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ABSTRACT Research on trajectory generation algorithms for unmanned ground vehicles (UGVs) has been
actively conducted due to the rapid increase in their use across various fields. Trajectory generation for
UGVs requires a high level of precision, as various parameters determine the trajectory’s efficiency and
safety. Notably, maximum velocity and acceleration are critical factors impacting trajectory performance.
In this paper, we propose a novel algorithm that utilizes reinforcement learning to determine the optimal
maximum velocity and acceleration in real-time within dynamic environments. The proposed algorithm
overcomes the limitations of traditional fixed parameter settings by determining parameters through
real-time environmental adaptation. Furthermore, we also propose a PX4-ROS2 based reinforcement
learning framework for achieving stable zero-shot sim-to-real transfer. Experimental results in simulation
and real-world environments show that the proposed method significantly improves trajectory safety
and efficiency while also demonstrating excellent adaptability to changing environments. Furthermore,
validation through identical experimental results in both simulation and real-world environments confirms
a stable zero-shot sim-to-real transfer.

INDEX TERMS Trajectory generation, reinforcement learning, real-time parameter optimization,
sim-to-real.

I. INTRODUCTION
Recently, the use of unmanned ground vehicles (UGVs)
has increased rapidly in various fields, and research on its
trajectory generation algorithms has been actively conducted.
Trajectory generation for UGV requires high precision
beyond simply setting a path from origin to destination.
This precision is influenced by numerous parameters that
determine the trajectory’s efficiency and safety. Among
these parameters, we argue that the maximum velocity vmax
and acceleration amax of a UGV significantly impact the
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performance of the generated trajectories, as well as the
maneuverability and safety of the UGV. Therefore, it is
crucial to set vmax and amax to optimal values in the trajectory
generation algorithm. For instance, setting vmax too low
may result in unnecessarily prolonged travel times to the
target point. Conversely, if vmax is set too high, control
difficulties may arise, thereby increasing the risk of crashes.
Similarly, amax can lead to comparable issues. Insufficient
amax may result in poor maneuverability, whereas excessive
acceleration can compromise the stability of UGV.

However, optimizing these parameters in a dynamic and
real-time environment is extremely challenging. Traditional
trajectory generation algorithms rely on fixed and preset vmax
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and amax , which lack adaptability to environmental changes
and lead to inefficient and unsafe trajectories [1], [2], [3],
[4], [5]. In this paper, to address these issues, we propose
a novel algorithm that utilizes reinforcement learning (RL)
[6] to determine the optimal vmax and amax for trajectory
generation in real-time in dynamic environments. Unlike
traditional fixed parameterization, an RL agent can adaptively
learn and determine optimal values without relying on preset
data, enabling real-time learning and adjustment. Moreover,
this approach effectively accounts for the surrounding
environment and overcomes the limitations of traditional
trajectory generation algorithms.

On the other hand, RL requires a large amount of data
for training due to its trial-and-error learning processes.
Training in the real-world can be significantly more costly
than in simulations, especially when a large amount of data
is needed. Therefore, we train RL deep learning models
using high-fidelity simulations to gather the necessary data
efficiently and cost-effectively before deploying them in
real-world environments. However, the inherent differences
between simulations and the real-world create a reality gap
that reduces the stability of sim-to-real transfer. For this
reason, various research has been conducted to achieve stable
sim-to-real transfer in RL [7], [8]. Most sim-to-real research
in RL has focused on using real-world data for additional
training [9], [10], [11] or employing additional models [12],
[13], [14]. However, when the experimental cost in real-world
environments is high, additional training with real-world
data becomes impractical. Moreover, employing additional
models can increase complexity, potentially reducing training
performance or forcing further training.

In this paper, we propose a framework, called the
PX4-ROS2 based framework, which uses PX4 and Robot
Operating System 2 (ROS2) to incorporate real-world
operation processes into simulation training. The PX4-
ROS2 based framework is designed to reduce the reality
gap without additional models or real-world data. Addi-
tionally, we introduce methods to enhance the RL agent’s
generalization performance, which is crucial for effective
sim-to-real transfer. These methods allow for reliable zero-
shot sim-to-real transfer without requiring further training
or tuning in the real-world. Zero-shot sim-to-real transfer
refers to the capability of applying a model trained entirely
in simulation directly to real-world scenarios without any
additional training or fine-tuning.

Through comparative experiments, we compare the per-
formance of trajectories generated by our proposed method
with those generated by fixed parameterization. These
experiments are conducted in both simulated and real-world
environments with zero-shot sim-to-real transfer. In the
simulation experiments, we analyze the trajectory generation
performance of our proposed method and an existing
trajectory generation method across various scenarios. This
analysis confirms that the proposed method significantly
improves trajectory safety and efficiency by optimizing vmax
and amax in real-time. We also validate our algorithm in

real-world environments with a different obstacle config-
uration completely from the simulated environment. The
validation results show that the proposed method can reliably
generate optimal trajectories in real-world settings with
unseen obstacle configurations, which indicates that our
proposed method has strong generalization performance.

