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ABSTRACT Zero-shot learning (ZSL) in a multi-model environment presents significant challenges and
opportunities for improving cross-modal retrieval and object detection in unseen data. This study introduced
a novel embedding approach of vector space clustering to address image-to-text and text-to-image retrieval
problems effectively. We proposed an iterative training strategy; unlike the CLIP model, which directly
compares visual and textual modalities, our model concatenates by clustering trained image and text features
in common vector space. We use cross-modal contrastive and multi-stage contrast loss to improve the
unsupervised learning of our model. This integration makes it possible to achieve proper clustering on
embedding, which enhances the image-text matching problem in zero-shot learning tasks. We rigorously
evaluate our model performance on standard benchmark datasets, including Flickr30K, Flickr8K, and
MSCOCO 5K, achieving notable improvements with accuracies of 91.3%, 88.8%, and 90.3%, respectively.
The results demonstrate the better performance of our model over existing methods but also show its
effectiveness in enhancing cross-modal retrieval in zero-shot learning.

INDEX TERMS Contrastive learning, embedded, cluster, self-supervised learning, embedded computing,
cross-modal retrieval, multi-model machine learning.

I. INTRODUCTION
The rapid increase in multimedia data, the issue of
cross-modal retrieval has become an important research topic.
This cross-modal domain combines aspects of computer
vision and Natural Language Processing (NLP) to solve the
information search problem across modalities [1]. The pro-
cess involves a query in one modality and a database contain-
ing various modalities, aiming to pinpoint the most relevant
matches from the database. The inherent challenge lies in
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bridging the substantial semantic gaps between modalities
like text and images, each encoding information differently
within their respective embedding spaces [2]. Cross-modal
retrieval essentially seeks to synchronize these disparate
embedding spaces into a unified, comparable format. Typi-
cally, this is achieved by mapping visual and textual data into
a shared embedding space, simplifying the retrieval process to
the nearest neighbor search within the Euclidean space. The
development of sophisticated techniques to facilitate efficient
retrieval has practical value. The multimodal domain relied
on feature extraction [3] and traditional machine-learning
strategies [4], [5]. This model is designed mainly to improve
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FIGURE 1. Architecture of our proposed ClusterE-ZSL model.

FIGURE 2. Simplified two-dimensional projection of image-text feature
clustering used for illustrative purposes. Actual clustering is performed in
a higher dimensional space, where each point represents an image or
text feature vector derived from deep learning models.

the outcomes of zero-shot learning tasks by incorporating text
and image encoders, fine-tuning, and clustering strategies.
Figure 1. shows a multimodal deep learning architecture
that integrates image and textual descriptions of images to
improve robust zero-shot learning techniques. It uses two
paths: A Faster R-CNN pre-trained model is used to encode
the images, and a BERT pre-trained model encodes the cor-
responding texts for semantic embeddings for clustering.

These are then refined to attune well with the textual and
visual data. A cross-attention layer focuses on the crucial
information in both embeddings to enhance the interaction
between these two modalities.

The resulting combined embeddings, K-means clustering,
allow the model to identify semantically close embeddings,
improving the categorization and retrieval of similar images
or texts.

Recent studies on CLIP-based zero-shot have focused
on refining the alignment between visual objects and tex-
tual descriptors [6]. The CLIP-decoder emphasizes the local
alignment of these elements, while others extend to mapping

complex phrases and significant image regions into a mul-
timodal embedding space [7]. Figure 2. The block diagram
represents a zero-shot learning architecture for cross-modal
retrieval.

The process consists of refinement and optimization cycles
carrying out cross-attention and then the final clustering of
the image and text features by K-means. Contrastive loss
is facilitated by calculating the similarities of two clusters
between their centroids, which are, in turn, used to fine-tune
the model for efficient cross-modal retrieval capabilities.

Our model differs from previous methods by leveraging
an iterative training and contrastive learning approach in
self-supervised learning with unlabeled data to foster under-
standing. This method enhances the proximity of similar pairs
and distances from dissimilar features within the embedding
space. Then, the combined embeddings are clustered with
the help of the K-means algorithm (k = 100). These cluster
embeddings assist with detecting patterns and associations
involved in data, which also supports more efficient zero-
shot learning. In terms of architectural design for cross-modal
learning. The cross-modal embeddings process modalities
independently, often employing a cross-attention mechanism
to merge multimodal information at intermediate layers [8],
[9]. Our approach proposes several novelties that differentiate
our methodology from other approaches in the context of
zero-shot learning and cross-modal retrieval. Not only does
our model improve the zero-shot object detection based on
vector space clustering, but it also presents a fresh approach
to modeling the mapping from image and text data to a shared
vector space. This integration is quite different from tradi-
tional methods, and the models that proposed it enable more
refined and accurate matching of features, which has not been
one of the focuses of most models. It is evident that FRCNN,
as used for the image encoder, andDistilBERT, as used for the
text encoder, provide fresh ways to approach the processing
and analysis of multimodal data by making strategic points
for movement within the vector space. This enhances the
current models’ effectiveness by finding the interconnection
between text and picture information, expanding the abilities
of the real-time search.

