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ABSTRACT Collaborative and mobile robotics for industrial environments promise to enable autonomous
and flexible production processes. However, this vision also poses significant challenges to the robotic
systems, requiring them to adapt to dynamic environments and ensure human safety by leveraging continuous
image streams and sophisticated data processing. Edge computing allows offloading the computational
load to edge servers, communicating the image data, generated on mobile robots, over fast and reliable
private 5G networks. However, there are multidisciplinary and interdependent factors that influence the
reaction time of the distributed system which are not well explored in the literature for real robotic use
cases, but have a significant impact on safe robotic behavior and the effectiveness of edge computing.
In this work, we implement a distributed control system that offloads the image processing to measure
and analyze the effect of various factors on the reaction time of the system for collaborative robotics
applications. Different values for the sensing rate, image resolution and compression and quality-of-service
settings are evaluated for communication and computation times as well as for the task performance.
To account for the safety requirements in collaborative robotics, we add a low-level control timeout in
cases of large jitter and stop the robot in cases of frequently missed detections. A push and a teleoperation
experiment evaluate the reaction times in real distributed control scenarios using 5G edge computing. All
experiments are implemented using ROS 2 Humble. The code and videos of the experiments are available
at https://github.com/DominikUrbaniak/ros2_distributed_control_system.

INDEX TERMS 5G, collaborative robotics, distributed control, edge computing, image processing,
Industry 4.0, object tracking.

I. INTRODUCTION
Facing the market trend towards highly customized prod-
ucts, short product life-cycles and sustainability, production
processes require high adaptability. Two directions appear
promising to support that vision: 1) mobile manipulators
that can perform object manipulation at different worksta-
tions, and, 2) collaborative robotics which is defined as
a shared workspace for mobile manipulators and human
workforce [1]. However, the implementation of these
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directions demand sophisticated autonomy of the mobile
manipulators to be able to react quickly to a dynamic
and uncertain environment, and to ensure human safety.
Continuous monitoring using visual sensors allow the
reaction and adjustment of the robot motion in such complex
scenarios. However, the continuous processing of image data
demands high computational effort and long computation
times interfere with the ability of the robot to react quickly
to changes. Edge computing provides large computational
resources on-premise and utilizes a distributed network of
computers. It enables small devices with limited resources
to perform complex computations by offloading those to the
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powerful computers in the network. Mobile manipulators
could benefit greatly from edge computing, since their
energy and computational resources are limited. Since they
cannot be connected via Ethernet to stationary resources,
fast and reliable communication over wireless networks is
required [2].

In an environment where unforeseen changes can occur,
the reaction time of the robotic system plays a crucial role to
be able to assess performance and safety expectations. For
instance, the implementation of the Speed and Separation
Monitoring (SSM) safety mode depends on the reaction
time [3]. In a distributed setting, the communication and com-
putation latencies contribute significantly to it. They depend
on different factors that can influence the effectiveness of
an edge computing approach to reduce the reaction time.
The communication latency depends on the network, the
Quality of Service (QoS) settings, the size of the transmitted
messages, uplink and downlink, and the communication
rate. The communication jitter depends on the network
and QoS settings and can result in unsafe robotic motion
when not considered in the control loop. The computation
latency depends on the computation hardware, algorithm type
and configuration. Additionally, the robot control can add
additional latency when robot motion is smoothed for human
comfort. The interdependence must be considered since a low
communication rate could be the bottleneck, and allocating
more communication resources might not reduce the reaction
time.

In this work, we analyze the latency impact of vari-
ous interdependent factors from communications, computer
vision and robotics where continuous image streams are
processed on an edge computer using two types of algorithms,
fiducial marker and human hand detections. To this end,
we consider the reliability quality-of-service (QoS) feature
provided by the Robot Operating System (ROS 2) and various
combinations of communication technologies, sensing rates,
image resolutions and image compression to relate the impact
of latencies from different sources and evaluate them first in
two isolated experiments (see Fig. 1). We do not consider
different network slices, and do not focus on comparing
computational hardware. Together with safety related find-
ings, we apply the results from the isolated experiments in
two real distributed control systems to visualize the latency
impact. In the first experiment, a 6-Degree of Freedom
(DoF) robot manipulator is controlled to push a cube with
constant speed until a target pose is detected using ArUco
markers as fiducial markers. This experiment allows the
precise measurement of the latency impact by observing
the placement error that results from the processing delay
between the image capture and the robot low-level control.
In the second experiment, we apply the same concept in a
teleoperation scenario where the robot is controlled by the
motion of a human hand, introducing the smoothing of the
robot motion as additional factor on the reaction time. It illus-
trates the importance of the reaction time for collaborative
applications.

FIGURE 1. Hierarchical structure of the paper. Different impact factors on
the reaction time are analyzed in isolated experiments (sections III, IV)
and applied in real distributed control experiments with safety measures
(section V).

Our contributions can be summarized as:
• The implementation of an entire distributed control
system for collaborative robotics applications including
wireless communication over a private 5G network,
image processing on an edge server and closed-loop
control of 6 DoF-manipulator velocities.

• The evaluation of the reaction time to assess the
edge computing effectiveness based on various factors:
communication network, sensing rate, image resolution
and compression, computation time, ROS 2 reliability
QoS profiles, and robot motion smoothing.

• The implementation of safety measures inside the robot
control that consider jitter, detection failures and human
interaction.

In the following section, related work considering latencies
in edge computing is discussed. Section III assesses with
numerous episodes of simulated push actions the impact of
the sensing rate and the low-level control timeout on the
comparison of communication technologies. Section IV deals
with the integration of images for visual sensing which is
required for the real distributed control experiments described
in section V. Section VI discusses the results and gives an
outlook on promising future work.