Finally, we configure the simulation environment to
resemble the real experimental environment and conducted
experiments to verify that the proposed method operates
consistently in both environments. The comparison results
indicate that similar velocities of the UGV are observed in
both the real-world environment and the simulation. This
indicates that the proposed method has effectively learned a
stable model for sim-to-real transfer through the PX4-ROS2
based RL framework.

The contributions of this paper are as follows: 1) We
propose a novel RL-based algorithm that optimizes vmax and
amax for real-time UGV trajectory generation in dynamic
environments, and 2) We introduce a PX4-ROS2 based RL
framework to enable stable zero-shot sim-to-real transfer
without additional training or tuning. Through extensive
experiments, we demonstrate that the proposed RL-based
method outperforms an existing method with fixed parameter
settings in terms of stability, efficiency, and adaptability to
real-time changes.

The rest of this paper is organized as follows. Section II
reviews related works on trajectory generation for UGVs.
Section III covers the preliminaries, including the RL
framework used. In Section IV, we describe the proposed
method and its design. Section V the experimental setup and
results. Finally, Section VI discusses the findings and their
implications, and also concludes the paper.

II. RELATED WORKS
Trajectory generation algorithms for UGVs have been
actively studied. Zhou et al. [15] proposed a strategy
combining the artificial fish swarm algorithm for global
trajectory planning with a trial-based forward search for
local adjustments to ensure UGVs navigate safely around
unforeseen obstacles. Ren et al. [16] presented an optimal
path planning and speed control strategy for UGVs, inte-
grating dynamic programming and model predictive control.
Brito et al. [17] proposed a model predictive contouring
control for handling obstacles in unstructured environments.
Their approach demonstrated superior real-time collision
avoidance in UGV experiments.

Research on applying unmanned aerial vehicle (UAV)
trajectory generation algorithms to UGVs has also achieved
significant outcomes. Chen et al. [18] utilized the polyhedral
representations and decentralized planning approach of
MADER [3] to develop a trajectory generation algorithm
for UGVs. Liu et al. [19] developed a UGV trajectory
generation algorithm influenced by the gradient calculation
method of EGO-Planner [2] and conducted performance
comparisons between their algorithm and EGO-Planner
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applied to UGVs. Moreover, Li et al. [20] proposed a
collaborative air-ground framework for perception-limited
UGVs’ navigation and evaluated its performance by directly
applying EGO-Swarm [21], which is developed using EGO-
Planner, to UGVs.

However, these trajectory generation algorithms employ
fixed parameters without accounting for the surrounding
environment, making it challenging to generate optimal
paths in real-world settings with rapidly changing obstacles.
This limitation can lead to suboptimal performance if the
parameters do not adapt to the environment.

In contrast, RL is a type of machine learning in which
an agent interacts with its environment [6]. The agent
performs actions within this environment, receives feedback
in the form of rewards or penalties, and learns to adjust
its behavior to maximize cumulative rewards over time.
This learning process involves exploring various actions
and exploiting the knowledge gained to optimize future
decisions. A growing number of studies utilize the benefits
of RL to control unmanned vehicles (UVs) such as UGVs
and UAVs, and demonstrate its potential to improve UV
trajectory generation. For instance, a recent study applied
RL to optimize power allocation and UAV service zones in
emergency communication networks [22]. Similarly, RL has
been employed in UAV trajectory design and frequency band
allocation, demonstrating not only energy efficiency but also
fairness in communication systems [23].
Moreover, the high combinatorial optimization capabilities

of RL allow for real-time parameter control across various
fields. Specifically, Karafotias et al. [24] introduced an
RL-based controller that dynamically adjusts parameters in
evolutionary algorithms, enhancing solution quality without
additional resources or effort. Similarly, Chen et al. [25]
proposed a method using RL to optimize parameters in
genetic algorithms, significantly improving efficiency and
solution quality in the flexible job-shop scheduling problem.
Leveraging these capabilities, RL can be utilized to optimize
various parameters in trajectory generation algorithms.

However, a significant drawback of RL is its reliance
on trial and error, which makes it unreliable in complex
environments that require extensive training. Due to this
limitation, most RL-based UV control research has been
validated in simple grid environments [26], [27], [28].
Additionally, models trained in simulations are often not
transferred effectively to real-world scenarios [17], [29].
Even when sim-to-real transfer is achieved, the results are
only utilized as reference paths for model predictive control
and do not account for dynamic environments [30], [31].
Sim-to-real transfer typically involves tuning in real-world

settings after simulation training or incorporating real-world
data during training to reduce the sim-to-real gap [9], [10],
[11]. However, this approach can be impractical when the
cost of real-world experimentation is high. Therefore, zero-
shot sim-to-real transfer, which does not require additional
real-world training or data, has been explored through
various approaches. Nonetheless, most zero-shot sim-to-real

transfers have been conducted on robotic arms in relatively
constrained environments, and those involving moving vehi-
cles generally assume short-distance travel [13], [32], [33],
[34].

