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ABSTRACT Various computing approaches within vehicular networks, such as vehicular edge computing
(VEC) and cloud computing, have been suggested to facilitate task offloading, aiming to improve user
satisfaction. The features of vehicular networks, including the rapidmovement of vehicles and the fluctuating
distribution of vehicle densities, present challenges to task offloading with in the VEC. Numerous algorithms
have been suggested to address these challenges and provide an effective task-offloading framework.
This paper introduces a probabilistic model that analyzes task offloading across different computing tiers,
alongside proposing a mobile computing paradigm tailored to the dynamic nature of vehicular networks
(VN). This paradigm aims to maintain persistent connectivity and enhanced connection reliability despite
mobility facilitating sustainable end-to-end service delivery. Building upon this premise, we propose a
three-tier computing paradigm comprising Vehicle Edge of Things (VEoTC), VEC, and Cloud Computing
(CC). Within the VEoTC tier, Service Vehicles (SV) equipped with computational resources serve as the
mobile computing layer. The proposed model ensures continuous connectivity by extending the dwell time
between the service requester and the vehicular computational resource. The model ensures that the relative
speed between the service vehicle (representing computational resources) and the service requester remains
constant while within the communication range. We proposed a probabilistic model for the end-to-end
serving time of the proposed computing paradigm. Then, we computed the dwell time between the SV
and the served vehicle based on real data published by Didi Chuxing GAIA Initiative for Chengdu city,
China. Utilizing a simulated model, we illustrated the additional penalty incurred by the road side unit (RSU)
handovers.

INDEX TERMS Probabilistic model, task offloading, vehicular communication network, vehicular cloud
computing, vehicular edge computing, vehicle edge of things.

I. INTRODUCTION
Internet of Vehicles (IoV) has sparked considerable research
attention as a pivotal component of Intelligent Trans-
portation Systems (ITS). In earlier times, Vehicle-to-
Vehicle (V2V) communication via an onboard unit (OBU)
was introduced to establish Vehicular Ad Hoc Networks
(VANETs). Furthermore, the Internet of Things (IoT),
which gathers diverse data from sensors and the surround-
ing environment, is revolutionizing and amplifying the
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demand for vehicular networks. By blending the principles
of the IoT with VANET networks, the IoV emerges,
facilitating Vehicles-to-Everything (V2X) communication.
Recent studies advocate for two primary communica-
tion approaches facilitating V2X communications: Direct
Short Range Communication (DSRC) and Cellular-based
Vehicular Communication (C-V2X). These approaches have
been standardized by the IEEE and 3GPP, respectively.
However, both encounter limitations and challenges. Con-
sequently, heterogeneous vehicular networks have been
proposed to address these limitations and enhance the user
experience.
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Extensive research efforts have put forward various
network typologies to characterize the IoV network. In [1]
and [2], the author delineates six network elements to
describe the IoV network, encompassing the OBU, roadside
units (RSUs), and the edges computing units deployed with
cloud computing network architecture. While the conven-
tional cloud computing architecture boosts the computational
abilities of connected devices, it lacks the capability to meet
the low-latency and real-time requirements of applications [3]
because of the distance from remote cloud servers, heavy
reliance on the internet, and congestion in the back-haul
network. The paradigms of Multi-Access Edge Computing
(MEC) [4], [5], [6] and fog computing [7] have been
suggested for executing cloud computing tasks at the
network’s edge, in proximity to connected devices, while also
deploying CC. Vehicular edge computing (VEC) has been
suggested as a solution to address the challenge posed by
the limited resources of vehicular sensor networks and the
low latency requirements of applications [8]. VEC extends
computing services to vehicles to amplify their computational
resources through the implementation of VEC in conjunction
with RSUs.

Implementing VEC alongside the RSU addresses the
computational demands and time-critical requirements posed
by new applications. Conversely, in certain scenarios, the
VEC configuration can lead to longer processing times due to
excessive network congestion, the rejection of some requests,
rapid vehicle movement, and the restricted coverage area
of the RSU. This motivates the research for various types
of clouding, as dynamic vehicle computing [9], [10], and
volunteer computing based VANET (VCBV) [11], [12], [13].
The author of [9] presents a dynamic cloud computing
framework utilizing vehicles, which receives requests from
the closest RSU, conducts computations, and then forwards
them back to the nearest RSU for dissemination throughout
the network. While in [12], the author introduced VCBV,
a system designed to fulfill user requests using available
vehicles resources throughmulti-hop communication in high-
traffic areas, thereby decreasing the request rate on the
infrastructure. The author expanded their research in [11] by
introducing two distinct types of VCBV: ad hocVCBV,where
tasks are scheduled and executed using multiple vehicles, and
RSU-based VCBV, where the RSU is tasked with scheduling
and distributing requests to the vehicles.

