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ABSTRACT Supervisory Control and Data Acquisition (SCADA) systems, particularly Remote Terminal
Units (RTUs), are vulnerable to cyber-attacks due to their limited computing resources. This study addresses
the need for a reliable, publicly available dataset for comprehensive attack detection experiments in SCADA
networks. We developed a dataset for SCADA systems operating under the IEC 60870-5-104 protocol
in an electricity distribution network. Using a hybrid virtual-physical testbed that simulates SCADA
communications, we generated normal and attack scenarios, including port scans, brute force attacks, [CMP
floods, SYN floods, Xmas scans, and IEC 104 floods. Snort and Suricata verified the integrity of the dataset.
We then evaluated six Intrusion Detection System (IDS) models using different machine learning algorithms,
i.e.: Artificial Neural Network, Categorical Naive Bayes, Decision Tree, K-Nearest Neighbors, Gradient
Boosting, and Random Forest. The Decision Tree and Random Forest models achieved the highest accuracy
of 93.66%. This dataset aims to support further research and development of robust IDS solutions for SCADA
systems.

INDEX TERMS SCADA, intrusion detection system, IEC 60870-5-104, Snort, Suricata.

I. INTRODUCTION and have attracted attention from various sectors, including

Supervisory control and data acquisition (SCADA) plays
an important role in various industries, handling the auto-
matic control and monitoring of different equipment used
in critical infrastructure. SCADA systems are designed for
closed networks, where data exchange traffic is carried out
on a local network [1]. The isolated network protects the
SCADA system from cyber-attacks from the internet. How-
ever, an isolated network makes the process of monitoring and
controlling industrial equipment inflexible. Attacks against
critical infrastructure have increased after the Stuxnet tragedy
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researchers. The interconnection of SCADA systems to open
networks is required in economic terms to reduce operational
costs because the monitoring and controlling of SCADA
devices are done remotely using commonly used protocols,
such as TCP/IP. The interconnection of SCADA networks to
open networks, especially corporate networks, makes them
vulnerable to cyber attacks [2], [3].

This study discusses the malicious activity on SCADA IEC
60870-5-104 (IEC 104), which is widely used in the power
plant industry to monitor and control distribution lines [4],
which is one of the applications of the use of a smart grid
in SCADA systems [5]. To execute relevant malicious activ-
ity scenarios, we built a testbed for a SCADA system that
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allows normal scenarios and attack scenarios to be carried
out. We then used Snort and Suricata to reveal and validate
the existence of the attacks on the dataset. The scenarios
are carried out using Human Machine Interface (HMI) and
remote terminal unit (RTU) physical devices on the SCADA
system to obtain relevant data; the virtual devices used are
the Historian server and malicious machine for carrying out
the attacks. The malicious/attack activities that occur on the
SCADA IEC 104 network are port scan, brute force, and
Denial of Service (DoS). The DoS attack types are SYN
flood, ICMP flood, Xmas, and IEC 104 flood. All traffic data
were recorded in pcap format.

In recent years, there has been a significant surge in cyber
threats targeting SCADA systems, highlighting the necessity
for advanced security measures. Traditional network security
solutions often fall short in protecting SCADA environments
due to their unique communication protocols and operational
requirements. Consequently, there is a pressing need for spe-
cialized intrusion detection systems (IDS) that can accurately
identify and mitigate threats specific to SCADA networks.
This study addresses this gap by developing a comprehensive
dataset tailored for SCADA systems using the IEC 60870-5-
104 protocol, which is critical for enhancing the effectiveness
of IDS in these environments.

In the supervised learning method, the dataset is crucial
for developing a reliable and robust IDS model. Specifi-
cally, specific traffic data are needed in developing IDS on
the SCADA network; these traffic data must be taken from
data communication on the SCADA system because SCADA
network communication is different from that of traditional
computer networks [6].

Existing standard IDSs usually were trained on datasets
captured from traditional network traffic. Thus, the IDSs do
not perform well when we implement them on the SCADA
network traffic, due to different characteristics of the traf-
fic [7]. Publicly available SCADA network traffic datasets
are very limited. Thus, researchers face difficulty in obtaining
proper datasets for conducting experiments on the accu-
racy performance, and robustness of their proposed IDSs.
Therefore, this study creates a dataset as well as the IDSs
using six (6) different machine learning-based classification
algorithms i.e.: Artificial Neural Network, Categorical Naive
Bayes, Decision Tree, K-Nearest Neighbors, Gradient Boost-
ing, and Random Forest as the core detection engine. The
Random Forest, Gradient Boosting, and categorical Naive
Bayes algorithms have been proven to have excellent perfor-
mance on conventional network traffic datasets [8].

Moreover, the implementation of machine learning (ML)
algorithms in IDS has shown promising results in improving
detection accuracy and reducing false positives. The findings
from this research provide valuable insights into the strengths
and weaknesses of these algorithms when applied to SCADA
network traffic, offering a robust foundation for developing
more effective and reliable IDS solutions for protecting criti-
cal infrastructure.
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The main contribution of this study is the provision of
a new dataset of SCADA network traffic running the IEC
60870-5-104 protocol, allowing researchers to test the robust-
ness of their proposed IDSs. More specifically, this study
possesses various contributions in the domain of intrusion
detection for SCADA networks running the IEC 60870-5-104
protocol, as follows.

1. Development of an Authentic Dataset: This study suc-
cessfully generated a dataset derived directly from real
testbed traffic and supplemented it with various types
of attack traffic. The dataset not only reflects real
conditions within SCADA networks operating the IEC
60870-5-104 protocol but also encompasses a wide
range of relevant threats. Various attack data on the
dataset, i.e., data on port scan, brute force, and different
types of DoS.

2. Diversity of Attacks in the Dataset: The generated
dataset includes various types of attack data, such as
port scans, brute force attacks, and different forms of
DoS attacks. This diversity makes the dataset a rich
resource for studying and developing more comprehen-
sive and robust IDS models.

3. Identification of Specific Rules and Features for
IEC 104 Flood Attacks: This study contributes by iden-
tifying relevant rules and features for detecting flood
attacks on the IEC 104 protocol within SCADA net-
works. This is a crucial step in enhancing the accuracy
and effectiveness of IDS models in detecting complex
and specific attacks.

4. Performance Evaluation of IDS Models: The study
also includes a performance evaluation of the various
IDS models generated using different machine learning
algorithms. This evaluation aims to identify the best-
performing model that can be effectively implemented
in real-world SCADA environments.

In comparison to other studies focused on building
IEC 104 SCADA datasets, this research offers more diverse
and realistic attack scenarios. Robles-Durazno et al. [9]
emphasize the importance of hybrid testbeds that combine
physical and virtual components to accurately replicate the
complexities of SCADA networks. Likewise, Crussell et al.
[10] note that virtual environments, while cost-effective,
often fail to capture the low-level network behaviors criti-
cal for effective IDS model development. By generating a
dataset using a hybrid testbed that incorporates both physi-
cal and virtual elements, this study ensures the authenticity
and applicability of the data to real-world SCADA sys-
tems. As a result, the dataset produced in this research
can serve as a robust learning resource for developing
reliable IDS models that leverage artificial intelligence tech-
niques, with greater accuracy and relevance to actual SCADA
environments.