III. PRELIMINARIES
A. MARKOV DECISION PROCESS
The Markov decision process (MDP) provides a mathemat-
ical framework for modeling the problem of an RL agent
interacting with its environment and learning optimal behav-
ior [35]. An MDP can be defined as a tuple (S,U ,R,P, γ ). S
is the state space representing all possible configurations of
the environment. U is the action space available to the RL
agent. P(s′|s, u) is the state-transition probability function,
representing the probability of transitioning to the next state
s′ given action u in state s. R(s, u, s′) is the reward function,
providing feedback to the agent in the form of a reward r . γ is
the discount factor that balances the importance of immediate
and future rewards, where a value closer to 1 places greater
importance on future rewards. An RL agent learns a policy
π (u|s) to maximize its expected cumulative reward over time.
The policy π (u|s) is a probability distribution over an action
u that the RL agent decides upon in a given state s. For each
time step t in an episode, the optimal policy π is defined as
follows:

π∗ = argmax
π

Eut∼π

[
T−1∑
t=0

γ trt

]
, (1)

where rt represents the reward at time step t and T is the
episode length.

FIGURE 1. The SAC agent training process.

In many applications where decisions need to be made
based on partial and noisy observations, un agent may not
be able to fully observe the entire state of the environment.
To address this, the MDP framework is extended to partially
observedMarkov decision process (POMDP). A POMDP can
be defined as a tuple (S,U ,R,P, �,O, γ ). � represents the
observation space, which includes all possible observations
the agent can perceive.O(o|s, u) is the observation probability
function, indicating the probability of observing o given that
action u was taken in state s. On the other hand, S, U ,
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P, R, and γ are defined the same way as in MDPs. In a
POMDP, an agent cannot directly access the state s ∈ S.
Instead, it receives observations o ∈ � that provide partial
information about the state. The agent’s goal is to choose
actions that maximize its cumulative reward, similar to a
MDP. In this paper, we model the task as a POMDP, which
allows us to use RL to solve real-time parameter optimization
problems in an unknown environment.

B. SOFT ACTOR CRITIC
The Soft Actor-Critic (SAC) algorithm is one of the most
popular RL algorithms. It combines off-policy learning with
entropy regularization to enhance both sample efficiency and
exploration performance [36]. The SAC algorithm employs
an actor-critic architecture, where the actor updates a policy
πφ(u|o) for selecting an action u from an observation
o, and the critic updates a value function Qω(o, u) that
estimates the state-action value. In this architecture, φ and
ω represent the model parameters of the policy and the value
function, respectively. These two components work together
to maximize the agent’s long-term reward.

A replay buffer B is used to store transitions that the agent
experiences during training. This replay buffer allows the
SAC algorithm to break the correlation between consecutive
transitions by sampling random batches of transitions for
training, which improves learning stability and efficiency.
The buffer stores tuples of observation o, action u, reward r ,
and next observation o′, which are used to update the policy
and value functions.

On the other hand, the entropy for an observation o is
defined as follows.

H(o) = EU∼πφ (·|o)[− logπφ(u|o)]. (2)

In SAC, the entropy term is incorporated into the policy’s
probability distribution, which encourages an SAC agent to
explore various behaviors under uncertainty. This algorithm
excels in high-dimensional continuous state and action spaces
due to its stable learning process and rapid convergence.

For a tuple (o, u, r, o′) sampled from B, the entropy-
regularized critic’s loss function is defined as follows.

JQ(ω) = Eu′∼πφ (·|o′)

[
1
2

(
Qωi (o, u)−

(
r + γ min

j=1,2
Qω̄j (o

′, u′)

− α logπφ(u′|o′)
))2]

for i = 1, 2 (3)

where Qω̄i (o
′, u′) represents the ith target value function

evaluated at the next observation o′ and the sampled next
action u′, and α is the temperature parameter that determines
the relative importance of the entropy term versus the reward,
and thus controls the stochasticity of the optimal policy.
The actor is then updated by maximizing the following
entropy-regularized objective function:

Jπ (φ) = Eu′∼πφ (·|o′)

[
min
j=1,2

Qωj (o, u)− α logπφ(u′|o′)
]

(4)

In addition, the SAC agent automatically adjusts the temper-
ature parameter α during training to maintain an appropriate
exploration-exploitation balance. To achieve this, it sets an
entropy target value H̄ and adjusts α to align closely with the
actual entropy target value by minimizing the following loss.