This work also shows comparable results to the existing
state-of-the-art methods in baselines such as Flickr30K and
MSCOCO while improving accuracy and retrieval measures.
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In the area of zero-shot learning (ZSL) for cross-modal
retrieval, a significant semantic gap between the modalities;
various datasets need to scale better; it is highly dependent on
accurate labeling, and there needs to be more model robust-
ness and flexibility. The computational utilization of existing
models could be more feasible in low-resource environments.
Regarding these issues, our approach helps solve them by
using vector space clustering embeddings and a cluster-based
ZSL framework that deals with the problem by improving the
integration of the modal features into the space with ZSL.
Analyzing the results presented in this work, it can be noted
that this method allows for a more effective overcoming of
the semantic gap and improves the scalability and possibility
of unseen data categories in the model. In addition, the pro-
cess of iterative training and the depreciation of the model’s
dimension result in decreased computational requirements
compared to our preliminary work without significantly
compromising the measured performance, which makes the
presented solution more applicable to real-world scenarios,
which require constant adaption to new data, as well as overall
computational efficiency. Comparedwith other approaches of
the state of the art, the proposedmodel has better performance
in terms of number accuracy, efficiency, and scalability.
Our method has been tested on standard datasets, including
Flickr30K, Flickr8K, and MSCOCO; nevertheless, signifi-
cant enhancements were observed compared to CLIP-based
models and other transformer-based architectures.

The proposed framework ensures that the problem can be
solved in a more viable, expansive, and efficient approach
than conventional methods that have consistently been imple-
mented. The efficiency of the cluster-based structure, partic-
ularly its capacity to pre-train image and text representations
for retrieval, thismethod surpasses the existingmodels, which
require real-time computation of embeddings during retrieval
queries. Several significant contributions of the ‘ClusterE-
ZSL’ framework are stated below:

• Each stream dedicated to a specific modality (text
or image) was trained using a contrastive learning
approach in an asymmetric cross-modal contrastive
learning framework.

• The ClusterE-ZSL improves the model by using embed-
dings at the cluster level, contributing to the generaliza-
tion of unseen data. The clustering strategy assists in
creating more comprehensive clusters that encompass
diverse features and attributes, which is crucial when
the model novices more unidentified case circumstances
during the appraisal stage.

• The ClusterE-ZSL approach involves applying special-
ized methods to align image and text embeddings in
the cluster properly. This alignment is essential, espe-
cially during cross-modal retrieval, where the mapping
between the modalities directly affects performance.

The findings from the research work will be of great
importance to the further development of zero-shot learning
as well as cross-modal image-text retrieval. It clearly empha-
sized that the industry of digital media, online advertising,

and automated content moderation, to name some, could
immensely benefit from the direction and means that provide
a better way of matching the images with the text without
the need for labeling. The described approach can be used
with other elaborate data or can be expanded to other kinds
of tasks, for instance, multimodal sentiment analysis or auto-
mated tag assignment, which can envision new applications
of AI in a variety of industries.

The organization of this study follows Section II: Related
Work, which presents the analysis of related work with an
explanation of how our work continues and differs from
prior studies. Section III: Methods explains how the tech-
nical infrastructure of the new approach is constructed and
the features different from Zero-Shot Learning and Vector
Space Clustering. Section IV: Experiments demonstrate the
outcomes of experiments, and the deployment of our meth-
ods in datasets proves our proposed approaches successful.
Section V: To further qualify the effects of individual and
synergistic elements in the Ablation Study, we break down
the essential sections of our system. Finally, Section VI:
Conclusion presents the overview and analysis of the results
obtained and highlights the prospects for further research
into the topic, stating the significance of our contribution to
zero-shot learning and cross-modal retrieval.

II. RELATED WORK
The growth of innovative connected devices and social net-
works, there has been a growing multiplication of multimedia
content on the Web [10]. This massive amount of data is
in objects of different types, such as text, image, video,
and audio, that are different in format but are semantically
connected. Due to the increase in text and image data, the
need for efficient search systems has continued to grow [11].
These systems include simple and essential to advanced
types: single-model, cross-modal, and more. There are var-
ious relations between cross-modal retrieval and information
retrieval (IR) since the main problem of cross-modal retrieval
originated from the field of IR when the primary task was
to search relevant documents or images for textual queries.
Early approaches employed more frequentist ‘black-box’
approaches, which entailed hand-crafting most of the features
and using basic matching techniques. For example, when
a search of images was done without deep learning, the
method [12], [13] of using histograms in image retrieval or
using text-based meta tags in image search was used [14].