The rest of the paper is arranged as follows. Section II pro-
vides the background and related work about IDS on SCADA
networks. Section III discusses the research methodology
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used in this study. Section IV presents the experimen-
tal results and analysis, and Section V concludes the
work.

Il. BACKGROUND AND RELATED WORK

In this section, we briefly review the structure of IEC 104
SCADA data packets, malicious activities on SCADA net-
works, IDS-related works on SCADA networks, and other
research related to SCADA datasets.

A. SCADA IEC 60870-5-104 PROTOCOL

The IEC 104 protocol has become popular in the power plant
industry due to its support for automation generation control
(ACG) [11]. The IEC 104 protocol is a TCP/IP-based modifi-
cation of the IEC 60870-5-101 (IEC 101) standard for power
system monitoring and telecontrol [12], which are widely
used in modern SCADA systems built upon TCP/IP [13]. The
basic frame in the IEC-104 protocol is called the application
protocol data unit (APDU). The APDU is transmitted as
part of the TCP payload [14]. The maximum frame of the
APDU is 255 octets. The APDU is divided into two parts: the
application service data unit (ASDU) and the application pro-
tocol control information (APCI) [15]. APDU may contain
only APCI without ASDU [16]. For the IEC 104 protocol,
APDU has a start byte value of 0 x 68 as a header followed
by the 8-bit length of the APDU and 4-octet control fields
of 8-bit length this value is in the APCI section [15]. The
APCI contains basic information, such as APDU length or
sender and receiver sequence numbers, and has a fixed packet
length of 4 Bytes [17]. An APDU frame can be in U, S, or I
format [18].

B. MALICIOUS ACTIVITY ON THE SCADA NETWORK
Malicious activities in a SCADA network become very
complicated because the SCADA system becomes open to
heterogeneous networks for flexibility to reduce costs pur-
poses. TCP/IP is a protocol that is widely integrated with
SCADA protocols, such as distributed network protocol 3
(DNP3), Modbus, and IEC 60870-5-104 [11].

Port scanning is the initial step in computer network
attacks [19]. In port scanning, a probe packet is sent to the
target port, and based on the target system’s response or lack
of response, it can be inferred that the target port is in one of
the following states: open, closed, or filtered.

A brute force (BF) attack is a common type of attack
that may lead to intrusion and control being taken by an
attacker [20]. Brute force attacks are carried out to control
or retrieve data. This type of attack mostly leads to secure
shell (SSH) and file transfer protocol (FTP) services, which
will be discussed further in this study. Brute force attacks
work by counting every possible combination that can form
a password and then testing them to determine the correct
password. As the lengths and number of combinations of
passwords grow, the amount of time it takes to find the
correct password increases exponentially [21]. In devices and
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systems that have high computing resources, more security
methods can be embedded. For example, after usernames and
passwords are incorrectly inputted many times, the system
will be locked. However, SCADA devices, such as RTUs,
have limited computing resources, so this technique cannot
be applied to them.

The DoS has become one of the most common cyber
attacks targeting hosts [22]. DoS attacks are a malicious
way to consume users’ bandwidth [23]. A DoS attack on a
computer network is an attack on the availability of computer
resources to prevent legitimate users from accessing those
resources over the network [24]. DoS is a simple attack but
has a big impact if aimed at devices with limited compute
resources, such as RTU on SCADA. Now, DoS can be done
easily with Python scripts [25], using the Scapy library to
deliver the desired DoS packets. This DoS attack can be in
the form of an ICMP flood [26], SYN flood [27], Xmas [28],
and IEC 104 flood [29].

C. MALICIOUS ACTIVITY ON THE SCADA NETWORK
SCADA devices, such as RTUs, have low computing
resources, making it impossible to implement standard secu-
rity systems [30]. This limitation means that attacks, which
are less severe on traditional network devices may have a
major impact on SCADA devices.

Snort and Suricata are open-source IDSs that utilize
signature-based techniques to detect attacks based on prede-
fined rules [31] and are designed for more flexibility. Unlike
commercial IDSs such as Cisco Secure IDS, CyberSafe, and
Network Ice Blackie Devender; Snort and Suricata allow
administrators to add signatures or patterns deemed threaten-
ing on the network to their respective rules databases. Snort
is the most widely deployed IDS worldwide. It relies on a
relatively simple language for the specification of misuses
and attack signatures.

In recent years, machine learning has emerged as a solu-
tion for making IDSs used in detecting attacks on SCADA
network communication systems that have limited device
capabilities to process complex data. Conventional IDSs rely
on manually designed rules. These rules depend heavily
on professional experience, thereby making it challenging
to represent the increasingly complicated industrial control
logic [32]. Table 1 summarizes the studies on SCADA net-
work security.

In our research, we adopted a hybrid testbed combining
both physical and virtual components to ensure realistic and
practical outcomes [9]. The physical elements, such as the
Remote Terminal Units (RTUs), are crucial for obtaining
accurate data that reflect real-world scenarios.

It is important to note that we did not compare the
IDS model performance of our experiments with models
trained on other datasets. The main reason for this is that
datasets are generated under different circumstances, which
can result in variations in data distribution, attack scenarios,
network setups, and testbed environments. Since each dataset
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TABLE 1. Summary of SCADA network security works.

Pros and Cons

Ref. & (Year) Threats Methods Protocol
Gumaei et al. MiTM KNN, RSL-KNN, -
[7] (2020) CFS KNN
Egger et al. Port Scan, DoS Supervised, Semi-  IEC 104
[17] (2020) Supervised,
Unsupervised
Riyadi et al. MiTM BRC4 data DNP3
[21] (2021) encryption
Qian et al. MiTM, Replay, DoS, NHFC, SVN, Modbus/
[27] (2020) Zero-Day attack OCSVM, TCP
FCMSVM,
GENFIS
Grigoriou et. Zero-Day attack Honeypots IEC 104
al [4] (2022)
Arifin, et al. Port Scan, Rule-base, RF, IEC 104
[33] (2022) Bruteforce, ICMP Gradient
flood (ping flood), Boosting,
Xmas, IEC 104 flood.  Categorical

Naive Bayes

Provides a comprehensive comparison of methods for IDS models, but the
dataset used is not explained and they do not discuss the attack patterns
carried out by attackers nor explain the SCADA protocol, which is significant
since SCADA networks are different from general computer networks.

Provides a comprehensive comparison of methods for building an IDS but
does not discuss attack patterns and attack types on diverse datasets.

This paper discusses another perception of data encryption on SCADA DNP3
by securing the data path, which is explained comprehensively. It does not
explain the effect of data encryption on increased compute resource
requirements even though SCADA devices have limitations on their compute
resource capabilities.