II. RELATED WORK
Collaborative robotics is expected to combine the human
intuition and adaptability with the robotic precision and
endurance to achieve higher throughput and product quality,
and to reduce the risks of ‘‘occupational’’ diseases and
injuries for human workers that repetitive, monotonous
and tedious tasks foster [4]. Ensuring human safety at all
times is a main challenge for collaborative robotic systems.
The dynamic and uncertain environment require the ability
to adapt quickly to unforeseen events. To this end, the
ISO/TS 15066 defines safety modes [3]. Among them, the
SSM mode adjusts the robot speed focusing on the directed
velocities between human and robot and could allow the use
of conventional industrial robots in a collaborative setting [5].
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For this mode, the reaction time of the system plays an
important role. Byner et al. [6] report a reaction time of
LR = 210 ms using a laser scanner to detect the human
approaching perpendicularly on a linear trajectory. On the
other hand, the Power and Force Limiting (PFL) safety mode
is suitable for cobots which are lighter and slower [5]. Cobots
are used for human-robot-interaction (HRI) such as gesture-
based teleoperation which go beyond the collaboration in
the sense of a shared workspace. Martin and Moutarde [7]
teleoperate a Universal Robot UR3 detecting the 2D pose of
a human operator using OpenPose [8]. The pose detection
with 640 × 480 images runs at 30 Hz, the complete
teleoperation control at 6 Hz, using a NVIDIA GTX 1080
Ti GPU.

OpenPose and other recent works [9] demonstrate the
ability of deep neural networks to robustly detect human
poses in images. However, methods that achieve near
real-time processing often rely on powerful GPUs which
could compromise the effective implementation on resource-
constrained devices [9] such as mobile manipulators. Hence,
for such devices, there are two options, either perform the
tasks with their limited resources, or offload the computations
to a powerful edge computer. To find the better option,
Hayat et al. [10] propose a distributed control system in three
scenarios. The first offloads the complete image processing
to the edge, requiring the streaming of uncompressed
images. In the second scenario, the images are pre-processed
onboard and only a second processing step is performed
on the edge computer. The third case does not offload
any computations. Using two parameters, the factor of
computational power between edge and onboard computer
and the networks uplink data rate, the authors present a
coherent answer to that question based on the simulation of
various parameter combinations. Only at uplink data rates
above 120 Mb/s, offloading the image processing completely
improves the overall latency. The partial edge computing
scenario improves the overall latency by 20% when the
computation power on the edge computer is 5 times higher
than the onboard computer and the uplink data rate is greater
than 40 Mb/s.

Private 5G networks promise to offer powerful wireless
communication for such edge computing scenarios. For
instance, a 5G prototype is utilized to perform a robotic
balancing task via edge computing [11]. The balancing
task is performed by an Autonomous Mobile Robot (AMR)
with 5-Degree-of-Freedom (DoF) manipulator and 3-DoF
holonomic mobile base to keep a sphere in the center of
a resistive touchscreen. The authors propose a distributed
control architecture: the position of the ball is sensed by the
touchscreen and sent wirelessly to an edge computer where
the desired 3D pose of the touchscreen is computed by a high-
level balance controller. This 3D Cartesian pose is translated
into the 8-DoF coordinate frame of the AMR by applying
inverse kinematics. The result is sent back to the AMRwhere
the low-level control is performed. During the experiment,

uplink and downlink packet sizes between 70 and 350 bytes
are measured at a median frequency of around 100 Hz.
In [12], it is shown that the navigation planning and docking
control of an AMR can be reliably performed using 5G edge
computing by offloading the motion planning to the edge.
The authors measure different packet sizes from 64 bytes
to 1, 514 bytes and data rates of 1.3 Mbit/s uplink and
1.9 Mbit/s downlink. They then compare the impact of the
latency from private 5G and 5G Ultra-Reliable Low-Latency
Communication (URLLC) and Ethernet communication
in the navigation and docking tasks. Both experiments
show a performance decrease with 5G communication,
however, this is ‘‘acceptable for reliable operation of
the AMRs’’.

In [13], the low-level control is offloaded to an edge server
using 5G and a custom-build AMR for a navigation task.
The authors justify the use of edge computing for such small
computationswith the ‘‘ease ofmaintenance’’ and ‘‘improved
resiliency to software and hardware failures’’. Another
work investigates Time-Sensitive-Networking (TSN) over
5G for industrial control systems that continuously perform
‘‘sensing, computing, and actuation’’ in a closed loop [14].
The authors set up a ball balancing task in which a
touchscreen is tilted by a two-DoF servo motor to guide
the ball along a predefined path. The sensor data of the
touchscreen is transmitted as 64 bytes packet at 1000 Hz over
the edge via 5G and back to the controller. A requirement
of less than 20 ms must be constantly achieved to ensure
a successful task performance. The TSN solution can
prioritize the time sensitive communication in a network
with additional data traffic, and therefore, achieve the
latency requirement compared to a solution without TSN.
In [15], the performance of 5G edge computing, 4G and 5G
cloud computing, and onboard computing is compared for
Unmanned Aerial Vehicle (UAV) control. The UAV state is
published at 100 Hz and the control is performed at 40 Hz
on the edge computer, sending the control command back to
the UAV. The 5G edge computing solution achieves 20-30 ms
latencies on average, which is significantly lower than the
cloud computing solutions (larger than 100 ms on average).
As a consequence, the control error is lower which results
in a smoother circular trajectory and a successful avoidance
of an obstacle that the cloud computing solutions are not
capable of avoiding. Overall, the onboard solution achieves
the best performance, but 5G edge computing shows ‘‘similar
behavior’’. A comparison of 5G and Wi-Fi 6 networks is
performed in [16] using the communication hardware in
the loop with simulations of a robotic coordination and a
teleoperation experiment. The data from the human motion
capture system is mapped to a desired Cartesian end-effector
pose at up to 250 Hz and converted to the robotic joint
configuration using inverse kinematics before sending the
result wirelessly to the low-level controller. This work shows
that the smaller latency outliers of the 5G communication
can improve the control accuracy while the Wi-Fi 6 network
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generally achieves faster responses allowing an informed
choice about the more suitable network depending on the
priorities of the control application. In [17], the image
processing is offloaded from a mobile manipulator to an
edge computer in a robotic fruit picking application. RGB
and depth images, at a resolution of 848 × 480 pixels, are
transmitted at 30Hz to the edge computer with a Nvidia RTX-
2080GPU. There, the detection of the fruits is performedwith
deep-learning based segmentationmethods, and the labels are
transmitted back to the robot at 50 Hz, where the motion
planning is performed. The size of the packets uplink were
80 kB and downlink 16 kB. The processing times were sped
up by more than 18 times compared to an onboard computer
with a Nvidia Jetson Xavier NX, resulting in a significant
reduction in the overall execution time.