In literature, the utilization of resources through vehicles
has been presented in [10] and [14], where the author
suggests a multi-hop communication model. In this model,
a Road Side Unit (RSU) first receives an offloading request,
then delegates it to a service vehicle for computation, and
ultimately uploads it to the nearest RSU. However, this
network setup experiences prolonged end-to-end service
times, which fail to meet the low-latency requirements.
In [15], the authors presented public transportation vehicles
as mobile routers responsible for distributing user requests
throughout the network by identifying routes. In this

configuration, the vehicles are equipped solely with LAN
modules and lack computational capabilities. Introducing
computational resources within specific vehicles has been
previously suggested in [16], where the authors proposed a
network architecture consisting of three layers. This model
implements Vehicle edge of things computing (VEoTC),
enabling vehicles to possess computational resources and
execute computational tasks requested by other devices.
Recently different V2V communication schemes have been
proposed to enhance the VANET reliability and offers
secured communications. In [17], the author introduces a
novel model for Emergency Message Dissemination called
Trust Cascading-based Emergency Message Dissemination
(TCEMD). This model integrates entity-oriented trust values
into data-oriented trust assessment efficiently.When an emer-
gency arises, the model facilitates the spread of emergency
messages among nearby vehicles using a trust cascading
approach, where entity-oriented trust values serve as crucial
weights. These trust values are assessed and updated using
trust certificates and are included in the messages. While
in [18], the author proposes a novel Privacy Preserving Trust
Management (PPTM) scheme for the emergency message
dissemination in SAGIVNs. As he provides formal verifica-
tion of the quantitative relationship between the false positive
rate—caused by the fuzzification of reputation scores and
trust thresholds—and the number of alternative reputation
and threshold levels. This work considers the Space-Air-
Ground Integrated Network (SAGIN) architecture, which
can significantly enhance the performance of vehicular
networks by utilizing the unique benefits of space, air,
and ground segments. This integration improves coverage,
flexibility, reliability by developing the Space-Air-Ground
Integrated Vehicular Networks (SAGIVNs). Moreover, the
privacy preserving reputation has been extended to the
cloud assisted networks. In [19] the author introduces
a novel Privacy-Preserving Reputation Updating (PPRU)
scheme for cloud-assisted vehicular networks based on
the Elliptic Curve Cryptography (ECC) and Paillier algo-
rithms. In the proposed model the reputation feedbacks
are collected and preprocessed by the honest-but-curious
Cloud Service Provider (CSP) in a privacy preserving
manner. In [20] a well-balanced approach between trust
evaluation and privacy preservation, with minimal overhead,
to support distributed data fusion in cooperative vehicular
safety applications. As the author proposes a novel LPPTE
scheme that effectively balances trust evaluation and privacy
preservation while minimizing computation, communication,
and storage overheads. Another Lightweight Trustworthy
Message Exchange (LTME) scheme for UAV networks
has been proposed in [21]. LTME efficiently aggregates
the cryptography and trust management technologies using
centralized Ground Control Station (GCS), that periodically
updates the reputation levels of registered UAVs and securely
distributes secret values to the UAVs. Using these secret
values, each trustworthy broadcasting UAV creates encrypted
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messages that can be decrypted solely by trustworthy
receiving UAVs. Furthermore, each trustworthy receiving
UAV can evaluate, efficiently and with minimal overhead, the
reliability of both the received messages and the broadcasting
UAVs. The aforementionedVANET communication schemes
each utilize different algorithms and methodologies to define
trusted vehicles for secure communications. In contrast, the
proposed service vehicle model establishes a secure connec-
tion through a single dedicated trusted vehicle designated
as the service vehicle. This approach allows the model to
ensure secure communication across all connected vehicles
with minimal authentication and trust-related overhead. The
VANET communication schemes, mentioned above, each uti-
lize different algorithms and methodologies to define trusted
vehicles for secure communications. In contrast, the proposed
service vehiclemodel establishes a secure connection through
a single dedicated trusted vehicle designated as the service
vehicle. This approach allows the model to ensure secure
communication across all connected vehicles with minimal
authentication and trust-related overhead.