The semantic gap, where the text contains rich detail,
and visuals are more abstract. Although it was still under
development, methods like support vector machines (SVM)
[15], [16] and decision trees [17], [18] were incorporated for
better results in the process of retrieval [19]. These methods
used hand-designed features for text and images that seek
to create representations bridging gaps between these two
domains. A significant development during this phase was
the use of Canonical Correlation Analysis (CCA), which
principally sought to find correlated subspaces for two differ-
ent modalities to enhance the retrieval process. Cross-modal
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TABLE 1. Comparative analysis of existing studies.

retrieval entered the age of deep learning and was greatly
enhanced. CNNs and RNNs enabled features to be extracted
from images and text automatically, resulting in improved
representation [20]. The DeViSE (Deep Visual-Semantic
Embedding model) was highly influential in utilizing deep
learning to map images into the text space for retrieval with
substantial improvement in precision [21].

In parallel to these developments, the field of metric learn-
ing commenced its progression. Finding the distance function
can precisely help measure the similarity between different
modalities. Several methods, like triplet loss and contrastive
loss, helped align the embeddings to ensure similar items are
pulled closer while dissimilar ones are pushed far, irrespec-
tive of the modality [22]. Contrastive learning was a robust
self-supervised learning paradigm useful in situations with
limited labeled data. Comparing positive to antagonistic pairs
allowed models to learn general and accurate representations
of CV features even without explicit guidance [23]. This
approach has been widely used in recent study works to
improve cross-modal retrieval.

Exploring model architectures has led to the development
of two distinct approaches: single-stream and two-stream
architectures in the object recognition task. Single-stream

models analyze inputs from different forms in parallel, usu-
ally integrating them at the initial stage of the system [24].
This integration can yield better intra-modality representa-
tions but at the potential loss of inter-modality flexibility
and, sometimes, accuracy in modality-specific details. On the
one hand, two-stream architectures process each modal-
ity independently at some point [20]. Two networks can
focus detailed processing on their specialty, the auditory
or the language modeling before the embeddings are com-
bined for further integration and analysis. Some examples
of cross-modal architectures include cross-attention mecha-
nisms that enable the model to selectively direct attention
to features belonging to the other group, thus improving
interaction between the two [25].

Previous studies attempted to enhance these capabilities
even further by including additional intricate mechanisms,
such as the transformer models, which provide a sophisti-
cated approach to managing sequences and attention across
modes [26], [27]. In Table 1. comparative analysis of exist-
ing studies within cross-modal scenarios proved that this
technique intensifies the correlation between the text and
images, especially when confronted with intricate queries and
heterogeneous data [28].
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Thus, further development of unsupervised and
semi-supervised approaches and consideration of techniques
that can be learned continuously are considered worthwhile
avenues for future research. These methods try to update
bias based on new data at any time to improve their appli-
cability to real-life problems in which data distributions may
change.

III. METHODS
We implement symmetric multi-model contrastive learning
to optimize our model’s performance and reasoning capabili-
ties. This learning approach intensifies the interaction within
and between the modalities, enhancing the representation
learning of both encoders. This method boosts the model’s
zero-shot learning, ensuring robustness and generalization
across different modalities. We incorporate specialized losses
to refine our training process: the cross-modal contrastive loss
and the image-text matching loss. These losses are pivotal
in guiding the model to resolve ambiguities and enhance
alignment between the encoded modalities.

A. MODEL FRAMEWORK
Our proposed model architecture is structurally similar to
CLIP. It consists of Image and Text encoders, as presented
in Figure 1. We have opted for the pre-trained BERT model
for the text encoder, renowned for its efficiency and effec-
tiveness in distilling complex textual data into meaningful
representations. For the images, we use the Faster R-CNN
(FRCNN) as the vision encoder, which is highly regarded for
its precision in detecting and encoding detailed aspects of
images. These choices ensure that our model benefits from
state-of-the-art technologies in both text and image process-
ing [31], [32]. The model is fine-tuned to perform high-level
associative and analytic tasks by focusing on cross-modal
contrast and image-text matching. We use heard examples
in image text matching. During training, we select the two
most similar negative examples in each batch as ‘hard exam-
ples.’ This approach is based on the premise that if the
model can successfully learn to differentiate these challeng-
ing cases, it will inherently improve its ability to distinguish
fewer complex examples. By clustering the training data
around more complicated examples, we create an environ-
ment where the model is continually challenged, accelerating
the learning process and improving the efficacy of the model
representations. Our model leverages a balanced combina-
tion of advanced encoding techniques and strategic learning
methodologies to achieve superior zero-shot learning and
cross-modal retrieval performance. Integrating model archi-
tectures, alongside sophisticated contrastive learning and
loss functions, sets a strong foundation for the model to
excel in understanding and connecting complex multi-model
information.