This study used a large amount of data generated in plants, and the accuracy
of the IDS model obtained is high. However, the IDS model created cannot
determine the type of attack that occured.

This paper discusses the use of honeypots to protect SCADA assets that use
the IEC 104 protocol from Zero-Day attacks by hiding the SCADA device.

The dataset was generated using a physical testbed on an RTU device,
various attack data on the dataset were gathered, and a comprehensive
explanation of attack pattern recognition for SCADA networks was
provided.

is usually designed for specific conditions, making direct
comparisons between them would not be appropriate. Even
when datasets use the same standard, such as IEC 60870-5-
104, the scenarios executed in each testbed can vary. These
differences might include the types of attacks simulated, the
system configurations, or the operational conditions, all of
which shape the characteristics of the dataset.

D. DATASET ON SCADA IEC 60870-5-104

The dataset is considered an important component in machine
learning for creating IDSs. The effectiveness of existing
machine learning techniques for cyber-security depends on
the characteristics of the datasets [34]. The dataset used to
build IDS on traditional computer networks is no longer
relevant for building IDS on SCADA networks [28], [29],s0a
special dataset for IDS SCADA is required. Table 2 shows
the testbed characteristics we used to generate the dataset
compared to other studies’ testbeds.

SCADA dataset 104, generated by Egger et al. [17],
contains port scan and SYN flood attacks data in comma-
separated values (CSV) format. The attack data in this dataset
do not contain a variety of attack types. Compared to the
SCADA dataset in their studies, which is limited in attack
types, our dataset includes a broader range of attacks, making
it more suitable for training advanced IDS models.

The RICSel21 dataset [29] contains DoS, scanning, man-
in-the-middle (MiTM), and injection attacks. The dataset
is generated using a virtual testbed on the power network,
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TABLE 2. Comparison of SCADA testbed’s characteristics.

Ref. & (year) Protocol Testbed Threats

Eggeretal. [17] IEC 104 Virtual MiTM, DoS

(2020)

P. Maynard et.al IEC 104 Virtual MiTM

[35](2018)

C.Y. Linet.al 1IEC 104 Virtual DoS, scanning, MiTM,

[29] (2021) injection attacks

Arifin, et al. [33] IEC104 Hybrid Port Scan, Bruteforce,

(2022) ICMP flood (ping
flood), Xmas, IEC 104
flood.

and the dataset is stored in the form of raw data in pcap
format. Research using a virtual testbed was also carried
out by Maynard et al. [35] to create an attack dataset on
the IEC 104 SCADA network. The attack scenario in this
study was the MiTM attack. It must be noted that the result-
ing dataset was created using a virtual testbed. Although
it produces diverse attack data, it does not reflect the real
conditions of the IEC 104 SCADA system [6]. Unlike the
RICSel21 dataset [29] and the dataset in [35], which were
generated solely in virtual testbeds, our dataset leverages
a hybrid testbed approach. This allows us to capture both
the realistic network behaviors found in physical SCADA
systems and the scalability of virtual environments.
Robles-Durazno et al. [9] conducted a comprehensive eval-
uation of physical, hybrid, and virtual testbeds for the cyber-
security analysis of industrial control systems. Their findings
suggest that while virtual testbeds offer a cost-effective
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solution, they may introduce variances in network behavior
that could impact the accuracy of IDS models. The use of
hybrid testbeds, combining both physical and virtual com-
ponents, was shown to mitigate these issues by preserving
the fidelity of critical infrastructure, such as Remote Termi-
nal Units (RTUs), which are crucial for obtaining realistic
results.

Similarly, Crussell et al. [10] highlighted that although
virtual environments can replicate many aspects of SCADA
operations, there are significant differences in the low-level
network behaviors that can affect the detection capabilities
of IDS models. These variations emphasize the necessity of
using physical components in testbeds, especially when the
goal is to develop robust IDS solutions for real-world SCADA
networks.

The dataset [36] is used for health and contains MiTM,
DoS, and injection attack data. Because it is used for the
health sector, the normal data from this dataset are different
from the normal data from the SCADA dataset in the power
plant industry.

The traffic dataset in our dataset [33] is generated from real
conditions using a physical RTU on the testbed with scenarios
in the distribution section in the power generation industry.
The use of the TCP/IP protocol as a transmission medium for
the IEC 104 protocol allows the attacks that often occur on
traditional computer networks, such as port scan, brute force,
ICMP flood, SYN flood, and Xmas, to become executable on
SCADA networks. Furthermore, IEC 104 flood attacks are
simulated by sending ASDU packets with an unknown format
to the SCADA IEC 104.

. - T -~ .
~  Monitoring and
/ Controlling \

2 i S
Client/HMI :

88.88.88.6
l (Physical Device)

Malicious Machine : /
88.88.88.8 (Virtual Device)

lll. METHODOLOGY

The dataset development starts with the setting up of testbed
network topology. Then data collection process is carried out
with three scenarios.

A. TESTBED TOPOLOGY
This study used a hybrid testbed with physical devices com-
bined with virtual devices. To obtain reliable data, common
SCADA devices, such as RTUs and HMIs, were used as
physical devices. In this testbed, the virtual devices used were
the Historian server, an IDS sensor, and a malicious machine.
Fig. 1 shows the testbed topology. The testbed topology was
set up by mimicking the network environment of the power
distribution network of a regional electricity company. Under
the supervision of the company’s site engineer, we tune the
setup until it runs like a real power distribution network.
The SCADA IEC 60870-5-104 network topology con-
sists of a Historian server with an IDS Sensor, HMI, router,
malicious machine, RTU, cubicle, and power meter. RTU
1 and RTU 2 use a wireless connection, and RTU 3 uses a
wired connection and then connects to the HMI and Histo-
rian server with IDS sensors through switches and routers.
We do not use programmable logic controller (PLC) because
all PLC functions can be executed by RTU. In addition,
the RTU supports wireless data communication and has a
large memory [37]. The malicious machine is connected
to the router as a MiTM attack. The MiTM allows an
attacker to sit in between the communicating parties. The
attacker is able to read or modify communications, inject

L= .