This paper introduces the probabilistic approach to
the End-to-End serving time through task offloading to
a 3-tier computing model, where service vehicles equipped
with computational resources handle computational requests
from other connected devices. The previously proposed
VEoTC in [16], operates under the condition that continuous
connectivity is maintained between mobile service requesters
and resource providers, as long as the requesters remain
within the communication range of the providers. This
setup meets the low-latency requirements of certain real-time
applications and services. These performance improvements
come with the trade-off of higher costs for deploying edge
computing capabilities in each service vehicle.We investigate
the impact of deploying computation-capable vehicles on
the end-to-end delay of the network. The remainder of the
paper is organized as follows: Section II proposes the system
model. Section III introduces the problem formulation and
the adopted mathematical model. Section IV provides and
discusses the simulation scenarios and the obtained results.
Finally, the paper is concluded in Section V with outlining
for future work.

II. SYSTEM MODEL
In this paper, we present a model of computing architecture
featuring three tiers of computing capabilities: vehicle edge of
things computing (VEoTC), vehicle edge computing (VEC),
and vehicle cloud computing (VCC), as shown in Fig. 1. The
three tiers are integrated and operate collaboratively to meet
quality of service requirements and enhance user experience.
The proposed VEoTC is introduced to address the gap and
mitigate the limitations of VEC and VCC in meeting the
low-latency requirements of specific real-time applications.
In the VEoTC system, particular vehicles, service vehicles
(SV), are equipped with small embedded computing units,
that share their computational resources with all other
network elements. The vehicular service provider deploys

these units based on a reward system for participating cars.
The VEoTC layer functions as a vehicular ad-hoc network
(VANET), facilitating V2X communication by enabling
vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I)
communications. It provides similar shared resources as the
VEC for its connected vehicles. Each SV can communicate
with and serve a specific number of service requesters
simultaneously. The task assignment process involves a
service-based assignment problem, which determines the
necessary level of cloud computing based on the required
service. While the VEoTC can be allocated to any service
based on its utilization, low latency takes precedence as
the highest priority for being served by the VEoTC. The
IEEE 802.1 family of standards provides the foundation
for Dedicated, short-range communication between vehicles
(V2V) and (V2I).

Determining the appropriate computing level to meet
service requirements involves considering various factors,
including the utilization of the computing layer, the end-
to-end processing time required for the task, and others.
The proposed three-tier cloud computing model within the
VEoTC architecture presents a challenge for the network to
determine the appropriate computing hierarchy required for
various tasks.When a vehicle requests task offloading, nearby
service vehicles will receive the request and decide whether
to accept it based on factors such as their utilization and
required quality of service (QoS). The SV will subsequently
broadcast the response to all connected computing elements.
If no acceptance message is received from any SV within
a specific time window, the RSU will handle this request.
Additionally, we propose deploying a Central unit in the
network, tasked with monitoring the assignment of tasks
and developing cooperative learning algorithms based on
the collected data. This assignment process at each network
element is reliant on artificial intelligence algorithms that
utilize network features, request details, and SV information.
Fig. 2 shows the computing resources of each computing tier,
each tier has several servers C and waiting room capacity K .
The problem is described as a birth-eath process with request
arrival rate λ and µ serving rate.
The end-to-end delay of the service is calculated from

the moment the service requester initiates a request until
the completion time. The multi-tier cloud computing system
encompasses various operational scenarios. Initially, when
the requester initiates a request and seeks offloading,
the first tier of computing, namely the VEoTC option,
comes into play. Depending on the requested service, the
VEoTC allocates priority to each task according to latency
constraints. Priority within this computing tier is primarily
accorded to low-latency real-time services. Upon acceptance
of offloading by the VEoTC, two sub-scenarios, that highly
affects the end to end delay of the requested service, are
taken into account. The two sub-scenarios depend on the
dwelling time with respect to the end-to-end service time.
Firstly, if the SV can accomplish the necessary computing
task within the connectivity window with the requester and
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FIGURE 1. 3-Tier computing network architecture with VEoTC, VEC and CC with service vehicles (SV).