J (α) = E
[
− α logπφ(u|o)− αH̄

]
(5)

Fig. 1 illustrates the overall learning structure of the SAC
agent. The SAC agent learns through continuous interaction
with the RL environment. The trajectories generated through
this interaction are stored in replay memory B and sampled
during learning. While the critic is updated by the entropy-
regularized critic’s loss function (Eq. (3)), it aids the actor
by providing policy evaluation to facilitate the actor’s policy
update. The actor, in turn, contributes entropy when updating
the critic to encourage exploration, and the critic is utilized to
generate the actor’s objective (Eq. (4)).

FIGURE 2. The PX4-ROS2 architecture.

C. PX4-ROS2
PX4 is an open-source control software extensively utilized
across various UAV platforms [37]. While it has primarily
been used for controlling UAVs and other types of drones,
its robustness, flexibility, and modularity have also led
to its application in many UV systems such as UGVs
and unmanned underwater vehicles [38], [39]. Similarly,
ROS2 is an open-source framework designed to support
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TABLE 1. The PX4 configuration settings for UGV operation.

the development of complex robotic systems [40]. The
integration of PX4 with ROS2 (PX4-ROS2) leverages the
strengths of both platforms and creates a highly flexible and
scalable solution for various robotic applications.

The PX4-ROS2 architecture, as depicted in Fig. 2,
highlights the detailed interaction between various modules
within the PX4 system. The control modules include the
Attitude controller, Position controller, and Estimator. The
Estimator receives raw data from the sensor module and
uses an extended Kalman filter to refine it into precise
dynamic states such as position and attitude. These refined
dynamic states are then provided to the Attitude controller
and Position controller. The Attitude controller and Position
controller utilize the dynamic states to calculate the thrust
and moment required to execute the current mission. These
calculations are subsequently provided to the motor mixer
module. The motor mixer module translates these into PWM
signals and transmits them to the motors. In PX4, modules
interact with each other using the micro object request broker
(uORB), which employs a message-driven publish-subscribe
architecture.

ROS2 is also highly modular, which allows flexible con-
figuration and integration of various components. The high
modularity of ROS2 allows it to be applied across various
platforms, including simulation and real-world environments.
This approach enables us to use ROS2 to run both simulation
and real-world environments with the same code, making
it easier to validate the algorithm. Moreover, ROS2 incor-
porates a data distribution service (DDS) architecture [41],
which enables seamless communication among multiple
heterogeneous UVs. These attributes facilitate the operation
of these UVs through the control processes of PX4 and the
DDS architecture of ROS2. At this time, each unmanned
vehicle is controlled using the ground control system (GCS).

Given that both ROS2 and PX4 utilize a publish-
subscribe architecture, this allows for seamless integration
between PX4 and ROS2. However, integration of PX4
with ROS2 presents challenges due to PX4’s insufficient
computing power to incorporate ROS2 directly. Therefore,
the integration needs to be facilitated through tools such as
the XRCE-DDS (Data Distribution Service for eXtremely
Resource-Constrained Environments) middleware [42]. The
XRCE-DDS client runs on PX4 to handle the publication and
subscription of PX4 messages, while the XRCE-DDS agent

TABLE 2. Notation used in POMDP.

runs on companion computers. This agent acts as a proxy and
converts PX4 data into ROS2 messages and ROS2 messages
back into the PX4 internal message format. This bidirectional
data translation ensures correct data exchange between both
systems.

In this paper, we construct our autonomous UGV naviga-
tion system using the PX4-ROS2 framework. The PX4-ROS2
system integrates a variety of components to manage UGV
operations. These components are crucial for ensuring the
UGV can navigate dynamic environments effectively, as they
enable real-time communication between the UGV’s sensors,
controllers, and actuators.

FIGURE 3. The actor’s policy network architecture.

In our system, the PX4 configuration settings define the
UGV’s behavior across various scenarios. These settings
are essential as they systematically constrain and regulate
the UGV’s physical movements, ensuring safe and reliable
operation under varying conditions. Within the PX4 config-
uration settings, the RL agent controls trajectory generation
algorithm’s parameters in real-time to optimize the UGV’s
trajectory. Table 1 lists several crucial PX4 configurations for
the UGV.

IV. METHODOLOGY
A. POMDP FORMULATION
Traditional trajectory generation algorithms rely on fixed
parameter settings, which fail to adapt to continuously
changing environmental conditions. This challenge prevents
the algorithm from generating truly optimal paths, as the
parameters need to be adjusted dynamically in response to
the environment. To address this challenge, we formulate the
problem of controlling the vmax and amax of the trajectory
generation algorithm in real-time as a POMDP in this section.
Notations used in the POMDP are shown in Table 2.
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TABLE 3. The specifications of the actor’s policy network.