In contrast to the related work, we analyze the significance
of multidisciplinary and interdependent factors on the reac-
tion time, providing extensive experimentation in simulation
and with real hardware. Various communication technologies
(Ethernet, private 5G, private 5G URLLC, private 4G, ideal
Wi-Fi 5, loaded Wi-Fi 5) are compared for a distributed
control scenario depending on different sensing rates of a
robotic system in simulation. Additionally, we include the
effect of image resolution and compression on the placement
error and packet size, and perform long-term image streaming
over Ethernet comparing these varying data rates and the
ROS 2 reliable and best-effort QoS profiles. Finally, the
holistic perspective over communications and robotics is
assembled into two real experiments that offload the image
processing to an edge server via a private 5G network
to control a mobile manipulator in collaborative scenarios
assessing the reaction time and its contributing elements.

III. SIMULATED ROBOTIC PUSH ACTIONS
The purpose of the simulated push experiment is the
comparison of different communication technologies for
varying communication rates, and to assess the timeout
behavior at the low-level control for communication networks
with large jitter. Using common camera frame rates as sensing
rates and small packet sizes, this experiment simulates a
hybrid edge computing scenario assuming local image pre-
processing, as described in [10].

A. ROS 2 COMMUNICATION
The Robot Operating System 2 (ROS 2) [18] is an open
source middleware that enables the development of robotic
systems using various libraries and specific tools. ROS 2
nodes can be executed on different computers within
a network and communicate via publisher/subscriber or
service/client mechanism. The ROS 2 communication uses
eProsima Fast DDS1 (Data Distribution Service) which
implements a RTPS (Real Time Publish Subscribe) protocol
based on ‘‘unreliable transports such as UDP’’.

1https://github.com/eProsima/Fast-DDS

FIGURE 2. The complementary, cumulative distribution function (CCDF) of
latencies generated from different communication technologies [19],
used in the simulated robotic push actions.

B. LATENCY DISTRIBUTIONS
Different wireless communication technologies can enable
mobile manipulators to communicate with an edge server.
Their performance vary mainly in the latency and reliability.
A comparison of several networks is illustrated in Fig. 2 [19],
[20], with packet sizes around 100 bytes [21]. Ethernet serves
as baseline to the wireless communication technologies.
Compared to Wi-Fi 5, the telecommunication technologies
keep the latency bounded in a smaller range, which makes
their behavior more reliable. Especially, when other traffic
in the network is simulated (loaded Wi-Fi 5), packet arrival
is delayed by up to one second. On the other hand,
Wi-Fi 5 communicates generally faster than private 4G/5G.
The 5G URLLC latency data is simulated, since URLLC
networks are not widely deployed yet.

C. METHODOLOGY
The simulated experiment is implemented in a Gazebo2

simulation environment, running on a simulation computer.
Its control architecture is illustrated in Fig. 3. The commu-
nication latency of a distributed control system is simulated
by delaying the execution of the Pose retrieval node. To this
end, a latency distribution is selected based on measurements
of varying communication technologies (Fig. 2).

In the beginning of the experiment, a communication tech-
nology, the sensing rate fS and the number of push episodes
N are specified. Subsequently, the three ROS 2 nodes Pose
retrieval, High-level control and Low-level control are
executed at fS until the goal pose pg is detected and the robot
moved backwards. Then, the simulation is reset and a new
episode is started.

1) POSE RETRIEVAL
The ground truth pose of the cube pk is sensed by using
the gazebo_ros_state plugin (defined in the Gazebo world
file) which offers a get_entity_state service. This service is
called by a timer callback at a specified communication rate
fS = 60 Hz, with time steps k every LS = 17.7 ms. Once
the response with the current pose arrives, it is delayed by

2https://classic.gazebosim.org/
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FIGURE 3. Control architecture of the simulated push actions allowing
the visualization of the latency in the system regarding varying
communication rates and networks.

a random sample Lk from a latency distribution by setting
the rclcpp::sleep_for(Lk) function that pauses
the execution of the thread for the specified duration Lk .
Afterwards, the pose is published.

2) HIGH-LEVEL CONTROL
The high-level control is triggered in a subscription callback
of the pose published by the pose retrieval node. The robot
manipulator starts in a given initial configuration and starts
progressing forward at a constant velocity vy along the Y-axis.
The initial pose and direction of motion are chosen, such that
the gripper collides with the cube and, subsequently, pushes it
forward. The 6D velocity ẋk is published on each time stamp,
and the latest received pose pk of the cube is compared with
the goal value pg. When the cube reaches or surpasses pg, the
robot starts moving backwards at −vy.

