIS USING
CONVOLUTIONAL AND RECURRENT NEURAL NETWORKS
AND SENSOR COMBINATIONS
Amajor challenge of traditional, fully connectedMLPANNs
is the explosion in the number of parameters that require
training, which can become computational infeasible for
networks with multiple hidden layers and input sizes [52].
Alternative architectures have been explored in recent years
with enormous success in the classification of time-series
sensor data, particularly using convolutional and recurrent
neural networks (CNNs and RNNs) [55], [56], [57]. CNNs
solve the optimisation problem of MLP ANNs by reducing

the number of potential parameters through the use of partial
connections (i.e. layers using convolutional operations),
downsampling (max. pooling), and weight sharing between
layers in addition to one or more fully connected layers.
RNNs, in contrast, consider temporal dependencies in the
input using directed cycles, where the current time-step, t ,
depends on the network state at the previous step, t − 1. The
output of a recurrent neuron state, s, is trained as a function of
the inputs of the previous step, s(t) = f (s(t−1), x(t)). RNNs
have found particular utility in the modelling of time-series
sequences for which our problem is well suited.

1) CNN APPROACH
In this work, we explore results using three sequential CNN
architectures. After the initial input layer, the following
network architectures were evaluated: ① a convolution layer
followed by a max pooling layer and a fully connected
layer; ② a network comprising a convolution, max pooling,
convolution, max pooling, and fully connected layers; and ③
applying dropout layers in ② after each max pooling layer.
The architectures are completed with a fully connected binary
output layer, indicating whether a sample is legitimate (i.e.
taken from devices within true proximity) or illegitimate
(taken from the relay attack pair).

2) RNN APPROACH
We similarly explore three different (sequential) architectures
as a first step in evaluating the use of RNNs for sensor-
based relay attack detection. We opted for widely used long
short-term memory (LSTM) units to address the vanishing
gradients problem with vanilla RNN architectures that pre-
vents the back-propagation of errors [58]. Similarly, after the
initial input layer, we evaluated the following architectures:
① a recurrent/LSTM layer and a fully connected output
layer; ② an LSTM layer, followed by a dropout layer, and a
fully connected output layer; and ③ LSTM, dropout, second
LSTM, dropout, and a final fully connected layer. comprising
a convolution, max pooling, convolution, max pooling, and
fully connected layers; and ③ applying dropout layers in ②
after each max pooling layer.

3) EVALUATION AND RESULTS
From an implementation perspective, we employed the Keras
framework by Chollet [59] using the PyTorch backend.
We utilise the same data set as the previous sections, divided
into a 60:20:20 train, validation, and test set ratio; the final
accuracy scores were made against the test set. To scope
our study, we used the datasets conforming to the best-
performing sensors identified in §IV-C. For training each
architecture, we used a workstation with an Intel i7-6700k
CPU (quad-core, 8M cache, 4.0GHz base clock frequency),
32GB RAM, and an NVIDIA 970 GTX on 64-bit Ubuntu
22.10, taking approximately 2.5hrs to train all architectures
until convergence (minimising binary cross-entropy using
Keras’ implementation of the standard Adam [60] optimiser).
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TABLE 7. CNN and RNN architecture EER results.

The accuracy results for the best-performing sensor
combination datasets are presented in Table 7. In general,
the highest accuracy was achieved using the second CNN
and third RNN architectures. In both cases, the classification
scores are marginally improved over the ANN analysis in
§IV-C. Nevertheless, the best-performing sensor combina-
tions yielded an EER of only 0.246 (CNN; Architecture 3;
MagLigRotGyrLinAccGra) and 0.273 (RNN; Architecture
2; RotLinGraAccGyr). It is important to note that no work
has directly addressed ambient sensor-based relay attack
detection using CNNs or RNNs. As such, the analysed
architectures represent an exploratory study, as opposed
to concrete proposals. Indeed, it is conceivable that the
development of a more sophisticated, bespoke deep learning
architecture may lead to more promising results. We pose
the challenge of creating an effective architecture as an open
challenge to researchers in the field.

Open Challenge:With enough data, can a sufficiently
complex learning model solve sensor-based relay
attack detection using commercial mobile devices?