B. DATA AUGMENTATION
We apply some augmentation to enhance the model’s robust-
ness for image and text data before feeding image-text pairs

into our model as text data [33], [34]. The image input size
is 224 × 224, enhancing the model’s robustness to extract
an object by 32 × 32 like [35]. The image I have mul-
tiple objects, and each of them has a bonding box Bi =

(xi, yi,wi, hi) where each box extracts an object from the
input image. The extraction of an object is performed by
equation (1).

I (i)obj = I [xi : xi + wi, yi : yi + hi] (1)

where I (i)obj represents the sub-image containing i-th
object.

Through data augmentation, we form positive image and
text single-model contrast pairs. We introduce a random crop
for each image at a scale of 0.2 to 1, a random contrast ratio,
a random Gaussian blur, a random greyscale, and a random
horizontal flip. We use stop words for text data to filter
meaningless words that appear frequently. We also adopt
synonym replacement, random insertion, random swap, word
repetition, and random deletion.

C. CLUSTERING
Since our dataset lacks predefined labels, we employ unsu-
pervised clustering techniques to aid in identifying challeng-
ing examples for training. Similar to [36]. Once ourmodel can
effectively differentiate the most complex examples within
a set, it becomes more adept at distinguishing the more
straightforward cases. This principle underlies our adop-
tion of clustering throughout the training process, which is
applied to cross-modal. For the visual component of our data,
we utilize the FRCNN model, which outputs features in a
512-dimensional space that provides a rich, detailed represen-
tation of each image. We then apply the K-means clustering
algorithm to these features, organizing them into k distinct
centers. This clustering groups similar images together and
facilitates more focused and challenging contrastive learning
tasks within those groups. We use BERT to extract text fea-
tures for text data, generating a 300-dimensional vector for
each text sample. Following the extraction, we apply k-means
clustering to these text features, with the same number of
clusters used for the images set at k centers. We switch
from random to sequential data loading during training ses-
sions to enhance the training challenge and effectiveness.
Figure 3 presents the clustering of image-text pairs. This
change ensures that all contrastive learning tasks occur within
the same cluster [37]. By increasing the task difficulty in this
manner, the model must develop more robust and nuanced
data representations. The outcomes of this clustering are illus-
trated in Figure 4, presenting examples of how the data has
been grouped according to similarity in both image and text
modalities. In the case of the K-means clustering, the number
of 100 clusters chosen was based on accuracy decomposition
and computational cost. The proved elbow method supported
the decision, which establishes the sum of squares equal to the
distance from the point to its corresponding set center against
the number of these sets.
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FIGURE 3. Clustering of Image-Text Pairs for Zero-Shot Learning. (a) Displays the clustering pattern on the Flickr30K dataset, showing
how features group image-text pairs. (b) Illustrates similar clustering on the Flickr8K dataset. (c) Shows clustering results on the
MSCOCO 5K dataset with varied clusters. (d) Shows clustering results on the MSCOCO 5K dataset with varied clusters. (d) Presents
detailed class-specific clustering for categories like Man, Girl, Car, Bird, Bus, and Mountain, clearly segregating content types in a
combined dataset.

D. IMAGE MODEL CONTRAST
Self-Attention is the core mechanism in equation (2), which
involves mapping between a query and a set of key-value
pairs, to a weighted sum of the values. Q, K , and V denote
matrices packing together sets of queries, keys, and val-
ues [38]. The dot product of Q and K is scaled inversely
by

√
dk, where dk is the dimension of the query and key

vectors.

Attention (Q,K ,V ) = softmax(
QKT
√
dk

)V (2)

The encoder extracts richer information from different rep-
resentation subspaces at other positions using the attention
mechanism.

Z0 =

[
xCLS , x1i E, x2i E, . . . xNi E

]
+ Egpos,E ∈ R

(
I2.c

)
xD,Epos ∈ R(N+1)xD (3)

Apart from paired multi-model data, we can improve the per-
formance of the single-model encoders by training unpaired

l single-model data contrastively in equation (3). For the
image-model contrast, we apply the image augmentation
mentioned above to input images in a minibatch of N exam-
ples, resulting in 2N augmented images. We treat the other
2(N−1) augmented examples within a minibatch as negative
examples. We use a PCA with one hidden layer to obtain the
feature zi.

Zι = AM (LN (Zι−1)) + Zι−1, ι = 1 . . . L (4)

Zι = PCA (LN (Zι−1)) + Zι−1, ι = 1 . . . L (5)

In equation (4) and (5) AM is the attention mechanism,
PCA denotes the principal component analysis block, and
LN denotes layer normalization. We employ a temperature-
scaled cross-entropy loss similar to the infoNCE loss used in
SimCLR, defined for the positive image pair (with label 1)
and antagonistic pairs (with label 0) in equation (6).

Z = LN (z0L) (6)
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FIGURE 4. Examples of K-means Clustering on Image Datasets. (a) Shows initial similar clusters, demonstrating basic
theme groupings. (b) shows another set of cluster examples, revealing broader image diversity.