3) LOW-LEVEL CONTROL
The low-level control is a velocity control that allows a
smooth behavior under rapid direction changes of the robot
motion and runs at 500 Hz with time step k ′ every 2 ms.
It receives the Cartesian velocity ẋk and converts ẋk to joint
velocities q̇k using the inverse of the Jacobian J,

q̇k ′ = J−1
k ′ (qk ′ )ẋk . (1)

The Jacobian depends on the current joint configuration
qk ′ . Note, that the low-level control runs independently of
the high-level control. That means, once it receives ẋk ̸=

0, it keeps going at that velocity until it is reset to zero.
To address this potential risk to the surroundings, the low-
level controller measures the time since the last ẋk−1 arrived.
If that time exceeds the timeout τ , the low-level controller
stops the robot until ẋk is received. Communications with
large jitter can trigger this timeout, as large latency outliers
can result in large latency between two consecutivemessages.

D. IMPACT OF THE SENSING RATE
For each communication technology, the experiment is
performed at three different sensing rates f (1)S = 30 Hz,
f (2)S = 60 Hz, f (3)S = 120 Hz. The latency between publishing
two consecutive images L(1)S = 33.3 ms, L(2)S = 17.7 ms,
L(3)S = 8.3 ms, respectively. The resulting placement error e
is shown in Fig. 4, where each box is obtained from N = 200
episodes. In general, the combination of faster network and
higher sensing rate corresponds to lower errors. However,
at a sensing rate of fS = 30 Hz, there is not a significant
difference between the communication technologies. Except
for the private 4G, all other technologies produce the
same median error of approximately 1.5 mm. This can be
explained using the ratio r = LS/median(L) that relates the
latency between two consecutive images and the median
transmission latency of a communication technology. For
the private 5G network, r (1),5G > 3, for the private 4G
network, r (1),4G > 1.7. At 60 Hz, a performance decrease
with private 4G and 5G is visible. Here, r (2),5G = 1.8 and
for the ideal Wi-Fi 5 network, r (2),w5i > 6. This results in
a median error of 0.8 mm, which is half compared to the
results at 30 Hz and equal to the fastest technologies, Ethernet
and private 5G URLLC. Only at 120 Hz, all communication
technologies show a performance difference that would
have been expected comparing the communication latency.
Therefore, the sensing rate of the robotic system has to be
taken into account when choosing a suitable network.

E. IMPACT OF THE LOW-LEVEL CONTROL TIMEOUT
For robotic systems that rely on a continuous stream of
new information, networks with large jitter can pose safety
risks. In our experiments the robot keeps running at the last
received velocity. Large latency outliers can result in large
errors when the reversed control command is delayed. When
stopping the robot at such outliers, those large errors can be
avoided. The experiment is performed at 60 Hz using the
latency distribution of the loaded Wi-Fi 5. Figure 5 shows
the dependency of placement error and execution time for
four different timeouts τ that stop the robot at the low-
level controller when a new packet does not arrive within τ .
It can be observed that the timeout allows bounding the error,
even narrowly to e < 3 mm, by reducing it to τ = 25 ms.
This, however, comes at the cost of an increased execution
time, since the robot is stopped frequently and for longer
duration. Nevertheless, the timeout can be specified such that
the maximum error is reduced by more than 50% without
impacting the execution time (see boxes at a timeout of
τ = 400 ms in Fig. 5).

F. CONCLUSION
This section showed that the sensing rate of the collaborative
robotic system can have a significant impact on the reaction
time and the resulting placement error depending on the
magnitude of the communication latencies, such that a faster
communication technology is only beneficial for the task
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FIGURE 4. Impact of different sensing rates on the comparison of different communication technologies: only with higher sensing
rates a difference of the push performance is significant.

FIGURE 5. Impact of different low-level control timeouts τ on the
placement error e and execution times for communication with large
jitter (here the loaded Wi-Fi 5 measurements) at 60 Hz. A timeout of
τ = 400 ms balances both indicators well, decreasing the largest errors
by half without increasing the execution time.

performance when the latency between two consecutive
images is small enough. Additionally, a low-level control
timeout is introduced which can prevent large performance
drops due to large jitter without impacting the execution time.

IV. IMAGE PROCESSING AND STREAMING
Camera images are essential for the real experiments to track
the position of the object during the push action or the hand
of the human for the teleoperation. Different image settings
have a significant influence on the reaction time in terms
of computation and transmission times. On the other hand,
the detection success is a vital prerequisite and high image
resolution can improve the detection accuracy.

A. OpenCV
The image capturing and ArUco detection is performed using
the OpenCV library [22]. The ArUco detection module takes
an image of arbitrary resolution as input and outputs a
list of all detected marker IDs and their respective poses.
By defining a specific marker ID, it can be ensured that
the same marker is found in consecutive images and noticed
when it is not detected.

B. IMPACT OF IMAGE RESOLUTION AND COMPRESSION
The choice of image resolution and compression influences
the detection success and precision, as well as the packet
size and computation times of the ArUco detection. We run
1800ArUco detections for each combination of: five different
resolutions, compressed and uncompressed images, and three
different distances (Fig. 6). The perspective is similar to the
push actions experiment and allows to evaluate the magnitude

FIGURE 6. Setup for the ArUco detection comparison from three
distances and different viewing angles.