\ .
: Field Area
/7

RTU 1 : 88.88.88.2 \ .
(Physical Device) \

Power
Meter
RTU 2 : 88.88.88.3

(Physical Device)

. / Router : 88.88.88.1 \ RTU 3 : 88.88.88.4 /
\ . (Physical Device) (Physical Device)
\ Historian Server and IDS X / i === @ /
. Sensor : 88.88.88.16 J \ i+ @ :
N (Virtual Device) ’ /
. IS
N .
SN~ . . -

FIGURE 1. The SCADA IEC 60870-5-104 testbed topology.
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> Frame 614: 153 bytes on wire (1224 bits), 153 bytes captured (1224 bits)

> Ethernet II, Src: Espressi_b@:81:d8 (24:6F:28:b08:81:d8), Dst: Dell 99:33:28 (8c:04:ba:99:33:28)

> Internet Protocol Version 4, Src: 88.88.88.2, Dst: 88.88.88.6

> Transmission Control Protocol, Src Port: 2484, Dst Port: 1668, Seq: 2, Ack: 1, Len: 99

> [2 Reassembled TCP Segments (100 bytes): #612(1), #614(99)]

> IEC 6087©-5-1@4: -> I (©,0)

~ IEC 6@87@-5-101/104 ASDU: ASDU=1 M_ME_NA_1 Spont IOA[1©]=10©, ... 'measured value, normalized value®

TypeId: M_ME_NA_1 (9)

@. .. ... SQ: False
.eee 1e1e MumIx: 1@
..e0 eell CauseTx: Spont (3)

Megative: False
Test: False

: Voltage
> QDS: Ox00
> TIOA: 11
> TI0A: 12
> TI0A: 13
> I0A: 14
> TI0A: 15
> TIO0A: 16
> TIO0A: 17
> I0A: 18
~ I0A: 19
IOA: 19

Value: |@,152679 (5@03)

> QDS: ©x80

FIGURE 2. Voltage and frequency monitoring in the normal scenario.

Frame 1358: 70 bytes on wire (560 bits), 70 bytes captured (56@ bits)
Ethernet II, Src: Dell 99:33:28 (8c:©4:ba:99:33:28), Dst: Espressi be:81:d8 (24:6f:28:b@:81:d8)
Internet Protocol Version 4, Src: 88.88.88.6, Dst: S88.88.88.2
Transmission Control Proteocol, Src Port: 7318, Dst Port: 2404, Seq: 1, Ack: 1, Len: 16
IEC 60870-5-104: <- I (©,0)
TEC 60870@-5-101,/104 ASDU: ASDU=1 C_SC_NA_1 Act ToA=1@1 ’single command’
TypeTd: C_SC_NA_1 (45)
@... .... — sQ: False
MumIsx: 1
CauseTx: Act (6)
Negative: False
Test: False

(vvvvy

- 200 el
.09 110

Open Circuit

FIGURE 3. HMI instruction to RTU 1 for open circuit in the normal scenario.

Scenario 1

ok

Port Scan Service and Port
Inform ation

Flood Attack (DoS)

Scenario 3: ICMP Flood i ' ‘ Scenario 6: TEC 104 Flood
Brute Force

cTi5E
Scenario 4: SYN Flood SeeHArIH SEXmas Attack

RTU Access

Scenario 2

Disrupted communication
and Reduce Availability

FIGURE 4. The attack scenario on the dataset.

commands, or drop packets [38]. Table 3 shows the list B. DATA COLLECTION SCENARIO
of SCADA IEC 60870-5-104 instructions mentioned in this The process of data collection was divided into three sce-
study. narios: normal data collection, attack data collection, and
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Frame 558029: 60 bytes on wire (4806 bits), 66 bytes captured (486 bits)

Encapsulation Cype: Ethernet {31

Arrival Time: [Jul 26, 2022 16:0

[Time shifr Ffar TE packeT - B T

Epoch Time: 1658804684 9860830060 seconds

[Time delta from prewvious captured Frame:

[Time delta from prewious displawed Trame:

[Time since reference or first Frame:

Frame Number: S529

Frame Length: 68 bytes (486 bits)

Capture Length: 60 bytes (486 bits)

[Frams iz markcd: Falac]

[Frame is ignored: False]

[Protocols in frame: eth:ethertype:ip:tcpl

[Coloring Rule Name: TCP RST]

[Coloring Rule String: tcp.flags.reset eq 1]
Ethernst II, Src:
Internet Protocol Wersion 4, Src: B8 _8A 88 _ 3,  Dst:

4:44. 986083000 WIB
2IE T e

. 0035888
2. 000035000 seconds]
3833 .8492098000 seconds]

Espressi e@c:az:fa (7c:Se:bd:06:az:fa8),
B8 _88

seconds]

Dst: PocsCompu cS:39:al (98:99:27:cS:38:al)
B8

Transmission Control Protocol, [Src Port: 15688, Dst Port:

58965] Seq: 1, Ack: 1, Len: @

Source Port: 15688
Destination Port: SOS96S5
[Stream index: 2561]
[TCP Segment Len: @]
Sequence number: 21 {relative seqgquence number)
Sequence number (raw): @

[MNext seguence number: 1 (relative sequence numbDer )]
Ackrnoal edgment nomber: 1 {relarive Aack number)
Acknowledgment number (raw): S18586226
930931 _ ... = Header engrh: 20 bytes (S)

+[Flag=s: oxeia (rRsST, ack)]

T ITTOOGT T U IOET =TT
[Calculated window size: S744]

[Window size scaling factor:
Checksum: x6118 [unwerified]
[Checksum Status: Unwerified]
Urgent pointer:
[SEQ/ACK analysis]

» [Timestamps]

FIGURE 5. The validation of port scan activity using Snort and Suricata.

e
56 byTes on wW

Encapsulation

Arrival Time:

shift For This packe

Time: 1658811650 .492 288 seconds

delta Ffrom previous captured Frame:

SaTT2E
66 byres (528 bits)

Mumbeer :
Length:
Capture Length: 66 bytes (SZe bics)

9. a9> 310000 WIE

-2 (no window scaling used)]

8 .890124868 seconds]
delta From previous displayed Fframe: 8.08001248900 seconds)
since reference or first frame: 18799 _ 3IS5SSI1ISEEE seconds]

[Frame is marked: False]
[Frame i= jignored: False]
[Frotocols im Frame: eth:ethertwpe:ip:tcp)
[Colorimng Rule Mame: TCOP]
[Colorimng Rule String: tcpl
Erhermer II, Src: PocsCompu_cS5:38:al (88:00:27:cS:308:tal), DsSr: Artmel 12:34:5S8 (08:04:25:12:38:58)
Intermst Protocol Version 4, Src: S8 ._88.88.8, Dst: 88 .88_.88.4
Transmission Control Protocol, Src Port: S9576, Dst Port: 21, Seqg: 42, Ack: 55, Len:
Source Port: S957a
Destination FPort: Z1L
[Stream index: ZIZSOO]
[TCP Segment Len: @7
Seqguence number: 12 (relative seqguence number)
Sequence number (raw): B69L161678
[Mext seguence number: 12 (relatiwve seguence mumber)]
Acknowledgment number: 55 (relatiwve ack number)
Acknowledgment number [(Fraw): 111717 794F
Lees . = Header Length: 32 bytes (&)

» Flags: ©xe18 [ACK)
Window size waluwe: SO2
[Calculated window size: S4256]
[Window sirze scaling factor: 1287
Checksum: @xdes7? [unwverified]
[Checkswum Status: Unwverified]
Urgent pointer:

» Options:

» [SEQsAacCK analysis]

FIGURE 6. The validation of a brute force attack using Snort and Suricat.

TABLE 3. Important instructions of Scada IEC 104 network security.