return it promptly, the end-to-end delay is characterized
by three factors: the service uploading time, computing
duration, and downloading time. Otherwise, if the connection
between the SV and the requester is lost during the end-
to-end service time, the SV must transmit the task upon
completion to the nearest RSU, which then forwards it to
the requester through the backhaul network. If the request
is rejected by the VEoTC tier, the second computing level
using the VEC will be considered. In this scenario, the end-
to-end service time comprises the same three components
as in the case of VEoTC. The primary enhancement offered
by the proposed VEoTC layer is overcoming the limited
coverage area of the RSU and addressing the high mobility
of the requester. In the VEoTC setup, the SV is considered
relatively stable concerning the requester since they are
in the same velocity frame. This resolves the problem of
mobility disparity between the computing unit and the service
requester. Additionally, ensuring stable coverage areas for
both vehicles takes higher priority during the service time,
especially for services requiring short computing time. If the
computing assignment fails at both computing levels, the task
will ultimately be offloaded to the central cloud computing.
The computing tier assignment procedure is described by the
offloading process flow chart in Fig. 3.

III. PROBLEM FORMULATION
In this section, we present a probability model for analyzing
the performance of task offloading and distributing tasks

FIGURE 2. Computing resources in service vehicle (SV), RSU, and the
cloud.

among VEoTC, VEC, and CC. Subsequently, we outline
the End-to-End processing time at each level. Based on
this information, we demonstrate how each level impacts
the anticipated system latency. We describe the problem
as a discrete probability problem with three distinct, non-
overlapping, and independent events. Offloading tasks to
each computing tier is considered as an event, where
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FIGURE 3. 3-Tier offloading process flow chart.

offloading to VEoTC, VEC, and CC represent events
α, β, γ , respectively. The computing layers are structured
hierarchically, with ascending levels offering increased
processing capabilities, faster processing speeds, higher clock
frequencies, and greater numbers of available processors.

In VEoTC layer each service vehicle is assumed to have
compact embedded processing unit with multiple core that
can serve up to N requester, simultaneously. All the commu-
nications are performed with DSRC standards, over wireless
channels. The offloading process is described a Poisson
process, as VEoTC implements M/M/Cα/Kα queue model
with Cα servers and clock frequency (exponential service
rate) Fα , and arrival rate λα . Upper tiers of computing are
characterized by queuing models featuring larger capacities
and additional faster processing units. The VEC layer is
deployed with Cβ processing units, λβ arrival rate, and
service rate (clock frequency) Fβ . The VEC is simulated
M/M/Cβ/Kβ queuing model. Finally, the center cloud
represents infinite computing capabilities, λγ arrival rate,
Fγ processing clock frequency, and simulated by M/M/∞

queuing model. The VEoTC and the VEC computing are
represented as finite queue, to limit the task waiting time.
Each computing tier can have up to Kα and Kβ serving and
waiting tasks respectively.

Upon a user’s request for task offloading, a broadcast
message is received by both the Roadside Unit (RSU) and
the connected SV. Depending on the task’s priority and
the SV’s current utilization, the SV replies to the request
with either acceptance or refusal. If no SV accepts the task
within a predetermined time interval, the RSU undertakes

TABLE 1. Abbreviations.

the task. We investigate the end-to-end service time under
two scenarios, determined by the dwelling time. Dwelling
time is defined as the duration of the connection between
the SV and the user. If the end-to-end service time is shorter
than the dwelling time, the SV can execute the task and
return it to the user. Conversely, if the end-to-end service time
exceeds the dwelling time, the SVmust complete the task and
forward it to the connected RSU for delivery to the user.

A. END-TO-END SERVICE TIME
In this section, we provide a mathematical model for the
end-to-end service time in each computing tier. The expected
end-to-end service time across three possibilities of comput-
ing is given by (1)

E(T ) = Pα ∗ Tα + Pβ ∗ Tβ + Pγ ∗ Tγ (1)

where Pα,Tα are the probability of vehicle computing and
end-to-end service time of VEoTC. Similarly, for VEC and
CC probabilities and end-to-end service time.