The cumulative loss for image single-model contrast
within a batch is expressed as equation (7). This framework
ensures efficient learning from image and text data, opti-
mizing the model’s ability to process and align multi-model
inputs.

Liuc =
1
2n

∑N

k=1
[1 (2k − 1, 2k) + (2k, 2k − 1)] (7)

E. TEXT MODEL CONTRAST
Text-model contrast is the same as image-model contrast.
It is instrumental in amplifying the semantic gap between
negative text pairings, thereby enhancing the capability of
the text encoder to capture more refined semantic represen-
tations [39]. The text encoder operates similarly to the image
encoder, with the primary distinction being the placement
of the [EOT] (End of Token) end of the token sequence.
We employ techniques such as synonym replacement, ran-
dom insertion, swapping of words, repetition of words,
and random deletion to construct positive text pairs. Con-
versely, negative pairs are constituted by other sentences
within the same batch. The loss function for text-model
contrast, denoted as ,L iuc the function used in image single-
model contrast, aligns closely with the framework established
in SimCSE. The hyperparameter τ is set at 0.05 for the
text-model contrast to maintain consistency in the training
process. To empirically validate the effectiveness of this
approach, we select challenging examples from both image
and text datasets. Subsequent visualization of patch-to-patch
and token-to-token cosine similarity between the features
extracted by our ClusterE-ZSLmodel. This enhancement fur-
ther confirms the efficacy of our model contrastive learning
during training and validation and its impact on zero-shot
learning performance.

F. CROSS-MODAL CONTRAST
Cross-modal contrast enhances the separation between nega-
tive image-text pairs within our model.We use the embedding
from the BERT to represent the textual content’s overarching
features. Similarly, for images, we employ the embedding
from the Faster R-CNN [40]. Within a cluster, we calculate
the similarity between the query and the cluster center as a
measure of pairs of image-text similarity [41]. Cosine simi-
larity between these pairs of cluster centers is calculated and
denoted as C . The cross-modal contrast involves calculating
a loss that effectively measures and optimizes the distance
between non-matching cluster center pairs, thereby improv-
ing the model’s ability to distinguish between them. This is
implemented through the following loss function for cross-
modal contrast:

Litc = −
1
2n

∑n

i=2
logpi2t (Ii,Ti) −

1
2n

(
∑n

t=2
logpt2i

(It ,Tt)) (8)

The cross-entropy loss for image-text contrast is rep-
resented in equation (8) where

∑n
i=2 logp

i2t (Ii,Ti) −
1
2n (

∑n
t=2 logp

t2i (It ,Tt). The probability distributions mea-
sure the likelihood of each image matching its corresponding
text, as derived from the cosine similarity measures. The
τ , temperature parameter in the softmax calculation within
these probability distributions [42], is made learnable in our
model, allowing it to adjust dynamically to the data charac-
teristics, and n represents the batch size [26]. This approach
improves the model’s ability to correlate relevant image-text
pairs. It solidifies the distinctions between mismatched pairs,
enhancing overall accuracy and effectiveness in cross-modal
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FIGURE 5. Text and image contrast loss during multiple iterations.

retrieval with zero-shot learning.

ci2t (Ii,Tk) =
exp(ci,k/τ )∑n
j=1 exp(ci,j/τ )

(9)

The softmax operation in equations (9) is a critical com-
ponent of our cross-modal contrast methodology, which is
used to compute the probability distributions for image-
to-text and text-to-image retrieval tasks. Specifically, for
a given batch of size n, these operations normalize the
cosine similarities between images ∥ . ∥ and text Tk ,
as well as between text Tj and image Ij, and apply a tem-
perature scaling factor τ to fine-tune the sharpness of the
distribution.

ct2i
(
Tj, Ik

)
=

exp(ci,k/τ )∑n
i=1 exp(ci,j/τ )

(10)

where k represents the index hard examples matching i or j,
τ is learnable in cross-modal contrast, and n is the batch size
in equation (10). We perform a rigorous analysis to evaluate
the model’s capacity for discrimination by selecting the most
challenging or ‘‘hard’’ examples from both image and text
domains within the batch. The effectiveness of this strategy is
visually assessed through the generation of heat maps, which
depict the cosine similarities on a token-to-token and patch-
to-patch basis for our enhanced model. The hyperparameter
ττ is particularly crucial as it is adaptively learned during
training. This enables a dynamic adjustment to the scale of
similarities, thereby improving the differentiation between
positive and negative pairs. Figure 5. show image and text
model contrastive loss.