Instruction Description CauseTx
C SC NA 1 Single Command 6
CIC NA 1 Setpoint Command, Normalized Value 6
M ME NA 1 Measured Value, Normalized Value 3
M SP NA 1 Single Point Information 3

collection of normal and attack data combinations. The sce-
narios are as follows:

1. Normal data retrieval was performed on a SCADA
system running without an attack. In this scenario, the
HMI and RTU communicate to receive voltage and
frequency monitoring data. Fig. 2 shows the monitored
voltage seen from Wireshark in a normal scenario. The

VOLUME 12, 2024

(12 bytes), MNo-Operatiom (NOP), No-Operation (NOP), TimestCamps

HMI also sent a command to the RTU to perform
the switching on the cubicle shown in Fig. 3 on the
monitoring process of voltage and frequency. The HMI
received ASDU packets M_ME_NA_1 on Information
Object Address (IOA) 10, IOA 11, IOA 13 for voltage,
and IOA 19 for frequency in the normal scenario.In
Fig. 2, IOA 10 indicates a voltage value of 225 volts,
and IOA 19 indicates an electric current frequency
of 50 Hz.

Attack data retrieval was carried out by attacking each
RTU. The attacks are port scan, brute force, and DoS.
The data were then stored in separate recording files for
each type of attack in pcap format. Kali Linux was used
by malicious machines to carry out attacks. The port
scan applications, i.e.: Nmap and Masscan were used
to find vulnerabilities in the SCADA system. Brute

170559



IEEE Access

M. A. Syamsul Arifin et al.: Novel Dataset for Experimentation With IDS in SCADA Networks

Attack Type

[ ! (1L LAY I L U
Frame 862558; 68 bytes on wire (488 bits), 68 bytes captured (488 bits)

Encapsulation type: Ethernet (1)

Arrival Time: [Jul 26, 2622 13:50:33.836536008 WIB|

[Time shift for this packet: 0.000060080 seconds]

Epoch Time: 1658818233.836536000 seconds

[Time delta from previous captured frame: §,B20BG0B80 seconds]

[Time delta from previous displayed frame: @.B2986B080 seconds]

[Time since reference or first freme: 17382 6995518408 seconds]

Frame Number: B62558

Frame Length: 68 bytes (488 bits)

Capture Length: 68 bytes (488 bits)

[Frase is marked: False]

[Frame is ignored: False]

[Protocols in frame: eth:ethertype:ip:tcp]

[Coloring Rule Name: TCP SYN/FIN]

[Coloring Rule String: tcp.flags & 6x82 || tcp.flags.fin == 1]

«d Information Leak]

cation: Attempted Information Leak]

+ Frame 946577: 60 bytes on wire (480 bits), 60 bytes captured (480 bits)

Encapsulation type: Ethernet (1)
Arrival Time: Jul 26, 2822 14:17:48, 394977000 WI

[Time shift for this packet: 8.DB600AB00 seconds]

Epoch Time: 165BB19868.394977608 seconds

[Time delta from previous captured frame: 8.0@5529000 seconds]
[Time delta from previous displayed Trame: 0.005529600 seconds]
[Time since reference or first frame: 19817.257992000 seconds)
Frame Mumber: 946577

Frase Length: B8 bytes (480 bits)

Capture Length: 66 bytes (486 bits)

[Frame 15 marked: False]

[Frame is ignored: False]

[Protocols in frame: ethiethertype:ip:tep]

[Coloring Rule Name: TCP RST]

[Coloring Rule String: tcp,flags.reset eq 1]

+ Ethernet I1, Src: PcsCompu _c5:38:al (88:08:27:¢5:30:a1), Dst: Espressi b@:81:df (24:6f:28:b0:81:d8)

Ethernet II, Src: PosCompu_ch:38:al (88:80:27:c5:39:a1), Dst: Espressi_b8:81:d8 (24:6f:28:b0:81:d8) + Internet Protocol Version 4, Src: 88.88.88.8, Dst: BB.B8.88.2

Internet Protocol Version 4, Src: B8.88.88.8, Dst: 88.88.88.2

Transs i 'DP,P‘!'}EFS,J .If:gggg?l. Src Port: 7564, Dst Port: 2404, Seq: @, Len: @
Code:
Checksum: @xf7ff [correct]
[Checksum Status: Goad]
Tdentifier (BE): 8 (Bx0668)
Tdentifier (LE): & (GxBGG)
Sequence number (BE): 6 (0x0069)
Sequence number [LE): O (8x0068)

[Rezpanse frame: 774626)

Frame 862558; GO bytes on wire (480 bits), 6@ bytes captured (486 bits)

Encapsulation type: Ethernet (1

Arrival Time: {Jul 26, 2022 13:50:33.836536600 WIB

[Time shift for this packet: o.0800BA0RA seconds]

Epoch Time: 1658818233.836536000 seconds

[Time delta from previous captured frame: §.B29860D88 seconds]

[Time delta from previous displayed frame: 0.029860000 seconds]

[Time since reference or first frame: 17382.699551000 seconds]

Frame. Number: B62558

Frame Length: 68 bytes (480 bits)

capture Length: 68 bytes (489 birs)

[Frame i3 marked: False]

[Frame 15 ignored: False]

[Protocols in frame: eth:ethertype:ip:tep]

[Coloring Rule Mame: TCP SYN/FIN]

[Coloring Rule String: tcp.flags & 6x02 || tcp.flags.fin == 1]
Ethernet II, Src: PosCompu_cB:38:al (B8:80:27:c5:39:a1), Dst: Espressi bd:81:d8 (24:6f:28:b0:81:d8)
Internet Protocol Version 4, Src: B8.88.88.8, Dst: 88.88.88.2
Transmission Control Protocel, Src Port: 7564, Dst Port: 2484, Seq: 6, Len: @

()

FIGURE 7. The validation of DoS attack using Snort and Suricata.

force attacks were executed to gain access to RTU 3.
Hydra and Medusa were used for launching brute force
attacks, i.e.: SYN flood, ICMP flood, Xmas attacks
while IEC 104 flood. IEC 104 flood attack was done by
flooding the RTU using unknown ASDU (104) packets.

3. Normal-attack data retrieval was done by combining

the two previous scenarios. The steps taken before
launching an attack were: first, to scan all devices in
the testbed to find vulnerabilities. Then, after finding
the vulnerabilities, a brute force attack aimed at RTU
3 was carried out to take over the device. DoS attacks
are carried out afterward to overwhelm and hinder
communication between the HMI and the RTU.