Asmentioned in [22], the primary factors affecting the end-
to-end service duration include the front-haul transmission
delay, computing delays (VEoTC, VEC, CC), the back-haul
transmission delay, and the queuing delays. The front-haul
transmission delay depends on the transmission rate (RF ),
determined according to Shannon rule as in (3)

Rfn = Bfn ∗ log2(1 + SINRf ) (2)

where Rfn, Bfn are the transmission rate of user n in
the front-haul connection with DSRC standards, and the
bandwidth assigned to user n, respectively. and SINRf is
the signal to interference plus noise ratio in the front-haul
network. Accordingly the uploading time of sending D bits
from user n to the VEC is given by

T ufn =
Dn

Rfn
=

Dn

Bfn ∗ log2(1 + SINRf )
(3)

While the back-haul transmission delay is assumed to fixed
over wired communication network and denoted by T ub.
The computing time of each cloud is defined by the

processing time and the queuing time, as in the VEoTC layer
the average waiting time ofM/M/C queue model according
to the queuing theory

Tw =

Po(λ
µ
)cρ

c!(1 − ρ)2
(4)
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where Po, ρ are the probability that there are 0 customers in
the system, and the utilization of the server, respectively, and
are given by

Po =
1∑c−1

m=0
(cρ)m
m!

+
(cρ)c
c!(1−ρ)

(5)

ρ =
λ

cµ
(6)

While the average computing time of offloading task is

Tproc =
1
µ

(7)

Hence, the end-to-end task of the VEoTC Tα is given by

Tα =
Nα

Fα

+
Poα(

λα

Fα
)Cαρα

Cα!(1 − ρα)2
+ 2 ∗

Dn

Bfn ∗ log2(1 + SINRf )
(8)

While the end-to-end time for the VEC offloading has two
cases first if the assigned RSU can complete the task, the
Tβ is given by

Tβ =
Nβ

Fβ

+

Poβ (
λβ

Fβ
)Cβ ρβ

Cβ !(1 − ρβ )2
+ 2 ∗

Dn

Bfn ∗ log2(1 + SINRf )
(9)

otherwise, if the vehicle is not in the coverage area of the
assigned RSU, then the RSU will forward the task after
completion to the back-haul to forward it to the nearest RSU.
Deploying RSUs within the VCN presents challenges, with a
high cost associated with deploying a large number of fully
connected RSUs. Conversely, opting for a smaller quantity
of RSUs leads to an increase in the End-to-End time during
handover, as the RSU must relay data to the CC, which then
forwards it to the new RSU [23]. This paper explores the
deployment of a reduced number of RSUs tominimize system
costs. In such scenarios, the handover overload is equivalent
to transmitting the data to the CC twice.

Tβ =
Nβ

Fβ

+

Poβ (
λβ

Fβ
)Cβ ρβ

Cβ !(1 − ρβ )2
+ 2 ∗

Dn

Bfn × log2(1 + SINRf )

+ H × T ub (10)

whereH represents the number of RSU handovers during the
task completion time.

Finally, if the offloading to the VEoTC and VEC failed
the task will be offloaded to the CC, and the time Tγ is
given by the processing and the front-haul and the back-haul
transmission times as no waiting delays for infinite number
of processors

Tγ =
Nγ

Fγ

+ 2 ∗
Dn

Bfn ∗ log2(1 + SINRf )
+ 2 ∗ T ub (11)

B. TASK ARRIVAL RATES
Similarly, the model characterizes each computing tier is
a queuing model with distinct arrival rates, service rates,
and server quantities. The arrival rate at the VEC, which is
determined by the number of vehicles rejected by the VEoTC
tier and decided to offload tasks to the VEC, is given by.

λβ = λα × (1 − Pα) (12)

where Prα represents the probability of rejecting task
offloading in VEoTC tier Similarly, The arrival rate at the CC,
which is determined by the number of vehicles rejected by the
VEoTC and VEC tier and decided to offload tasks to the CC,
is given by.

λγ = λβ × (1 − Psβ ) (13)

where Psβ is the probability of serving the offloaded task by
the VEC.

C. OFFLOADING PROBABILITY
In this section, we provide the offloading probability analysis
in VEoTC, VEC, and CC. The probability of offloading in
each tier, depends on the rejection rate from the previous tier
and the computation capability of the tier itself.