G. ZERO-SHOT LEARNING
We present a cluster-based zero-shot learning method to
enhance the efficiency of the model in matching input queries
with trained classes. In zero-shot learning, only training data
has labels. Our method works based on two assumptions:
first, that data belonging to the target class will be substan-
tially different from training data and, therefore, spatially
far from it. K-clusters (centroids) and K-thresholds were
extracted from labeled data in training. For every respective
cluster, we establish the distance between the cluster’s cen-
ter and its most distant point. During the prediction phase,
we establish the distance between the center of the clusters
and its most distant point. We categorize instances according
to these formed clusters to make the predictions in the third
phase. If the distance of a new data point to the closest
centroid is beyond a threshold set for that particular cluster,
the latest data point is labeled as belonging to the target class
for that cluster.

Tk = maxxϵSk ∥X− Ck∥ (11)

To calculate the threshold for each cluster, we calculate the Tk
as the distance between the centroids Ck where Sk is the set
of all data points belonging to cluster k, and ∥ . ∥ the distance
in equation (11). We set the classification rule for new data
point X, to determine the nearest cluster centroid cnearest and
calculate the distance D from x to cnearest in equations (12)
and (13).

cnearest = argminck ∥ X − Ck ∥ (12)

D =∥ X − cnearest ∥ (13)
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H. CROSS-MODAL RETRIEVAL
Cross-modal retrieval is a complex task that is essential for
identifying whether the image and text pair belong to the
same or different category when evaluated globally [44]. This
process starts with assessing the matching between features
of an image and those arising from text data. To optimize
this capacity, we combine it with other tasks that utilize
multi-task learning strategies, such as cross-modal contrast.
This integration enhances cross-modal contrast learning since
it involves the incorporation of features from both image and
text. The accumulative losses are summed up to optimize
the model’s overall performance. This structured training
approach ensures that the model learns to identify match-
ing pairs accurately and enhances its ability to distinguish
between non-matching pairs, thereby improving its zero-shot
learning across all modalities involved. We particularly use
a contrastive loss function which is crucial in learning dis-
criminative features for the zero-shot learning model. The
contrastive loss is intended to reduce the distance between the
feature vectors of positive samples andmaximize the distance
for negative samples by using equation (14).

Lconstrastive (i, j) = y.d(i, j)2 + (1 − y) .max(0,m− d(i, j)2)

(14)

where d(i, j) are the Euclidian distance between an embedded
feature of image and text pairs, y is the binary label (1 for
positive and 0 for negative), and m is the margin.

I. TRAINING STRATEGY
In the training process, we use a two-stage training strategy.
We optimize the image-model and text-model contrast task
and then optimize the cross-modal self-supervised, which
reduces overfitting. We design an iterative training proce-
dure to implement a training strategy. In the first step,
image and text models are trained separately by the contrast
learning approach to enhance their representation learning.
To improve cross-modal retrieval performance in zero-shot
learning, we use contrastive embeddings as input for train-
ing. Both mapped image and text embeddings are subjected
to contrastive learning at this stage. In an iterative training
process, the model is trained with cluster data. During each
epoch, our model gains updated weights and learns training
patterns. As in most experiments, the subsequent experiments
employ the default and primary text-splitting approach for
the training data. Our iterative two-stage training strategy
enhanced the efficiency of our model in zero-shot learning
and image-text retrieval tasks.

IV. EXPERIMENTS
A. DATASET DETAILS
We use well-established public datasets, Fliker30k, Fliker8k,
and MSCOCO5k, in the image-text retrieval domain. These
datasets comprise a diverse collection of images: 31,783 in
Fliker30k, 8,000 in Fliker8k, and 5,000 for MSCOCO5k.
Every image in these datasets has associated five captions

TABLE 2. Detail description of the datasets such as Fliker30K, Fliker8K,
and MSCOCO.

generated by human annotators with text descriptions. the
partition of our data set is used. It includes 5,000 images for
validation, 1,000 for 168 testing, and the rest for training.
Also, previous studies used 20,000 training images, 4,000
validation images, and 5,00 test images, and we chose an
equivalent split strategy for all datasets. The presented results
average over five-fold of 1,000 test images or evaluations on
complete sets. Dataset description details are mentioned in
Table 2.

B. IMPLEMENTATION DETAILS
Our experimental setup utilizes the Fliker30k caption dataset,
which includes a comprehensive collection of 31,783 images.
To enhance the robustness of our evaluation, we shuffle and
then re-divide the original training and validation datasets.
As a result, we allocate a set of 5,000 images strictly for
testing purposes, with the remaining images designated for
the training phase. For the initial training of our model,
we employ a substantial batch size of 512 and conduct the
training over 10 epochs. The specific two-stage training strat-
egy implemented has been outlined previously. For the first
seven epochs, we utilize a conservative learning rate of 1-3,
which is set to 1e-6. For the rest of the training, the learning
rate for image-text contrast is 3e-6, and the learning rate
for image-text contrast is 2e-5. The model configuration is
set to process sentences up to a maximum token length of
77, ensuring the inclusion of most caption lengths without
truncation. We set 10 epochs for Fliker30K 10 for Fliker8K
and 10 forMOSCOCO. This means the model stabilized after
these epochs. This parameter is critical in balancing precision
and generalization when computing the contrastive loss.