1) OBSERVATION AND ACTION
In this paper, the UGV performs a predefined mission within
a fixed W × H square map. The observation of the RL
agent provides information about the UGV’s surroundings
within a size of wo × ho, where wo ≪ W and ho ≪
H . This observation is composed of two components. The
first component omapt ∈ Rwo×ho represents the surrounding
environments of the UGV, while the second component
opatht ∈ Rwo×ho represents the straight path from the UGV
to the target and the direction of the UGV.

Specifically, omapt is defined as a bird’s-eye view of the
UGV’s surrounding environment. The current position of the
UGV is always fixed at the center of omapt . This visually
clarifies that the surrounding environment dynamically
changes as theUGVmoves. In omapt , obstacles are represented
using binary values: a location is marked with 1 if an obstacle
is present and 0 if it is clear. This binary representation helps
the RL agent efficiently and rapidly understand the complex
details of the surrounding environment. Through omapt , the
RL agent can recognize and respond to various obstacles
and complex terrain changes in the UGV’s surrounding
environment in real-time.

Meanwhile, opatht is defined by both the direction the
UGV should go and the direction it is currently traveling.
It clearly visualizes the relationship between the UGV’s
current heading and the target point. Specifically, the UGV’s
position is fixed at the center of opatht , just like in omapt .
A straight path between the UGV and the target is represented
by 1, helping the agent visually recognize the best path for the
UGV to reach its destination. This allows the agent to easily
ascertain the direction theUGV should take to reach the target
point. Additionally, the straight path between the UGV’s
expected position after one second and the current position
is represented by −1, enabling the agent to recognize the
UGV’s current heading. All other elements are represented
by zeros. As a result, the RL agent can know how much the
current heading of theUGVdeviates from the target direction.
This information allows the RL agent to predict the yaw axis
rotation of the UGV.

Finally, the RL agent extracts ut = (vmaxt , amaxt ) ∈ R2 for
the trajectory generation algorithm as actions tomaximize the
cumulative reward from the given observation. As shown in
Fig. 3, the actor’s policy network processes the observations

to determine the actions vmaxt and amaxt . It consists of several
layers and components. The convolutional neural network
(CNN) [43] processes the input observation ot , extracting
spatial features from the input data. The fully connected
(FC) layers then transform these features through multiple
layers to capture complex relationships within the input. The
gated recurrent unit (GRU) [44] processes the sequential
hidden data, maintaining temporal dependencies and helping
the actor understand the sequence of observations over time.
Additional FC layers further refine the processed input to
output the final action values. To ensure vmax and amax within
a fixed range, the final layer of the actor’s policy network
utilizes the Tanh activation function. The specifications of the
actor’s policy network layers are presented in Table 3.

2) REWARD FUNCTION
We aim to intuitively reduce collisions and minimize the time
taken to reach the target point through the reward function.
Our reward function is defined as follows:

rt =


1 if the target is reached,
−1 if a collision occurrs,
−1 if the episode max step is exceeded,
−0.1 otherwise.

(6)

As shown in Eq. (6), our reward function is simple, and
expert knowledge is excluded in its definition. A complex
reward scheme can hinder the agent’s learning and cause it
to optimize for specific scenarios while struggling to adapt to
new ones. Therefore, a simple and intuitive reward scheme
is essential, as it allows our RL agent to learn broadly
applicable action patterns and perform consistently across
different scenarios.

Consequently, the optimization target is to adjust the
policy π to maximize the cumulative reward as defined in
Eq. (1), using the rewards from Eq. (6) over an episode.
By optimizing this policy, the agent learns to make decisions
that enhance safety and efficiency, resulting in optimal
trajectory generation in dynamic environments.

B. POLICY TRAINING
A key advantage of RL models with good generalization
performance is their ability to adapt to new situations
not encountered during training. This capability is crucial
when the models encounter unexpected factors that were
not present during training in the simulation. Therefore,
a focus on enhancing generalization performance directly
correlates with better sim-to-real transfer performance. In this
section, to achieve this, we highlight two key components:
curriculum-based random training map and recurrent neural
networks.