V. OUTCOME AND FUTURE DIRECTIONS
On conventional mobile devices, user authentication mecha-
nisms are set with very high thresholds with respect to FPR,
FNR, and EER. For example, Android’s biometric security
requirements stipulate that biometric system, at worst, has a
false acceptance rate (FAR) of 1 in 50,000 illicit samples,
and rejects legitimate samples at a rate of, at most, 1 in
10 times [61]. Under these definitions, we recognise that
every sensor and algorithm combination failed to reach these
levels+ of security. Even under a liberal setting of EER =

0.5, i.e. accepting almost every 1 in 20 illicit transactions (or
rejecting legitimate ones), this threshold is not met. Based on
our analysis, it is difficult to recommend any of the sensors
individually for a high security deployment application,
such as banking and transport. These sensors, however,
might be appropriate for low-security access control, but we
recommend that a thorough analysis of the sensors and their
performance is performed prior to deployment. For further
research, we suggest that an acceptable EER is >0.98 in

accordance with existing authentication systems for security
and usability.

FIGURE 5. Best-case EER results across all sensors for each algorithm
(lower EERs indicate greater effectiveness).

There are two potential reasons why previous research has
achieved more promising results. The first is due to their
relatively limited field trials—a small user base and a limited
number of locations—and, secondly, the widespread use
of significantly larger and unrealistic transaction durations.
In our experiments, the total sampling duration was in
line with standard performance requirements: 500ms for
transport ticketing and EMV-based payments, as described
in Section I-A. Along with banking, transportation is one of
the biggest application areas of contactless smart cards; in
this domain, the average duration for a transaction is even
lower (300–400ms [20]). Imposing a 500ms limit in our
experiments is thus an upper-bound of the requirements for
two major areas where NFC-based contactless transactions
may be used.

A potential future research direction is to investigate
the extent to which measurements can be recorded before
the actual transaction occurs. However, we have some
reservations about this proposal. Firstly, it requires users to
preempt transactions, which may an additional task to be
performed before the mobile device can be used for NFC-
based transactions. This could significantly detract from
usability, which is a major driver behind the use of contactless
transactions. Secondly, it may not provide adequate proximity
detection assurances if the user is several meters away from
the terminal when the recording is initiated. This opens the
possibility for close-quarters relay attacks to be executed
successfully; for example, by an attacker in the same store
line. As a final challenge, it is well-known that long sensor
polling has a significantly detrimental impact on device
battery life [62]. This excess battery use, accounting for the
millions of NFC contactless transactions that occur each day,
may causemajor energy wastage on aggregate in a large-scale
deployment.

Researchers may argue that sensor-based proximity detec-
tion is redundant or unnecessary if a PIN or biometric is
required to use a payment application. We do not agree with
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the argument. In the relay attack variant known as a Mafia
Attack [30], the attacker deploys amalicious terminal in order
to deceive victim devices. In this scenario, a PIN or biometric
cannot protect against relay attacks if the victim believes they
are interacting with a genuine terminal while their credentials
are being relayed to another terminal.

During this work, we realised that mobile sensing plat-
forms are unlikely to be suitable for time-critical proximity
detection mechanisms. Variations in sensor measurements,
e.g. jitter; sensor availability; the effect of competing
applications using the same sensors; and differences in mini-
mum sampling rates may vary significantly across devices.
We posit that mobile sensors have a considerable way to
go before meeting the performance requirements needed to
underpin time-critical proximity detection mechanisms.

As such, relay attacks are still a threat to NFC-based
transactions, despite the recent spate of sensing-based
countermeasures. These proposals might be suitable for low-
security applications with long transaction durations. This
is certainly not the case for mobile payments, transport
ticketing, and high-security access control. We note that,
after the evaluation described in this paper, we conducted
preliminary experiments using a SamsungGalaxy S4 (Model:
GT-I9505) and an Apple iPhone 6S. In both tests, the
outcomes were even less promising, providing further
evidence for our results. If sensing-based countermeasures
are to be used, then deployment authorities ought to consider
the risks highlighted in this paper, including the reported
EERs and reliability rates.