C. IMPLEMENTATION PLATFORM
We use the Adam optimizer and train our model on a T4 32
GB GPU, supported by a 2vCPU@ 2.2 GHz, 128 GB RAM,
and a Linux 338 operating system. In our study, training one
epoch on the Flickr30K dataset took an average of 0. 34 hours,
where the model attains the best convergence for Flickr30K
within four epochs. For the Flickr8K and MSCOCO datasets,
convergence at the seventh epoch takes about 0. 8 hours to
run each epoch.

D. HYPERPARAMETER SETTINGS
The following hyperparameters are used in this study to
obtain state-of-the-art results. Batch size: 512, head learning
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FIGURE 6. Precision-recall curves on different iterations.

TABLE 3. Training-testing loss and accuracy of our zero-shot learning model for image-text retrieval.

rate: 1e-3, image encoder learning rate: 1e-4, text encoder
learning rate: 1e-5, weight decay: 1e-3, patience: 1, factor:
0.8, Kernal size, 7×7 with stride 2, 3×3 with stride two and
1 × 1 with stride 1. Epochs: 10, but the model stabilized at
the fourth epoch. Device: CUDAmodel name: Faster-RCNN,
image embedding dimension: 2048, text encoder model:
BERT, text embedding dimension: 768, text tokenizer: BERT,
maximum token length: 77, pre-trainedmodels: yes, trainable
models: yes, temperature: 0.05, image size: 224, number of
projection layers: 1, projection dimension: 256 and dropout
rate: 0.1.

V. RESULTS AND DISCUSSION
In our study, we benchmarked our model against various
baseline models, including Faster-RCNN-based architectures
as pre-training models. To evaluate the effectiveness of our
model in cross-modal retrieval tasks, we utilized the Recall
at K (r@k) metric. This metric measures the ability of the
system to retrieve the correct results within the top-K results
for a given query, either retrieving texts for an image query
or images for a text query.

Our findings show that our model significantly outper-
forms the traditional CNN-RNN-based models [45]. Even

though existing pre-trained models such as CLIP and
Unicoder-VL have the advantage of more extensive train-
ing datasets and enhanced object detection capabilities, our
model demonstrates superior performance in both image-to-
text and text-to-image retrieval tasks. Our model achieves
this using the pre-trained weights for both image and text
encoders. Table 3. Show the impact of different modes of
inputs.

A. PERFORMANCE OF THE SYSTEM ON FLIKER30K
Several models were evaluated based on image-to-text and
text-to-image retrieval results on the Flickr30K test set,
and the promising result of the proposed ClusterE-ZSL is
showcased, as indicated in Table 4. ClusterE-ZSL performs
reasonably well regarding recall in image-to-text retrieval,
with the required recall set at 89.8% at r@10. These results
demonstrate its effectiveness in identifying the relative image
descriptions, outperforming many models like VSE++ [46],
DVSA [47], ImageBERT [48], and SGRAF+VSL [49].
In the text-to-image retrieval aspect, the effectiveness of
ClusterE-ZSL is further proven with a score of 91.3% at
r@10, which improves performances in this dataset. These
results signify that our model identifies the right images for

VOLUME 12, 2024 162631



U. Tariq et al.: ClusterE-ZSL: A Novel Cluster-Based Embedding for Enhanced ZSL

TABLE 4. Image-to-text and text-to-image retrieval results on Flickr30K test set.

textual queries and can outperform other models like CLIPze-
roshot and VSRN I text-image retrieval tasks. The ability to
perform well on both image and text queries also reflects
the cross-modal similarity of ClusterE-ZSL, showing that
the proposed model can handle complex zero-shot learning
scenarios.

B. PERFORMANCE OF THE SYSTEM ON FLIKER8K
In Table 5, the performance of the models for the Flickr8K
test set for the image-to-text and text-to-image image retrieval
tasks are presented, thereby highlighting the usage of the
ClusterE-ZSL model, which performs well in comparison
to the other models used. ClusterE-ZSL performs well in
image-to-text retrieval, with 83.6% at r@10, and text-image
retrieval, with 88.3% at r@10. These results show that
our constructive learning strategy improves zero-shot learn-
ing compared to existing models like VSE++ and even
the most complex models like ImageBERT. This demon-
strates the model’s ability to select pertinent images using
retrieved text queries efficiently and effectively while retain-
ing improved performance against models like VSRN and
surpassing models such as MTFN [50], CAC [51], and
SCG [52]. The high average score on both retrieval tasks
confirms ClusterE-ZSL’s feature learning. It helps establish
it as a prominent participant for future solutions in the con-
text of Zero-Shot Learning, especially when incorporating
textual and visual data that need alignment and translation.
Figure 6. presents two recall and precision confidence curves
during our model’s different learning iterations and perfor-
mances. Recall generally decreases as confidence increases,
and the Precision-Confidence curve demonstrates that preci-
sion typically improves with increased confidence. Each line
represents a different iteration, illustrating variations in how
the model’s confidence impacts its recall and precision.