1) CURRICULUM-BASED RANDOM TRAINING MAP
To enhance the generalization performance of RL agents in
different environments, we utilize curriculum-based random
training maps instead of fixed training maps. For every
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FIGURE 4. The PX4-ROS2 based RL framework.

episode, we adjust the difficulty of the training maps for
curriculum learning to enable the RL agent to learn from
easier maps initially. The difficulty of the maps was adjusted
by varying the number of obstacles. Let ni be the number of
obstacles in the ith episode of the training phase. It is defined
as follows:

ni = min (⌈n0 + k · i⌉ , nmax) , (7)

where n0 is the initial number of obstacles, k ∈ R is a
constant that determines the growth rate of the number of
obstacles, and nmax is the maximum number of obstacles.
For the random training map in the ith episode, diverse
obstacles are generated at random locations according to a
uniform distribution U within a fixed W × H square map.
In other words, the position of the jth obstacle is given by
obsj = (xj, yj), where (xj, yj) ∼ (U(0,W − 1),U(0,H − 1)).
This approach ensures that the RL agent encounters a wide

range of configurations during training, which is critical for
achieving robust generalization performance. Curriculum-
based random trainingmaps enable the RL agent to encounter
diverse scenarios during training and improve adaptation and
robustness in new environments.

2) RECURRENT NEURAL NETWORKS
To enhance the generalization performance of the RL
agent, we incorporate a recurrent neural network (RNN)
model, specifically a GRU, into the agent’s policy and
critic models. The GRU model can effectively capture the
complex relationships and temporal dependencies within
the sequential pairs of observation and action, leading to

more efficient and adaptive trajectory generation. This is
particularly important in our complex POMDP environments,
where the RL agent cannot immediately access all state
information and must infer the current situation from past
data [45].

Moreover, when the RL agent for POMDP incorpo-
rates GRU, it can effectively apply knowledge learned in
simulation to real-world environments and adapt to new
situations. This capability helps the agent maintain consistent
performance across various scenarios and improves sim-to-
real transfer performance.

C. PX4-ROS2 BASED RL FRAMEWORK
In this paper, we propose a novel approach using RL to
optimize the parameters of a trajectory generation algorithm
in real-time within a dynamic environment. To validate this
approach in the real-world, we propose a PX4-ROS2 based
RL framework to ensure stable sim-to-real transfer. The
proposed framework unifies behavior between simulation
and real-world environments, and allows models trained in
simulation to perform effectively in real-world conditions.

The architecture of PX4-ROS2 based RL framework
is presented in Fig. 4. The proposed framework uses
Gazebo [46] and Swarm Playground [21] to construct the
simulation environment. Specifically, obstacle generation
and detection are handled using Swarm Playground, while the
physics-based simulation is conducted using Gazebo. In the
simulation, the obstacle information is perceived through
Swarm Playground, and various sensor data, excluding
obstacle information, are acquired through Gazebo. Swarm
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Algorithm 1 Proposed SAC Training Algorithm
T : trajectory generation algorithm
0t : trajectory at time step t
dt : dynamic states at time step t
B: replay buffer
πφ : SAC actor
Qωi : SAC critics (i = 1, 2)
Qω̄i : SAC target critics (i = 1, 2)
α: temperature parameter
λQ, λπ , λα: learning rates
τ : soft update parameter for SAC target critic Qω̄i

M : maximum number of training episodes
k: growth rate of the number of obstacles

1: Initialize the network parameters randomly: φ, ω, ω̄

2: Initialize the replay memory B← {}
3: for each episode iteration i up to M do
4: ni = min (⌈n0 + k · i⌉ , nmax)
5: for each iteration j up to ni do
6: obsj ∼ (U(0,W − 1),U(0,H − 1))
7: construct the training map with ni obstacles
8: for each environment step t do
9: ut ∼ πφ(ot ) where ut = (vmaxt , amaxt )

10: get dt via PX4-ROS2 based RL framework
11: 0t = T (vmaxt , amaxt , dt )
12: move UGV for a fixed period according to 0t
13: get ot+1 via PX4-ROS2 based RL framework
14: B← (ot , ut , rt , ot+1)
15: for each gradient step do
16: ωi← ωi − λQ∇JQ(ωi) for i = 1, 2 ▷ by Eq. (3)
17: φ← φ − λπ∇Jπ (φ) ▷ by Eq. (4)
18: α← α − λα∇J (α) ▷ by Eq. (5)
19: Qω̄i = τQωi + (1− τ )Qω̄i for i = 1, 2

Playground and Gazebo are seamlessly integrated within the
PX4-ROS2 based RL framework.

The trajectory generation algorithm takes the dynamic
states from PX4 as well as vmax and amax from the RL agent
to generate trajectories. Simultaneously, it transmits the raw
observations to the RL environment. The RL environment
preprocesses the raw observations it receives and delivers
them to the RL agent. The RL agent’s actor then extracts
vmax and amax using the preprocessed observation as input.
During this process, the RL environment also provides the RL
agent with rewards for observation-action pairs. Using this
reward, the RL agent’s actor and critic models are updated.
Communication between the trajectory generation algorithm
and the RL environment is facilitated through the XRCE-
DDS middleware.