TABLE 1. Pixel sizes at different image heights and distances between
camera and ArUco marker.

of the influencing factors. Table 1 states the pixel sizes of
different resolutions and the rate of successful detections at all
three views separately. It shows that the distance that a pixel
represents in the real world depends on the image resolution
and the relative size of the object in the image. Hence, the
detection is more precise when the ArUco tag is closer to the
camera and the resolution is high with each pixel representing
0.2 mm. The other extreme case results in a pixel representing
5.2 mmwhich is more than the 4.8 mm distance between two
lines on the base of the cube.

If more precision is desirable, it comes at the cost of larger
computation times and packet sizes, as shown in Table 2.
The packet sizes of JPG-compressed images, on the other
hand, decrease by an order of magnitude, but the computation
times increase. The rates of successful detections do not differ
between compressed and uncompressed images. To be able
to make a final assessment, the impact of the packet size
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TABLE 2. Packet sizes and computation times of ArUco detections for
compressed (compr.) and uncompressed (uncompr.) images regarding
varying resolutions. The bold values are used for the QoS measurements
(see Table 3).

TABLE 3. Communication latency (in milliseconds) for different packet
sizes uplink and a constant 0.8 kB packet downlink comparing reliable
and best-effort QoS profiles.

on the communication latency is evaluated in the following
subsection.

C. IMPACT OF ROS 2 QoS RELIABILITY PROFILES
ROS 2 allows setting QoS profiles, e.g. for the reliability. The
default setting is the reliable communication. The publisher
expects an arrival confirmation and retransmits missing
samples. New packets are not accessible by the subscriber
before older ones arrive with a default maximum blocking
time of 100 ms [23]. Another reliability QoS profile utilizes
best-effort communication. This profile does not make the
subscriber wait for older packets which is expected to be
beneficial for sensor feedback, as the system requires the
latest packet to arrive as quickly as possible. Hence, in theory,
the best-effort communication should be more suitable for
reactive control experiments where only the latest packet
represents the current state of the environment. To this end,
not all packets are required to arrive if the latest packet
arrives faster. To evaluate this approach, we perform best-
effort and reliable communicationmeasurements for different
packet sizes. A constant packet size can be set arbitrarily by
specifying the number of four-Byte elements of an integer
vector within a custom ROS 2 message. In a 1000 Mbps
Ethernet network, the integer vector is published from one
device to an edge computer, which subsequently publishes
a pose message of 0.8 kB that is received back at the
device. The round-trip time is measured for 16 h in each
configuration. The packet sizes are selected from Table 2 and
are marked in bold font. The median and maximum round-
trip latency for each packet size and QoS profile is given
in Table 3. The median latency increases with an increasing
packet size. The best-effortQoS consistently results in a lower
maximum latency (less jitter). The median latency increases
for the reliableQoS profile significantly only at larger packet
sizes.

FIGURE 7. Comparing reliable and best-effort QoS profiles and packet
sizes of compressed (64 kB) and uncompressed (980 kB) images in an
Ethernet network. Communicating compressed images with a best-effort
QoS profile results the shortest median latency and lowest jitter.

Figure 7 illustrates the distribution of the communication
latency of 64 kB and 980 kB packets, which represent the
compressed and uncompressed images with a resolution
of 640 x 480 pixels. As shown in Table 3, the median
communication latency is significantly lower for the 64 kB
message (7.60 ms) compared to the 980 kB message, inde-
pendent of the QoS profile. Communicating the 980 kB
message with the reliable QoS profile, the median latency
increases by 23% compared to the best-effort QoS profile.
For the 64 kB message, the median latency only increases
marginally by 1%. Comparing the QoS profiles, the best-
effort communication reduces the jitter as expected. As a
result, the best-effortQoS profile reduces the occasionswhere
the low-level control timeout is triggered, resulting in a
smoother robot motion.

D. CONCLUSION
This section showed the impact of image resolution and
compression on communication times and detection success.
The results indicate that it is meaningful to find the smallest
image resolution where the object detection algorithm is
reliable which depends on the object size in the image. Then,
compress the image such that the combined communication
and computation latency can be minimal. A best-effort QoS
policy further allows reducing the jitter, as expected, since it
reads the latest packet without waiting first for older ones.

V. DISTRIBUTED CONTROL SYSTEM OVER 5G
Compared to the simulated experiment, the setup of the
distributed control architecture utilizes two computers, the
onboard robot computer (1) and the edge computer (2) (see
Fig. 8). The onboard robot computer is connected to the
UR5e manipulator (3) via Ethernet and communicates with
the edge server wirelessly via 5Gmodem (5). The 5Gmodem
and the base station are in line-of-sight. The 5G modem
and the RealSense camera (4) are connected to the robot
computer via USB. The onboard robot computer is a laptop
with an 8-core Intel(R) i7-1165G7 CPU @ 2.80 GHz. The
edge server performs computations on a 56-core Intel(R)
Xeon(R) E5-2680 v4 CPU @ 2.40 GHz.
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FIGURE 8. Schema of the experimental setup of the real distributed
control experiments.

The most suitable parameters for the distributed control
experiments are chosen with regards to the previous results,
capturing images with a resolution of 640 × 480 pixels at
60 Hz and communicating them compressed with the best-
effort QoS profile.

A. PRIVATE 5G NETWORK CONFIGURATIONS
The real distributed control experiments are performed at the
Smart Production Lab at the Aalborg University (AAU) [19],
[20]. It provides a private, standalone 5G network (release 15)
with an on-site NDACMxie 5G core (medium+) and a Radio
Access Network (RAN) that consists of a Nokia airscale
baseband unit and 3 Nokia airScale indoor Radio (ASiR)
configured with 100 MHz of bandwidth in the N78 band
(3710 MHz), 3/7 uplink/downlink Time Division Duplex
(TDD) ratio, and as a single frequency network, such that
all 3 ASiR broadcast the same cell. This is an optimization
for extremely fast handover when moving between coverage
areas of the ASiR, at the cost of capacity, since all 3 ASiR
share capacity. On the backhaul the 5G are routed through
a 10 Gbps infrastructure.