Six (6) scenarios are prepared for conducting the attacks.
The first scenario is to perform port scanning to reveal
which services and ports are open. After this information is
obtained, various attacks can be executed, leading to vari-
ous scenarios. In Scenario 2, a brute force attack targeting

170560

= Transmission Contrel Protocol, Sre Port: 19498, Dst Port: 2484, Seq: 8, Ack: 1, Len: @

Source Port: 18498
Destination Port: 2484
[Stream index: 264263]
[TCP Segment Len: @]
Sequence nusber: B {relative sequence number)
Sequence number {raw): 54872
[Next sequence number: 1
Acknowledgment number: 1

(relative sequence number)]
(relative ack number)

Acknowledgment number (raw): 38348
., = Header Length: 20 byt

Window size value: 8192
[Calculated window size: B192]
Checksum: Bxfedf [unverified]
[checksum Status: unverified]
Urgent pointer: @

¢ [Timestamps ]

(e)

the SSH and FTP services was carried out. In Scenario 3,
an ICMP flood is used to disrupt the communication between
the HMI and RTU with ICMP packets. In Scenario 4, a SYN
flood attack is done by sending TCP data packets with the
SYN flag massively. The Xmas attack in Scenario 5 is per-
formed by sending all flags on TCP data packets, i.e., FIN,
SYN, RST, PSH, ACK, and URG [39]. In the last scenario,
IEC 104 attacks are performed by sending unknown ASDU
packets massively to disrupt the communication between the
HMI and RTU. All types of DoS attacks are directed at
port 2404, which in this study is the IEC 104 service port.
Fig. 4 shows the scenarios for creating the dataset.

IV. RESULT AND ANALYSIS

This section presents the attack patterns of each scenario
along with their analyses. Captured traffic attributes of Wire-
shark are juxtaposed with the detection results of Snort and
Suricata to explain the attacks in the dataset and to reveal

VOLUME 12, 2024
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07/26-14:46:11.425909| [**] [1:6666617:1] "IEC 184 Flood Attack with Reqco3 Cause of Transmission (40)"
[Classification: Potentially Bad Traffic] [Priority: 3] {TCP} 88.88.88.8:65233 -> 88.88.88.4:2404

[**]

97/26/2022-14:46:11.425909| [**] [1:6666617:1] IEC 104 Flood Attack with Reqco3 Cause of Transmission (40) [**]
[Classification: Potentially Bad Traffic] [Priority: 3] {TCP} 88.88.88.8:65233 -> 88.88.88.4:2404
~ Frame 982230: 182 bytes on wire (1456 bits), 182 bytes captured (1456 bits)

Encapsulation type: Ethernet (1)

Arrival Time: [Jul 26, 2022 14:46:11.425909000 WIB|

[Time shift for this packet: ©0.000000888 seconds]

Epoch Time: 1658821571.425909000 seconds

[Time delta from previous captured frame: 0.014826000 seconds]

[Time delta from previous displayed frame: ©.000000000 seconds]

[Time since reference or first frame: 20720.288924000 seconds]

Frame Number: 982230

Frame Length: 182 bytes (1456 bits)

Capture Length: 182 bytes (1456 bits)

[Frame is marked: False]

[Frame is ignored: False]

[Protoceols in frame: eth:ethertype:ip:tcp:iec60870 104:iec60870 asdu]

[Coloring Rule Name: TCP SYN/FIN]

[Coloring Rule String: tcp.flags & ©x02 || tcp.flags.fin == 1]
Ethernet II, Src: PcsCompu_c5:30:al (88:80:27:c5:30:al), Dst: Atmel_12:34:58 (00:04:25:12:34:58)
Internet Protocol Version 4, Src: 88.88.88.8, Dst: 88.88.88.4
Transmission Control Protocol, Src Port: 65233, Dst Port: 2404, Seq: ©, Ack: 1, Len: 128
IEC 60870-5-184: <- I (13364,13364)

START

ApdulLen: 184

vees ...0 = Type: I (Ox00)

Tx: 13364

Rx: 13364
~ IEC 60870-5-101/104 ASDU: ASDU=26728 <Typeld=104> Reqco3 NEGA IOA[104]=6842472,... '<Unknown TypeId=>'
Typeld: Unknown (104}
@... .... = SQ: False
L1160 186060 = NumIx: 184
..10 100@ = CauseTx: Reqco3 (40)
i = Negative: True
©... .... = Test: False
0A: 104
IAddr: 26728
I0DA: 6842472

Raw Data: 686868686868686868686868686868686868686868686868...

FIGURE 8. The validation of IEC 104 flood attack using Snort and Suricata.

Normal data and Malicious Activity on the Dataset A. DATA COLLECTION SCENARIO

562814 This study uses Snort 3.1.17.0 and Suricata 6.0.6 to prove that

there was an attack on the dataset. The rules used to detect

J— attacks on Snort and Suricata were the same because some
rules in Snort can be also used in Suricata. For the detection of
the port scan, brute force, SYN flood, ICMP flood, and Xmas
attacks, we used standard rules from Snort and Suricata,
while custom-made rules were used for IEC 104 flood attack
detection. To demonstrate the attack detection, the dataset

400000

£ andsss containing normal-attack traffic was used.
e In the port scan activity, the attacker sends TCP packets
s with the SYN flag (0 x 002) to the target port then the target
host replies with SYN, ACK (0 x 012), which indicates that
200000 the destination port is open [40], or RST, ACK (0 x 014) [41],
which indicates the destination port is closed. Table 4 presents
the results of a port scan using Nmap.
100000
TABLE 4. Port information on the RTU in the testbed after port scan
activity.
30000 30000 o5ypg
o 5364
el et T * RTU PORT SERVICE STATUS
: RTU 1 2404 iec-104 Open
FIGURE 9. Number of classes in the dataset. RTU 2 2404 ieon104 Open
21 ftp Open
22 ssh Open
the attack pattern. Furthermore, the testing results of the IDS RTU3 ?23 . Eggine 852
models using the machine learning algorithms are presented 2404 iec-104 Open
to justify the reliability of the dataset. 20000 dnp Filtered
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SCADA IEC 60870-5-

104 Dataset

)

Data
Normalization

v

Split data Split Dataset to
to 70% : i Test Data and
30% Train Data
Calculating RPreClilsi;ri, .
Permormance | ecall, Fl- Best Algorithms
Matrix Score, and —{  for attack
Acuracy detection
v
ROC curve
and AUC Comparing Machine
* Learning Algorithms
Cross
Validation

FIGURE 10. Number of classes in the dataset.

Fig. 5 shows the results of the detection of port scan
activity on Snort and Suricata along with the correlation of
the payload. The results of the port scan activity show that
port 50965 is closed because the RTU 3 device replies with
TCP flags 0 x 014 (RST, ACK).

The information inside the boxes with the red line in Fig. 5
shows the timestamp, port information, and IP address of
the warning message from Snort and Suricata, which are
the same as the information obtained from Wireshark. The
port scan scenario revealed that ports on the RTU devices
were either open or closed based on the TCP flags captured
(SYN, ACK, RST). The correlation between the warning
messages from Snort and Suricata with the data captured in
Wireshark confirmed the presence of port scanning activities
within the traffic dataset, as shown in Table 3 and Fig. 5. This
fact indicates that the dataset accurately represents real-world
attack scenarios, which is critical for its effectiveness in IDS
testing.