VI. CONCLUSION
The use of sensor-based proximity detection mechanisms for
NFC-basedmobile services is expanding. This paper aimed to
evaluate a range of sensors present on modern mobile devices
and determining which sensors, if any, would be suitable
under realistic time-critical NFC transactions.

To this end, we evaluated 17 sensors in total, including
those proposed in existing literature, and many sensors that
have not yet been examined. We developed a test-bed that
was used to record sensor measurements from 1,000 NFC
contactless transactions with 252 users across four loca-
tions. After this, a comprehensive multi-faceted evaluation
was conducted using similarSecureCommity metrics, tradi-
tional machine learning, and deep learning models. These
methods employed techniques used in existing work and
beyond.

At present, we cannot recommend mobile sensors for
proximity and relay attack detection in time-critical NFC
transactions. Based on the experimental evidence presented
in Section IV, the use of sensors for this purpose is likely
to result in serious security and usability issues. However,
we did identify potential discriminative power for certain
sensors and combinations thereof.We pose an open challenge
to the research community to develop a tailored statistical
framework for effectively capturing this.

It is important to note that this work concentrates on
NFC-enabled mobile devices that emulate traditional smart
card services, such as transportation ticketing and mobile
payments. Moreover, the transaction time limit and operating
distance are not set arbitrarily, but rather in compliance with
industry requirements stipulated by EMV and transportation
bodies. It is neither evaluated nor claimed that existing
proposals (Section II-C) cannot be useful for alternative
domains where tight transaction durations and distance-
bounding requirements are not used. Finally, we have
publicly released the source code of our test-bed, along
with our collected data sets, for open scrutiny and further
analysis.

APPENDIX A
SENSOR DESCRIPTIONS
A. ACCELEROMETER
Deployed in most modern smartphones, the accelerometer
measures the acceleration applied to the device about its x, y
and z axes; its units are metres per second per second (ms−2).

B. BLUETOOTH
A technology that facilitates wireless communication and
operates in the ISM band centred at 2.4GHz. As a proximity
sensor, we measure the Bluetooth devices in the vicinity
(SSIDs and MAC addresses).

C. GEOMAGNETIC ROTATION VECTOR (GRV)
Measures the rotation of the device using the device’s magne-
tometer and accelerometer; it returns a vector containing the
angles that the device is rotated about the x, y and z axes.

D. GLOBAL POSITIONING SYSTEM (GPS)
A satellite-based global positioning mechanism. A latitude
and longitude pair is returned, representing a geographical
location on Earth.

E. GRAVITY
Measures the effect of Earth’s gravity on the device in metres
per second per second (ms−2).

F. GYROSCOPE
Measures the rate of rotation of the device about the x,
y and z axes; Android’s standard units are radians per
second (rads−1).

G. LIGHT
Gauges the illumination of the device’s surroundings, mea-
sured in lux on the Android platform.

H. LINEAR ACCELERATION
Calculates the vector magnitude of the device’s acceleration
in all directions; its units are metres per second per
second (ms−2).
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I. MAGNETIC FIELD
Detects the effect of nearby magnetic emanations along three
perpendicular axes x, y and z. Android measures these values
in micro-teslas (µT ).

J. NETWORK LOCATION
The location of the connected network point. A latitude
and longitude pair is returned, representing a geographical
location on Earth.

K. PRESSURE
Measures the atmospheric pressure surrounding the mobile
handset in hectopascals (hPa).

L. PROXIMITY
The proximity sensors detects the distance of the device to a
closely located object in the sensor’s line of sight, measured
in centimetres. On many devices, the sensor returns only a
boolean value denoting whether or not an object is in close
proximity to the device.

M. ROTATION VECTOR
Rotation vector is a software sensor, similar to the GRV,
but also incorporates the gyroscope. The returned values
represent the angles which the device has rotated through the
x, y and z axes.

N. SOUND
We used the device’s microphone to record the ambient noise
in the vicinity of the device and calculated the maximum
observed amplitude.

O. WIFI
Wedetected nearbyWiFi access points in the device’s vicinity
using their MAC addresses and ESSIDs.
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