B. ROS 2 COMMUNICATION VIA TWO NETWORKS
The private 5G network at the AAU Smart Production Lab is
separate from the Ethernet/Wi-Fi network. As a consequence,
the node that is running at the edge server cannot discover
the 5G connected robot computer and vice versa. To deal
with this, the eProsima Fast DDS allows setting up a peer
discovery by specifying the IP addresses of both computers
in an XML file [24].

C. ROBOTIC PUSH ACTIONS
A first distributed control experiment is the robotic push
of a cube with an ArUco marker (Fig. 9). The control
architecture is illustrated in Fig. 10. Compared to the
simulated experiment, an additional node in the control loop
reads the image Mk from the camera and publishes it at
time T1,k for the edge computer via the private 5G wireless
network. On the edge computer, Mk is received at T2,k
and the ArUco detection is performed returning a list of
poses Pk which is subsequently published at T3,k for the
high-level control, onboard the robot computer, where Pk is
received at T4,k . The duration L14,k = T4,k − T1,k represents
the combined communication and computation latency, and
L23,k = T3,k − T2,k only the computation latency. The cube
pose pk ∈ Pk corresponding to a specific tag ID is expected.
Before running the push action, the goal pose pg is recorded
using a service call. Then, the cube is placed in front of

FIGURE 9. Setup of the distributed robotic control experiments to
visualize the latency of the system with elements (1) to (5) as presented
in Fig. 8.

FIGURE 10. Distributed control architecture of real robotic push actions.

the gripper and another service starts the push experiment.
The publisher/subscriber communication to the low-level
control replaces here the service/client communication in
the simulated experiment to be able to keep the best-effort
communication in the entire control loop.

We run N = 26 push episodes with a low-level control
timeout of 100 ms and a constant velocity vY = 0.05 m/s
which is half compared to the simulated experiment.

1) HANDLING MISSING DETECTIONS
Unlike in the simulated experiment, the detection of the
desired tag is not certain. Thus, a safety mechanism is
added to stop the robot in case the expected tag is not
among the last ten detected tags. Even though, the detection
rate in the isolated experiment was 100% (see Table 1),
the distributed control experiment challenged the detection
algorithm especially due to the robot gripper that cast a
dynamic shadow over the tag (Fig. 11). More details in the
image also result in 50% larger packet sizes (91-99 kB) for
the 640 × 480 pixel images, compared to the experiments in
Fig. 6.

2) PLACEMENT ERROR
The placement error depends on the combined communica-
tion and computation latency of the first image that captures
the cube passing the goal pose pg. This Latency at goal
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FIGURE 11. ArUco detection results and placement errors.

L14,g varies from 38.4 ms to 222 ms and is reflected in the
placement error (Fig. 11c). The median computation latency
is L23 = 10.6 ms. However, the correspondence between
the detected placement error e and the latency is not
always consistent, e.g. from episode 14 to 15, the latency
decreases but the error increases.We suppose that the lighting
conditions and the angled perspective not only increase the
occasions of missing detections but also affect the detection
accuracy. This can be observed when comparing e with the
actual error ê, visually obtained by using another camera
perspective (Fig. 11b). For instance, the actual error of twelve
episodes (14-25) is five times within 1 mm, once larger than
detected and six times smaller than detected. In episode 14,
the detected placement error e is 2 to 3 mm less than the actual
error ê (see Fig. 11b), in episode 15, e is within 1 mm of
ê. These results illustrate that in a real experiment there are
uncertainties, like lighting conditions, that blur the effect of
the latency on the placement error.

3) REACTION TIME
A detailed view of episode 18 is shown in Fig. 12 to evaluate
the overall reaction time of the system. The triangularmarkers
illustrate the time stamps T1,k when an image is published
(A), the circles illustrate the time stamps T4,k when a pose is
received (B). L1,k and L4,k represent the duration between two
time stamps k and k−1 for T1 and T4, respectively. The time
stamps at a missing pose detection are filled with red. The
first detected pose reaching the goal pose is highlighted in
green. At each received list of poses Pk (@T4,k ), the velocity
vk = ±vY is set for the linear motion along Y (C). This
velocity eventually results in a position change of the end-
effector (D). This experiment simulates a sudden change in
a collaborative environment as the robot moves at a constant
speed until one event reverses the robot motion.We define the
duration from the image that displays the passing of the goal
until the reversion of the motion as the overall reaction time
of the system, LR. It contains the combined communication

FIGURE 12. Tracing the reaction time LR of one push experiment episode.
Displayed are 30 time stamps around the target event (B) at T1,k and T4,k
(see Fig. 10). The sensing rate fS is represented by L1,k , and L4,k
indicates the duration between calls to the low-level control.

and computation time L14,g and half of the time for reversing
the motion Lb which is taken between the last measure point
forward and the first measurement backwards.

4) TIMEOUT BEHAVIOR
With L1,k , the actual sensing rate f̂S can be observed.
In episode 18, the average over all L1,k is 16.7 ms (=̂60 Hz)
which equals the specified sensing rate fI = fS = 60 Hz.
Even though, the average over all L4,k is also around 60 Hz,
the individual variations vary slightly resulting from the jitter
in the communication. Since the received pose is further
processed onboard the robot computer, this jitter is transferred
to the low-level control where the timeout is triggered in
case the jitter exceeds a threshold τ = 100 ms. During the
26 episodes, the timeout is not triggered once. However,
the communication appears unstable in episode 11. In this
episode, larger latencies result in a reduced sensing rate of
about f̂S = 40 Hz and the largest placement error during the
experiment, visible in Fig. 11c. To test the timeout trigger,
we perform 9 additional episodes with a timeout set to
τ = 50 ms. Here, the robot is forced to stop in 8 out of
9 episodes between one and three times. These few and short
stops are recognizable by the audible sound when the robot
breaks but not by the motion speed. This finding supports the
simulation results in Fig. 5where a balanced low-level control
timeout reduces the placement error outliers without affecting
the execution time.