The trajectory generation algorithm is performed identi-
cally in both simulation and the real- world using the same
code. This unified data processing helps the RL agent adapt
to various real-world scenarios. By minimizing differences
between simulation and reality, the algorithm achieves high
sim-to-real performance without extra training. Integrating

the RL and trajectory generation algorithms enables the
agent to adapt to environmental changes, improving stability
and efficiency. Thus, the PX4-ROS2 based RL framework
effectively handles real-time parameter optimization in
dynamic environments and enhances zero-shot sim-to-real
transfer performance.

The pseudocode for the proposed SAC training algorithm
is shown in Algorithm 1. First, the network parameters
and replay buffer are initialized. For each training episode,
the curriculum-based random training map is created. For
each time step, the trajectory generation algorithm generates
per-time step trajectory using the dynamic states dt as well as
vmaxt and amaxt extracted through the actor πφ . After the UGV
moves along the generated per-time step trajectory for a fixed
period, it perceives the dynamically changed surrounding
environment in real-time to generate ot+1 via the PX4-ROS2
based RL framework. The generated transitions are then
stored in the replay buffer for training. For each gradient
step, the actor and critic models as well as the temperature
parameter model are trained using the objective functions
described in Section III-B.

FIGURE 5. Training graph (Episode reward is shown using exponentially
weighted moving average smoothing).

V. EXPERIMENTAL RESULTS
A. EXPERIMENTAL SETTING AND TRAINING RESULTS
In our experiment, we apply the EGO-Planner to our UGV
trajectory generation. Although EGO-Planner is a trajectory
generation algorithm originally designed for UAVs, it has
been successfully adapted for use in UGVs in many recent
studies and has shown promising results, as mentioned in
Section II.

In the original EGO-Planner method, the vmax and amax
of a UGV are fixed at 1.5 m/s and 6.0 m/s2, respectively.
In contrast, our RL agent dynamically determines the
UGV’s vmax within the range of 1.0 m/s to 4.5 m/s and
amax within the range of 6.0 m/s2 to 10.0 m/s2. The
dynamically determined vmax and amax play a significant role
in enhancing the trajectory generation process by adapting to
the operational constraints of the UGV.

The UGV operates in an unknown environment with-
out prior knowledge beyond its perception range. Due
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TABLE 4. The parameter settings of our SAC algorithm.

to unpredictable obstacle positions and shapes, the UGV
must continuously perceive and adapt in real-time. Initially,
RL agent training is conducted in the simulation system using
Gazebo and Swarm Playground to learn parameter control
performance, and the comparative results are evaluated.
We then conduct real-world experiments by applying both
the EGO-Planner method and the proposed method to the
UGV. The detailed components of the UGV used in these
experiments are shown in Fig. 6. The primary objective is
to evaluate the impact of the proposed method on velocity
changes by comparing the velocity, yaw speed, and path
of the UGV while avoiding obstacles. In simulations, small
obstacles are evenly distributed, whereas in the real-world,
larger obstacles are sparsely located.

The RL agent’s actor and critic models are trained using
the SAC algorithm, which is implemented based on the skrl
library [47]. The parameters used for training are detailed
in Table 4. After the training process is completed, only the
actor model trained by the SAC algorithm is utilized during
inference to determine the vmax and amax .
Fig. 5 shows the episode reward over 30,000 training

steps of the proposed RL algorithm. To emphasize the
trend, an exponentially weighted moving average smoothing
technique was used, and the resulting smoothed reward is
depicted with a solid black line. The consistent increase in the
smoothed episode reward demonstrates the effective learning
and convergence of the algorithm.

B. SIMULATION EXPERIMENTS
Fig. 7 presents the comparative results of the proposed
method and the original EGO-Planner method after training
in the simulation. The UGV moves from start to destination
following paths generated by the algorithms, with the red
path representing the proposed method’s trajectory and the
orange path representing the EGO-Planner’s trajectory. The
proposed method results in a higher average speed compared
to the EGO-Planner method in each test environment, which
reduces UGV travel time by approximately 28 on average.
The figure show that the proposed method achieves faster
travel times and also improves the overall smoothness of the

path. This improvement in path smoothness contributes to
more efficient and stable navigation for the UGV.

Fig. 8 shows the changes in velocity and yaw speed
between 8 and 16 seconds for each test. To represent the
changes in yaw speed, a Gaussian filter with a sigma value of
50 is used. As shown in the figure, while the velocity in the
EGO-Planner method change within a very narrow range, the
proposed method produces dynamically changing velocities.
Moreover, in the proposed method, the yaw speed also
changes significantly in synchronization with these varying
velocities.

FIGURE 6. The UGV used in real-world experiments.