A brute force attack involves the submission of many user-
name and password combinations by an attacker, intending
to access data and resources. In this study, brute force attacks
lead to FTP and SSH services on RTU 3. The correlation
between Snort, Suricata, and Wireshark data, as shown in
Fig. 6, confirmed the presence of these attacks in the dataset.
The results demonstrated that the dataset could effectively
capture brute force attacks, which are common threats to
network security. In Fig. 6, the Snort and Suricata timestamp
indicates a brute force attack in the traffic dataset.

170562

SCADA systems under DoS attacks can face severe per-
formance issues. DoS attacks are very flexible and can take
different forms in different network settings [42]. In this
study, a DoS attack was performed to disrupt and inhibit
communication between the HMI and the RTU. In some
conditions, when the DoS attack worsens, the RTU becomes
slow to process sensor results and fails to send sensor data to
the HMI. DoS attacks were also simulated in several forms,
including ICMP flood, SYN flood, Xmas flood, and IEC
104 flood. These attacks were targeted at disrupting commu-
nication between the HMI and RTU. The successful detection
of these attacks by both Snort and Suricata, as corroborated
by Wireshark data (Fig. 7), further supports the validity of
the dataset. The DoS attacks were aimed at all RTUs. The
timestamp in the warning messages from Snort and Suricata
is in accordance with the information captured by Wireshark
as shown in Fig. 7. These facts indicate there is a DoS attack
in the dataset. (a) shows the correlation between the Snort
and Suricata detection results with the payload on Wireshark
for ICMP flood attack detection, (b) shows the correlation
between the Snort and Suricata detection results with the pay-
load on Wireshark Xmas attack detection, and (c) shows the
correlation between the Snort and Suricata detection results
with the payload on Wireshark for SYN flood detection.

In the IEC 104 flood attack, ASDU was sent using
an unknown typeid (104) with the cause of transmission
(CauseTx) 40 with Numlx 104. This attack successfully
disrupted RTU and HMI communication. IEC 104 flood is

VOLUME 12, 2024
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FIGURE 11. The confusion matrix for each IDS model.
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FIGURE 12. The AUC and ROC curves for each model.

done by modifying the IEC 60870-5-104 protocol packet and
sending an unknown ASDU format (104) then using Reqco3
(40) for the causeTX value. Object address (OA) is modified

170564

True Positive Rate

True Positive Rate

True Positive Rate

ROC curves for Categorical Naive Bayes

10 ( T —— -
08
06
i —— ROC of class normal, AUC = 0.99
~—— ROC of class bf, AUC = 1.00
| —— ROC of class ps, AUC = 1.00
‘ —— ROC of class icmpf, AUC = 0.95
ot — ROC of class synf, AUC = 0.99
=20 s —— ROC of class xmass, AUC = 0.95
| ot = ROC of class iec104f, AUC = 1.00
L ==+ micro-average ROC curve, AUC = 0.99
‘.-"' ==+ macro-average ROC curve, AUC = 0.98
00
00 02 04 06 o8 10
False Positive Rate

ROC curves for K-Nearest Neighbors

il ROC of class normal, AUC = 0.81
ROC of class bf, AUC = 1.00
—— ROC of class ps, AUC = 0.88
—— ROC of class icmpf, AUC = 0.89
- ROC of class synf, AUC = 0.92
02 ~—— ROC of class xmass, AUC = 0.90
+ ROC of class iec104f, AUC = 0.98
* micro-average ROC curve, AUC = 0.95
* macro-average ROC curve, AUC = 0.91

02 04 06

False Positive Rate

oe 10

ROC curves for Random Forest

- -

a6 W

ROC of class normal. AUC = 0.96
ROC of class bf, AUC = 1.00
ROC of class ps, AUC = 1.00
ROC of class icmpf. AUC = 0.95
ROC of class synf. AUC = 0.98
02 - ROC of class xmass, AUC = 0.95
e === ROC of class iec104f, AUC = 1.00
" ==+ micro-average ROC curve, AUC = 0.98
L == macro-average ROC curve, AUC =098

0o

04

02 04 06

False Positive Rate

os 10

by using address 104. Fig. 8 shows the correlation between
the Snort and the Suricata detection results with the payload
on Wireshark for IEC 104 flood detection.
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Cross Validation Scores for Artificial Neural Network (10 folds)
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FIGURE 13. The cross-validation results for each model.

In the attack scenario, we sent a total of 485,760 attack
packets. There are false alarms from the intrusion detection
results generated on Snort and Suricata. Table 5 shows the
results of intrusion detection from Snort and Suricata.

TABLE 5. Snort and Suricata detection resuit.

IDS Detection False Detection Undetected
Snort 364,940 1,199 120,621
Suricata 364,658 3,156 117,946

False detection refers to normal communication that is
detected as a port scan; the activity is a three-way handshake
activity, which is a standard of TCP communication protocol.
From the performance measurements carried out on Snort,
0.25% were false alarms and undetected packets accounted
for 24.8% of the total detected ones. For Suricata, 0.65% were
false alarms, and undetected packets accounted for 24.2% of
the total suspected activity. The use of the same rule in Snort
can detect more suspected activity than in Suricata.
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Cross Validation Scores for Categorical Naive Bayes (10 folds)
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B. MACHINE LEARNING APPROACH FOR DATASET
TESTING

Based on the known attack patterns, preprocessing is car-
ried out to create training materials for the IDS models
using machine learning techniques. In this study, we use
classification algorithms such as Artificial Neural Network,
Categorical Naive Bayes, Decision Tree, Gradient Boosting,
K-Nearest Neighbors, and Random Forest to detect attacks in
the dataset. Fig. 9 presents a comparison of normal data and
attack data on the dataset after preprocessing.

The total dataset used after preprocessing is 1,048,574
packets. Normal data comprises the majority of the dataset
with a total of 562,814 packets; SYN flood attacks
totaled 303,336 packets, ICMP floods totaled 30,000 pack-
ets, Xmas 0,000 totaled packets, IEC 104 flood totaled
25,126 packets, port scan totaled 91,934 packets, and brute
force attacks totaled 5,364 packets. Fig. 10 shows the
workflow used in this study to determine the best IDS
model.
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TABLE 6. The result of the performance evaluation.