D. ROBOTIC TELEOPERATION USING HAND MOTION
In a second experiment, we teleoperate the robot such that the
end-effector mirrors the human hand motion in 2D (Fig. 13).
Compared to the push experiment, the same settings are used
(JPG-compressed 640 × 480 pixel images at 60 Hz and best-
effort QoS profile), but the detection algorithm and the high-
level control node are different, as illustrated in Fig. 14.

1) MEDIAPIPE HAND LANDMARKS DETECTION
TheMediaPipe hand landmarks detection is used [25] to track
the human hand. It takes an image of arbitrary resolution as
input and outputs a maximum of 21 hand landmark positions
per hand, if an entire human hand is detected. It allows setting
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FIGURE 13. Application of distributed control in the teleoperation
experiment to make the manipulator mirror the hand motion in 2D.

FIGURE 14. Distributed control architecture for the teleoperation
experiment.

a maximum number of hands to be detected in an image, but
there is no functionality that ensures the same hand is detected
in consecutive images.

2) TELEOPERATION CONTROL STRUCTURE
After running the hand landmarks detection on the edge
computer and setting the landmark positions in pose mes-
sages, the high-level control receives the detected poses. If the
hand detection is complete (21 hand landmark positions),
we add one to a counter κ and take the first pose pk = Pk,0
which represents the hand landmark at the wrist. Based on
the difference between two consecutive poses, we compute a
velocity vκ for each of the two directions Y and Z ,

vκ =

{
F(pκ − pκ−1)/fC ′ , if vκ < vmax

vmax, otherwise,
(2)

where F = 100 is a factor that scales the speed of the
robot motion, fC ′ = 500 Hz is the low-level control rate and
vmax = 0.2 m/s bounds the robot velocity. To smooth the
robot motion, we take the median of the last ten computed
velocities if κ > 9. If the landmark is not detected within
the last ten messages, the robot is stopped for safety reasons,
similar to the push experiment, and κ is reset to zero.

3) REACTION TIME
Compared to the push experiment, the teleoperation reacts
at each step k to the changes of the human hand, and the
hand detection requires more than an order of magnitude

FIGURE 15. Illustration of the reaction time LR,k in the teleoperation
experiment from image capturing (A), to pose receiving (B), to setting a
high-level control velocity (C) to the actual motion of the manipulator’s
end-effector (D).

longer computation times (L23 = 125 ms). This seems to
saturate the communication such that the specified frequency
fI = 60Hz cannot be kept. As a consequence, the control loop
runs only at f̂I = 7.5 Hz. Figure 15 presents a five-seconds
section of the experiment where the human hand and the
robot end-effector move right-left-right from the observation
perspective (Fig. 13). The reaction time LR,k = 1 s is
approximated by empirically measuring the time between a
frame where the human hand changes the motion direction
(A) and the corresponding framewhere the robot end-effector
changes the motion direction (D). From here, the image
processing time L14,k on the edge server is known and the
time stamp where the velocity sign changes can be marked
(C). In between, the duration Lm,k results from the smoothing
operation which requires five negative vκ to output a negative
vk due to themedian operation. This appears reasonable as the
output is descending for five points. This experiment shows
that a vision-based teleoperation is a challenging application
for a communication and computation infrastructure due to
the requirements of communicating large image packets,
performing sophisticated image processing and fast reaction
times.

VI. DISCUSSION AND FUTURE WORK
The implementation of the real distributed control system
revealed limitations that are discussed in the following,
including various directions for future work.

A. ROBOTIC SIMULATIONS WITH COMMUNICATION
HARDWARE IN THE LOOP
In the simulated robotic push experiment, we show the
impact of the sensing rate on different communication tech-
nologies. When communicating small packets every 33 ms
(30 Hz), the performance did not differ significantly among
communication technologies. However, larger packets result
in longer communication latencies L for all technologies.
This decreases the ratio r = LS/median(L), such that it is
expected that also at 30 Hz a performance difference can be
observed. This relation can be investigated more realistically
using communication hardware-in-the-loop [16] with robotic
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simulations. As shown in this work, robotic simulations and
communication experiments can be performed extensively,
while real robotic experiments are more limited in the number
of experiment rollouts.

B. LARGE-SCALE WIRELESS COMMUNICATION
CHALLENGES
The image processing and streaming experiments indicate
the benefit of the best-effort QoS for Ethernet networks.
The bi-directional Ethernet connection allows for equal
conditions in the long-term experiment. However, especially
in less reliable wireless networks, the best-effort QoS
profile is expected to be beneficial as it does not wait for
each packet to arrive. In that sense, measuring the real
impact on loaded Wi-Fi networks would be interesting,
as well as a detailed comparison of Wi-Fi 6 and private
5G networks. Furthermore, the experiments show that
the image compression using JPG-encoding reduce the
network load by one order of magnitude without affecting
the detection performance. However, the varying packet
sizes of compressed images might complicate the resource
allocation strategies, since the exact required data rate is not
known beforehand. To further reduce the load, we consider
implementing mechanisms to stop publishing images when
they are not needed at all, or publishing them at a lower
frequency when the application is not dynamic. The modular
architecture of the experiments could enable a dynamic and
flexible execution of tasks, completely on the edge or on
the mobile device, or a hybrid solution, depending on the
availability of communication and computation resources.
This flexibility is expected to be beneficial particularly in
large-scale scenarios where multi-robot deployments require
multiple bi-directional communication instances between the
robots and the edge computer. A suitable resource allocation
strategy might then assign communication and computation
resources dynamically to optimize the Quality of Experience
(QoE) for all users [26]. For such large-scale scenarios, the
utilized ROS 2 based unicast communication is not a practical
solution, but the open-source middleware is developed
towards better applicability in real industrial scenarios, for
instance, a ROS extension, named Connected Robotics
Platform (CROP), that allow the deployment in large-scale
distributed systems has already been proposed [27].