More specifically, significant changes in yaw speed
indicate that the UGV is entering areas near obstacles.
In these situations, the proposed method demonstrates a
pattern where the UGV avoids accelerating beyond a certain
speed before approaching these areas and then accelerates
while passing through them. This indicates that our RL agent
is well trained to consider potential unseen obstacles and
reduces velocity to prevent collisions before approaching
areas near obstacles. Once the UGV enters such areas,
it accelerates to quickly pass through the hazardous zone,
thereby ensuring both the safety of the UGV and reduced
travel time. These instances are highlighted in gray in the
figure.

C. REAL-WORLD TEST
The comparative experiments in the real-world is conducted
through zero-shot sim-to-real transfer without additional
training or tuning. The real-world tests are conducted
three times in each of the three environments, and the
comparative experimental results are shown in Fig. 9. In the
first environment, the UGV navigates 14 meters forward
while successfully avoiding a single detected obstacle. The
second environment includes two obstacles, where the UGV
navigates 15 meters forward while successfully avoiding
the two detected obstacles. The third environment features
two obstacles that are widely spaced apart, where the UGV
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FIGURE 7. Comparative inference results in the simulation experiments.

FIGURE 8. Comparison of velocity and yaw speed in the simulation
experiments.

navigates 33 meters forward while successfully avoiding
the two detected obstacles. For the three environments, the
figure shows the detected obstacles, the actual path of the
UGV, the average velocity, and the travel time for both
the EGO-Planner method and the proposed method. The
experimental results demonstrate improvements in average
speed and reductions in travel time, which are consistent with
the results of the simulation experiments.

Fig. 10 presents a comparison of velocity and yaw speed
across the three environments. The figure shows the mean
values and standard deviations for both the proposed method
and the EGO-Planner method. Similar to the results presented
in Fig. 8, Fig. 10 shows that the proposed method follows a
similar velocity change pattern in the real-world experiments.
The UGV avoids accelerating beyond a certain speed before
approaching areas near obstacles and then accelerates while
passing through them. These instances are highlighted in
gray in the figure. In real-world experiments, the RL agent
also considers potential unseen obstacles and reduce velocity
before approaching them. Once the UGV enters these areas,
it accelerates to quickly pass through, ensuring both safety
and reduced travel time.

D. ZERO-SHOT SIM-TO-REAL TRANSFER VALIDATION
Finally, we conduct experiments in both simulation and
real-world environments with identical obstacle configura-
tions. Through these experiments, we compare the velocity
and yaw speed to verify if their change patterns are similar
in both the simulation and real-world environments. Similar
to Fig. 9 (c), we organize the simulation environment with
two widely spaced obstacles, and conduct the experiments
accordingly. The simulation experiments are conducted three
times and the results are compared with the real-world data
given by Fig. 9 and Fig. 10.

Fig. 11 visualizes the changes in velocity and yaw
speed in each experiment with their means and standard
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FIGURE 9. Comparative inference results in the real-world experiments.

FIGURE 10. Comparison of velocity and yaw speed in real-world
experiments.

deviations. The results demonstrate that the RL agent
operates consistently in both simulation and real-world
environments. This consistent velocity and yaw speed pattern
indicates that the RL agent reliably operates despite the
differences between simulation and real-world environments.
Through these results, we confirm that the proposed method

successfully implements zero-shot sim-to-real transfer over
the PX4-ROS2 based RL framework.

FIGURE 11. Comparison of velocity and yaw speed in simulation and
real-world environments with two widely spaced obstacles.

VI. CONCLUSION
For UGV trajectory generation, traditional fixed parameter
settings fail to adapt to environmental changes, resulting
in inefficient and unsafe trajectories. To overcome this
limitation, we propose a new RL-based method for real-time
optimization of the maximum velocity (vmax) and maximum
acceleration (amax) to generate a UGV trajectory in dynamic
environments. Moreover, to ensure the stable sim-to-real
transfer of the proposed method, we introduce a new PX4-
ROS2 based RL framework. This framework unifies the
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operation between simulation and real-world environments
and allows the RL models trained in simulation to perform
effectively in the real-world. As a result, the zero-shot sim-
to-real transfer is achievable without additional training or
tuning in the real-world. The proposed RL-based parameter
control method significantly enhances performance in terms
of efficient and safe trajectory generation in real-world UGV
autonomous navigation applications. The algorithm’s ability
to adapt in real time to various environmental changes
improves the safety and efficiency of autonomous UGV
operations in rapidly changing environments.

Most UGV operating environments are unknown and
dynamic. In such environments, our research improves UGV
performance by controlling the parameters of the trajectory
generation algorithm. Consequently, the proposed approach
is widely applicable to various UGV navigation tasks, such
as reconnaissance and search and rescue operations. Notably,
since our study includes real-world validation through zero-
shot sim-to-real transfer, it offers the possibility of immediate
implementation. In our future research, wewill propose a new
RL-basedmethod to control not only the maximum speed and
maximum acceleration but also more critical parameters of
the trajectory generation algorithm.
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