C. PERFORMANCE OF THE SYSTEM ON MSCOCO
In Table 6. Model performance on the MSCOCO5K dataset
has been presented. It is observable that the ClusterE-ZSL

model performs better than other existing models. Precisely,
in the image-to-text retrieval tasks, ClusterE-ZSL attains
recall rates of 85.8% at r@10 at r@10, text-to-image accuracy
is 84.3 at r@10%, and it outperforms the existingmodels such
as ImageBERT [53], VSE++ [54], and DVSA [55]. This
demonstrates that ClusterE-ZSL recognizes the meaning of
the data well when pairing images with textual descriptions.
These results prove ClusterE-ZSL’s reliability in efficiently
image-text matching tasks. The F1-confidence curve shows
the extent to which the model’s F1 score- a measure of its
accuracy obtained from a harmonic mean of precision and
recall increased confidence level. We analyze the optimal
confidence threshold to achieve maximum accuracy; an acute
increase in the F1 score is evident for the data confidence
levels compared to the non-contrastive learning method [56].

D. ABLATION STUDY
To better understand our model’s various components,
we performed several ablation studies based on the following
aspects: single-model contrast, image-text matching, iterative
training strategy, and clustering. These studies either elimi-
nated or incorporated these components separately to analyze
their effects on the model’s performance. We compared the
modified models in the following test set: MSCOCO 5K [57],
Flickr30K, and Fliker8K [58].

1) EFFECTIVENESS OF SINGLE-MODEL CONTRAST
The ablation values show that effectively using the influ-
ence of different contrast modes on our model significantly
increases its performance. The simple CLIP model [60]
includes no other training mechanism except for cross-modal
contrastive learning; our model also integrates a single-model
contrast. On the Fliker30K test set, our model improves the
retrieval metrics of interest by 1% than the CLIP [59] in all
categories except for r@10, which is 0.2% of the raw CLIP
performance. This apparent enhancement proves experimen-
tally the benefits of incorporating the interaction strategy
during the training courses. It reinforces its importance in
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TABLE 5. Image-to-text and text-to-image retrieval results on Flickr30K test set.

FIGURE 7. Qualitative retrieval results for image and text query top-5 results are shown. Green denotes the top-matched image and text.

enhancing the model’s ability to analyze the embeddings
of training information and its compiled relationship within
the overall scope of zero-shot learning and cross-modal
tasks. Figure 7. presents the image-to-text and text-to-image
retrieval results for image and text query top-5 results are
shown.

In Figure 7. Green Text denotes the top-matched image and
text. Due to the iterative training of clusters for contrastive
zero-shot learning, our model can retrieve the best match.

2) EFFECTIVENESS OF EMBEDDING CLUSTER
The experimental evaluations on the MSCOCO and
Flickr30K data sets provide valuable findings regarding

clustering the training data in single-model and cross-modal
training as compared to [61]. In cross-modal training tasks,
employing only cluster data provides robust results compared
to mixed data strategies. This approach approves that cluster
learning is a more structured approach that can optimize
performance in zero-shot learning.

3) EFFECTIVENESS OF ITERATIVE TRAINING STRATEGY
Another aspect of the model that was investigated is the effect
of various training strategies on performance. Using multiple
iterations of the training set is the same as expanding the
dataset, but it is more cost-effective and improves the model’s
performance. The change in this test configuration alters tasks
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TABLE 6. Image-to-text and text-to-image retrieval results on MSCOCO 5K test set.

involving zero-shot learning in image-to-text or text-to-image
retrieval, as the first type generally becomesmore challenging
due to having more options [62].

E. LIMITATION OF THE STUDY
The limitation of this work is the performance of the pro-
posed model highly depends on the quality and robustness
of the annotated data used in the training process, which
may not always be feasible with small datasets, as Fliker30k
shows better performance than 8k and 5k datasets. Also, the
computational complexity required for the proposed model,
especially when working with large data volumes or many
model interactions, poses a significant drawback in scenarios
with strict computational resource availability.

VI. CONCLUSION
We propose a novel multi-model pre-training approach for
zero-shot learning and cross-modal retrieval tasks. We intro-
duced multi-stage learning of image and text-model training
to improve the cross-modal performance. Our work further
improves the original CLIP model with an iterative training
strategy. By utilizing clustering embedding, the experiments
and comparison of our model on the Flickr30K, Flickr8K,
and MSCOCO datasets have shown better precision and
outperform the existing models, which are dependent on a
large-scale dataset. The evaluation of the ablation studies
validates the efficiency of our cluster-based zero-shot con-
trastive learning and iterative training methods. In future
work, we will use adaptive clustering techniques to enhance
the model performance and robustness with multi-lingual
capabilities.
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