C. NON-LINE-OF-SIGHT CONSIDERATIONS
The distributed control experiments were performed in a line-
of-sight (LOS) scenario at the 5G Smart Production Lab at
AAU where the 5G infrastructure was designed to avoid non-
line-of-sight (NLOS) scenarios. Hence, most locations in the
lab are in LOS. However, NLOS situations can occur in a
dynamic and flexible production environment, and especially
the use of higher frequency bands in the future will be
more sensitive to NLOS. To further increase LOS conditions,
reconfigurable intelligent surfaces (RIS) [28] can be installed
in the industrial environment, or UAV-enabled relaying can be
utilized [29].

D. EDGE COMPUTING VERSUS ONBOARD COMPUTING
In the distributed control experiments, we offload the image
processing to an edge server. This makes sense, since it
can result in significant time gains when the computation
resources are larger on the edge computer than on the
mobile device [10]. At the same time, it requires fast uplink
data transmission of large images to avoid losing that time
gain. In our case, the time gain of a few milliseconds
using the edge computer was not significant enough to
reduce the overall reaction time of the system due to the
larger communication latency required to transmit images
to the edge server. To achieve this gain in future works,
we aim at using more complex detection algorithms and an
edge computer with GPU support, as demonstrated in [17]
and also connected it directly to the private 5G network.
Another motivation for the use of edge computing could
be the opportunity to run the most critical computations
onboard, e.g. regarding human safety, and offload less critical
tasks to the edge (e.g. autonomous object manipulation).
In that case, the mobile manipulator can perform its task
reliably without interruptions in case of approaching humans.
Alternatively, external sensors could observe the shared
workspace independently of the mobile robots and be
connected by cable to the edge computer.

E. COLLABORATIVE ROBOTICS AS B5G/6G USE CASE
The teleoperation experiment illustrates the challenge of
collaborative robotics requiring intensive computations and
fast reaction times, which makes it a suitable use case
for B5G/6G projects [30]. We used the same parameters
for the reaction time factors as for the push experiment.
Adjusting the parameters for each application might improve
the performance, e.g. the detection success rate could be good
enough with even smaller image resolution and the possible
network saturation might be mitigated using a sensing rate
slower than 60 Hz. Sensing, computing and communication
are vital parts of our experiments which could make it an
interesting application for the upcoming Integrated Sensing,
Computing and Communication (ISCC) technology in 6G.
The smoothing of the robot motion is a design choice that
impacts the reaction time in our experiment significantly.
However, it reduces sudden accelerations of the robot which
addresses the ‘‘psychological safety’’ of humans [31]. Human
motion prediction could allow mitigating the effect of the
reaction time by anticipating the human behavior ahead of
time [5], e.g. predicting the human pose 80 to 1000 ms into
the future [32].

F. APPLICABILITY TO OTHER ROBOTIC USE CASES
This work focuses on collaborative robotics as an industrial
application for 5G edge computing which requires the
consideration of human safety in a shared environment
with autonomous robots. Contact-rich object manipulation
tasks, such as grasping and handling deformable objects,
wiping, screwing, or cable routing also benefit from quick
reaction times and require sophisticated perception and data
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processing. The use of fiducial markers is convenient and
the robustness to lighting conditions can be improved using
a deep learning approach [33], however, occlusions and
the requirement of placing a tag on the object make many
use cases not feasible. Instead, recent advances in 6D pose
estimators [34], [35] promise to increase the applicability to
more robotic use cases. On the other hand, also learning-
based robot control methods using deep reinforcement
learning [36] have shown to significantly improve robotic
skills, which have the potential to not only advance the
automation of industrial processes but also to be applied
in service robotics. Here, the comparison to Wi-Fi would
be interesting again, since it is widely deployed in private
households where GPU-accelerated gaming PCs could serve
as edge computers to perform the image processing and
high-level control. At the same time, it poses critical safety
challenges, as private homes havemore NLOS conditions and
will likely not have camera surveillance in every room, so the
PFL collaborative safety mode must be used.

VII. CONCLUSION
In this work, we consider multiple important factors that
impact the reaction time in distributed collaborative robotic
systems (sensing rate, communication technology, communi-
cation QoS settings, image resolution and compression, and
computation latency). The experiments combine simulations
and isolated communication and image processing experi-
ments that allow the assessment of the statistical significance.
As a result, we implement a complete distributed control
system for collaborative robotics with 5G edge computing
using the highest available sensing rate of 60 Hz and the
lowest meaningful image resolution of 640 × 480 pixels
which is transmitted to the edge server JPG-compressed using
the ROS 2 best-effort reliability QoS profile. Additionally,
the closed-loop control system includes safety mechanisms
in cases of detection failures and large jitter showing that
a balanced low-level control timeout avoids large errors
without compromising the execution time. At the end, the
evaluation results are thoroughly discussed with particular
attention to the challenges of multi-robot deployments in
industrial settings. All experiments are implemented with
open-source libraries using ROS 2 Humble and the code is
made publicly available.3
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