Pα = P(offloadSV ) × Psα
= PSV × Psα (14)

The probability of encountering a service vehicle, denoted
as PSV , is established by the service provider. While, Psα
represents the likelihood of discovering an available spot in
the VEoTC queue to perform the offloaded task, and it is
given by

Psα = P(N < Kα)

=

Cα−1∑
k=0

Poα
(Cαρα)k

k!
+

Kα−1∑
k=Cα

Poα
CCα

α

Cα!
ρkα (15)

When the queue is at maximum capacity, the system denies
access to all users. For a task to offload to the VEoTC tier, the
total number of tasks in the VEoTC queue at time ‘‘t’’ must
be below Kα .
The probability Pβ governs the likelihood of offloading to

VEC in two scenarios: either when there is no available SV or
when there are insufficient resources within the assigned SV.

Pβ = P(offloadVEC ) × Psβ
=

(
(1 − PSV ) + PSV (1 − Psα)

)
Psβ

= (1 − PSVPsα)Psβ (16)

Similarly, Psβ indicates the probability of encountering an
empty position in the VEC queue to perform the offloaded
task, and its value is

Psβ = P(N < Kβ )

=

Cβ−1∑
k=0

Poβ
(Cβρβ )k

k!
+

Kβ−1∑
k=Cβ

Poβ
C
Cβ

β

Cβ !
ρkβ (17)
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Finally, the probability of offloading tasks to the CC tier,
is the probability of rejecting the task from offloading to the
VEoTC and VEC, so it can be written as

Pγ = 1 − Pα − Pβ (18)

IV. PERFORMANCE EVALUATION
In this section, we provide the simulations results of the
service time analysis detailed in section II. The simulations
are divided into two parts: firstly, an examination of the
dwell time of the RSU and the service vehicle utilizing actual
data; and secondly, an evaluation of the service time based
on the computed dwell time derived from real-world data.
The authentic vehicular trajectories are sourced from the
Didi Chuxing GAIA Initiative for Chengdu city, China, and
were extracted on November 16th, 2018, serving as traffic
inputs [24].

The GAIA data, processed by [25], offers the latitude
and longitude of 360 vehicles across 24 hours divided into
300 time samples (sample at each 5 minutes). Initially,
we designate a specific ratio of vehicles as Service Vehicles
(SVs) equipped with minimal intelligent processing capa-
bilities. Subsequently, we create a cluster around each SV,
with the SV serving as the cluster center and including all
nearby vehicles. At every time step, these clusters update
in response to the movements of the vehicles. Ultimately,
we calculate the average dwell time for each SV and all
connected vehicles. The overall average dwell time for all
SVs is computed by averaging the assigned SVs’ dwell
times individually. The average dwell time for 36 Service
Vehicles (SVs), representing 10 percent of the total available
vehicles, is computed using Jupyter. The average dwell time
for deploying 36 SVs is computed, alongside the average
dwell time for the RSU. This comparison underscores
the improvement achieved by deploying SVs as mobile
computing units in maintaining connectivity with service
requesters. Since the mobile SVs are relatively stationary
compared to other vehicles within the same speed frame, this
enhances connectivity continuity. The algorithm randomly
selects several SV (from GAIA data set) to form multiple
clusters, as a cluster center, then assigns all nearby vehicles
within the SV communication range to this cluster. This
process is depicted through spatial clustering, which relies
on calculating the Euclidean distance between the SV and
all neighboring vehicles. This spatial clustering is repeated
at every time stamp. When a vehicle moves beyond the
communication range of the cluster center, the dwell time is
calculated throughout the connectivity period.

Alternatively, the average dwell time for both the vehicle
and the RSU is calculated as the duration it takes for each
vehicle to traverse a distance of 1 kilometer, corresponding
to the RSU’s coverage area. The dwell time is heavily
influenced by the average speed of the vehicle. In this
context,, Table 2 provides recorded data on the average
vehicle speeds at various times, including both rush and off-
peak hours. Accordingly, the average dwell time with the

TABLE 2. Real time data.

FIGURE 4. Probability of serving for each tier SV,RSU,CC with increasing
the SV number.

RSU is 2.5 Mins, alternatively, the average dwell time of
the moving SV is 50 Mins. This strategy ensures reliable
connectivity over a broader time frame, facilitating the
delivery of real-time services.