. Performance
Model Evaluation Accuracy Precision Recall F1-Score
Normal 0.92 0.85 0.89
Port scan 0.86 0.83 0.85
Brute force 0.48 0.60 0.54
Atrtificial Neural Network ICMP flood 86.49% 1.00 1.00 1.00
Syn flood 0.76 0.87 0.81
Xmas 0.98 091 0.94
1IEC 104 flood 1.00 1.00 1.00
Normal 0.92 0.87 0.90
Port scan 0.89 0.81 0.85
Brute force 0.86 0.60 0.71
Categorical Naive Bayes ICMP flood 88.47% 1.00 1.00 1.00
Syn flood 0.80 0.92 0.85
Xmas 0.98 0.91 0.94
IEC 104 flood 1.00 1.00 1.00
Normal 0.93 0.96 0.95
Port scan 0.94 0.97 0.95
Brute force 091 0.92 091
Decision Tree ICMP flood 93.66% 1.00 1.00 1.00
Syn flood 0.93 0.87 0.90
Xmas 0.99 0.96 0.97
IEC 104 flood 1.00 1.00 1.00
Normal 091 0.94 0.93
Port scan 0.88 091 0.89
Brute force 0.65 0.60 0.63
Gradient Boosting ICMP flood 91.01% 1.00 1.00 1.00
Syn flood 0.90 0.84 0.87
Xmas 0.98 0.96 0.97
IEC 104 flood 1.00 1.00 1.00
Normal 0.87 0.93 0.90
Port scan 0.89 0.76 0.82
Brute force 0.69 0.61 0.64
K-Nearest Neighbors ICMP flood 87.23% 1.00 1.00 1.00
Syn flood 0.86 0.80 0.83
Xmas 0.92 0.95 0.93
IEC 104 flood 0.77 0.75 0.76
Normal 0.95 0.94 0.94
Port scan 0.95 0.97 0.95
Brute force 0.95 0.88 0.91
Random Forest ICMP flood 93.66% 1.00 1.00 1.00
Syn flood 0.90 0.90 0.90
Xmas 0.98 0.97 0.97
IEC 104 flood 1.00 1.00 1.00

The normalization of the dataset was performed, leaving
only the required data related to the attack data. We split
the dataset into 30% testing data and 70% training data. The
features used to create the IDS model using machine learn-
ing are tcp.flags, tcp.srcport, tcp.dstport, protocol, frm.len,
icmp.type, tcp.ckcsum, start.frame, typeid, causetx, ioa, and
addr. tep.flags. The features are the ones that contain special
marks in the TCP protocol. The tcp.srcport is the source port
of the sender, fcp.dstport is the destination port for the sent
data, protocol is the type of protocol used in SCADA commu-
nication, frm.len is the length of the data frame that was sent
or received, icmp.type is the type of icmp packet transmitted,
tep.ckesum is the integrity of data portions for data transmis-
sion, start.frame is the header of the SCADA IEC 60870-5-
104 data packet with a value of 0 x 68, typeid is a feature that
describes the command to monitor the condition of the RTU
as well as the command by the HMI to execute the program
to the RTU device, causetx is the cause of transmission in
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the SCADA system IEC 60870-5-104 that contains a code or
value to validate the received ASDU packet, ioa is used to
uniquely identify each item on the device and is transmitted
in each ASDU that includes information about that particular
input or output, and addr is the field of the ASDU address.
Matrix values such as falsel positive (FP), true negative
(TN), and false negative (FN) are used to evaluate the per-
formance of the testing model. The precision, recall, and
F-measure (F1 score) values are considered for validating
the accuracy result. The performance metrics are determined

by (1)—(4).

(TN + TP)
Accuracy = (D
(TN + TP + FN + FP)
.. TP
Precision =——— (2)
(TP + FP)
TP
Recall =— 3)
(TN + FP)
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Precisi Recall
F1 Measure = 2( l‘eCTSI’OII x Recall “4)
(Precision + Recall)

By displaying the various ways through which a classi-
fication model makes errors, the confusion matrix provides
valuable information about the type and frequency of these
errors. This knowledge is essential for understanding the
performance of the classifier and identifying areas for
improvement. Table 6 presents the results of the performance
evaluation. Fig. 11 presents the confusion matrix of the IDS
models for each algorithm and Fig. 12 presents the area under
the curve-receiver operating characteristic (AUC-ROC) for
each model. The ROC is used to visualize the trade-offs
between the true positive rate (TPR) and the false positive
rate (FPR). Further, to define the capability of the model to
differentiate the classes, we use the AUC to present the degree
of separability of the trained model.

Performance metrics such as accuracy, precision, recall,
and F1-score were calculated to assess the IDS models. The
Random Forest and Decision Tree algorithm achieved the
highest accuracy at 93.66%, followed by Gradient Boosting
at 91.01%, Categorical Naive Bayes at 88.47%, K-Nearest
Neighbors at 87,23%, and Artificial Neural Network at
86,49%.

Validated results are shown in the AUC-ROC curve that
measures the overall model performance. The curves validate
the model’s ability to classify normal and attack data. In this
study, cross-validation was also conducted to ensure that the
model was not overfitting, with the results confirming the
robustness of the model (Fig. 13). The high performance
across different algorithms and the validation against known
attack patterns suggest that the dataset is highly reliable for
training IDS models.

V. CONCLUSION AND FUTURE WORK

This study has made a significant contribution to the domain
of cybersecurity for SCADA systems by creating a compre-
hensive dataset using physical SCADA devices that operate
within the electrical distribution process, utilizing the IEC
60870-5-104 protocol. The dataset includes various types of
malicious activity data, such as port scan, brute force, ICMP
flood, SYN flood, Xmas, and IEC 104 flood attacks. Notably,
the IEC 104 flood attack was simulated by modifying the IEC
104 packets and sending a large volume of them to each RTU.
The traffic data in the dataset are categorized into normal,
attack, and combined normal-attack types, ensuring a robust
foundation for developing and evaluating Intrusion Detection
Systems (IDS).

Experimental results indicate that all DoS attacks com-
monly executed in traditional computer networks can also
be launched on the SCADA IEC 60870-5-104 network, with
potentially more severe consequences due to the limited
computing resources of SCADA devices. This highlights the
critical need for specialized security measures in SCADA
environments.

The open-source IDSs employed in this study yielded
mixed results. Suricata generated more false alarms than
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Snort but had a higher detection rate for attacks within
the dataset. The reliability of the created dataset is further
supported by the detection results obtained using machine
learning models, with Decision Tree and Random Forest
algorithms achieving the best accuracy of up to 93.66%.
The similarity in accuracy between these two algorithms is
attributed to their shared use of decision trees as the basis for
decision-making. The Random Forest algorithm, in particu-
lar, benefits from the ensemble approach, combining multiple
tree predictors to enhance overall performance. Random For-
est is a combination of tree predictors such that each tree
depends on the values of a random vector sampled indepen-
dently and with the same distribution for all trees in the forest.

Given SCADA’s inherent limitations in device capabilities,
especially as these systems are increasingly connected to
open networks to reduce operational and monitoring costs,
there is a clear need for specific IDS solutions tailored to these
environments.

Future research stemming from this study could explore
the application of advanced machine learning techniques,
such as deep learning algorithms, for anomaly and attack
detection in SCADA networks. These approaches have the
potential to leverage the extensive dataset created in this study
to enhance detection accuracy and adaptability to emerging
attack methods. Additionally, future work could focus on
developing efficient algorithms and architectures for real-
time anomaly and attack detection in SCADA networks, with
an emphasis on optimizing model inference speed and scal-
ability. This is particularly important for managing the high
volume and velocity of network traffic in operational SCADA
environments, ensuring timely and accurate threat detection.
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