In the subsequent phase of our investigation, we utilized
Matlab simulations to examine the end-to-end service dura-
tion. The scenario of vehicle request arrival is conceptualized
as a Birth-death process, where requests arrive at a rate
of λα , and are assigned to the nearest SV contingent upon
its queue capacity Kα . Requests that are declined due to SV
unavailability or full utilization are redirected to the RSU at a
rate of λβ . Subsequently, all rejected requests from the RSU
are forwarded to the Central Controller (CC) for processing.
The services required are standardized and necessitate Nα

time slots of Giga CPU cycles for execution. These tasks
are deemed real-time services, demanding high connection
reliability and consistent connectivity throughout the service
period.

All pertinent simulation parameters are outlined in Table 3.
It is assumed that both the RSU and the SV possess identical
processing capabilities in terms of CPU clock frequency
and the number of cores. Each device operates with a task
processing rate of µα and µβ of 1.5 tasks/min, respectively,
with 8 cores facilitating parallel processing. The CC, on the
other hand, is presumed to have an unlimited number of
processors and a processing rate of µγ = 2.5 tasks/min. The
transmission rate of tasks over the wireless network between
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TABLE 3. Simulation parameter.

FIGURE 5. End-to-end serving time with increasing the SV number.

FIGURE 6. End-to-end serving time using SV, RSU offloading.

vehicles and the RSU is 7 tasks/min, while the migration rate
to the CC and inter-RSU communication is 12 tasks/min.

Fig. 4 displays the probability of distributing requests
across different tiers. As indicated, boosting the proportion
of SVs equipped with computational capabilities reduces
the back-haul overhead by prioritizing task offloading to
available SVs.

Fig. 5 depicts the end-to-end service time under varying
ratios of assigned SVs relative to the total number of vehicles.
It is evident that augmenting the number of SVs enhances the

FIGURE 7. Excess penalty of offloading tasks to stationary RSU (Handover
overload in RSU).

likelihood of task offloading to the SV tier, thus economizing
back-haul processing time and reducing the overall end-to-
end service duration.

Fig. 6 shows the End-to-End serving time with RSU and
SV offloading cases, with different services. Light, moderate,
and heavy processing applications are considered. Increasing
the processing time of applications causes multiple RSU
handovers, shown in Fig. 7, due to the mobility of the
vehicles, while the SV consistent connection enhances the
end-to-end time avoiding the handover overload.

V. CONCLUSION
In this study, a three-tier offloading system for VCN is
explored, comprising VEoTC, VEC, and the CC. Prob-
abilistic model analysis for the End-to-End serving time
of 3-tier computing paradigm is introduced with a mobile
computing capability, by deploying SV with computational
resources to serve vehicles within its communication range.
The previously proposed computing paradigm addresses the
mobility aspect of VCN by ensuring a consistent relative
speed between the requester and the moving edge computing,
represented by the SV. We introduce a probabilistic model
for the end-to-end serving time for task offloading to the
VEoTC, VEC, and CC. In this model each tier is depicted by
a queue with capacity Kα , Kβ , and infinite queue length for
the VEoTC, VEC, and CC, respectively. Similarly Cα , Cβ ,
and infinite servers for the three computing levels. The task
arrival and execution at the VEoTC are described as a Birth-
Death process.

Using real data from [24], we calculated the dwell
time between the randomly selected SV and the assigned
requesters. The analysis revealed that the SV’s dwell time
significantly exceeds that of the RSU, attributed to the
sustained relative speed between the SV and its connected
vehicles. Next, we conducted simulations of the Birth-Death
process for receiving requests. We examined the probability
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of service by each computing tier, the End-to-End serving
time using both the RSU and the SV, and the additional
penalty incurred due to handover using the stationary RSU
computing tier. We demonstrated that offloading computa-
tionally intensive tasks with extended processing times to
RSU substantially prolongs the End-to-End serving time due
to frequent handovers. Conversely, offloading to SV, which
provides a stable connection, effectively addresses the high
mobility inherent in VCN, eliminating the need for handovers
associated with stationary RSUs. Further intelligence should
be integrated into the proposed SV to improve its connec-
tivity. This entails considering additional requester features
such as speed, destination, and service priority. Furthermore,
the intelligent unit must analyze system variations using
spatio-temporal real data to anticipate requests and allocate
resources at specific times and locations.
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