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ABSTRACT As a distributed machine learning paradigm, federated learning has attracted wide attention
from academia and industry by enabling multiple users to jointly train models without sharing local data.
However, federated learning still faces various security and privacy issues. First, even if users only upload
gradients, their privacy information may still be leaked. Second, when the aggregation server intentionally
returns fabricated results, themodel’s performancemay be degraded. To address the above issues, we propose
a verifiable privacy-preserving federated learning scheme VPPFL against semi-malicious cloud server.
We use threshold multi-key homomorphic encryption to protect local gradients, and construct a one-way
function to enable the users to independently verify the aggregation results. Furthermore, our scheme
supports a small portion of users dropout during the training process. Finally, we conduct simulation
experiments on the MNIST dataset, demonstrating that VPPFL can correctly and effectively complete
training and achieve privacy protection.

INDEX TERMS Privacy protection, federated learning, verifiable, threshold multi-key homomorphic
encryption.

I. INTRODUCTION
Recently machine learning technology has played a key
role in numerous fields. For example, it has achieved
significant results in medical prediction [1], [2], autonomous
driving technologies [3], [4], and image recognition [5].
In machine learning, data privacy and security are key
concerns. For example, medical data often contains a lot of
sensitive personal information. If an unauthorized third party
accesses medical data, it can lead to a serious privacy breach
that affects the interests of patients [6], [7]. Additionally,
since traditional machine learning typically operates on
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unencrypted data, this also poses a serious risk of privacy
leakage.

To address these issues, Google proposed federated
learning in 2016 [8]. In federated learning(FL), users only
need to share the local gradients instead of original valuable
data. This method conveniently utilizes sensitive information
while mitigating the risk of privacy breaches that may arise
from collecting data from different users.

However, current research indicates that even if users only
upload gradient information, their privacy could still be com-
promised [9], [10]. Attackers might exploit vulnerabilities in
cloud server to reveal specific attributes of training samples,
or fabricate aggregation results to induce users to leak more
valuable information. In some extreme cases, attackers could
even use the leaked data to reconstruct users’ original data.
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On the other hand, motivated by illicit profits, malicious
cloud server might return incorrect aggregation results to
users. For example, in order to reduce its computation costs,
the cloud server may use a more simplified and less accurate
model to process the uploaded gradients, or even directly
modify the aggregation results [11], [12].

To address these issues, we propose the Verifiable
Privacy-Preserving Federated Learning (VPPFL). Our con-
tributions are outlined as follows:

• We design a verifiable federated learning mechanism to
deal with the semi-malicious cloud server. This scheme
enables users to independently verify the aggregation
results without the intervention of a trusted third party,
and can effectively prevent collusion attacks initiated by
the cloud server in collaboration with a small portion of
users.

• Our scheme employs multi-key threshold homomorphic
encryption to protect users’ privacy data, and allows a
small portion of users dropout during training without
adding additional burden to the server. Even if several
users fail to upload their data, the training process won’t
be interrupted.

• We provide security analysis and simulation experi-
ments to validate the security and efficiency of VPPFL.

The rest of this paper is organized as follows. Section II
reviews the current relevant research and the basic concepts
and techniques involved. Section III introduces the system
model and security requirement. Section IV elaborates in
detail the teshnical specific of VPPFL. We analyze the
security and performance of VPPFL in Section V. Section VI
presents the experimental analysis results. Finally, sectionVII
concludes the work.

II. RELATED WORK AND RELEVANT CONCEPTS AND
TECHNOLOGIES
A. RELATED WORK
When constructing privacy-preserving FL, there are three
commonly used cryptographic tools, i.e. differential privacy
[13] and homomorphic encryption [14].
Differential privacy is a privacy protection technique with

provable security, which protects data by adding random
noise. In 2006, Microsoft’s Dwork [15] first proposed the
differential privacy technology, and later in [16], a new
differential privacy mechanism Propose-Test-Release(PTR)
was used to achieve high-quality differential privacy results.
Geyer et al. [17] used differential privacy for the first time in
FL to protect participants’ data by adding Gaussian noise on
the server side. Wei et al. [18] employed a local differential
privacy strategy during the local model updates of deep neural
networks. They protect the local gradient by adding noise
before uploading the local model. However, this method does
not take users dropout into consideration.

Homomorphic encryption is now widely used in the con-
struction of privacy-preserving FL. Rivest andDertouzos [19]
introduced homomorphic encryption in the asynchronous

stochastic gradient descent training. However, all users utilize
the same private key, leading to a potential risk: if the server
colludes with some users, the data privacy of other users
cannot be guaranteed. Wang et al. [20] in their research
adopted homomorphic encryption to protect users’ local data
and implemented access control to verify the credibility of
user identities, effectively defending against threats from
internal attacks. Ma et al. [21] used multi-key homomorphic
encryption to encrypt the model before updating the local
gradients. Decryption requires the collaborative participation
of all users to prevent unauthorized access to participant’s
data. As a result, if users dropout in the middle of the training
process, decryption cannot be achieved, which is impractical
for real-world FL.

Recently, the research community has proposed various
schemes to address the data integrity challenge in FL.Xu et al.
[22] introduced an innovative verifiable privacy-preserving
FL architecture. By employing homomorphic hash functions
and zero-knowledge proof, they construct a verifiable and
secure aggregation mechanism. Guo et al. [23] modified this
framework to reduce the communication cost, while they
also pointed out that if malicious cloud server colluded with
users, the scheme in [22] would still face certain security
vulnerabilities. Lin and Zhang [24] used differential privacy
and one-way function to allow users to verify aggregation
results returned by a lazy server, but the approach does not
support user dropout during training. Ren et al. [25] adopted
linear homomorphic hash function and digital signature to
achieve traceable verification of aggregation results and
identification of erroneous cycles. However, this approach
inevitably increases communication cost.

B. CONCEPTS AND TECHNOLOGIES
We now introduce some relevant conceptions and technolo-
gies. Some of the symbols used in this paper are listed in
Table 1.

TABLE 1. List of symbols.

1) FEDERATED LEARNING
Different from traditional machine learning, FL has made
significant strides in protecting user’s privacy. In FL, users
do not upload personal data, but only need to share the
local gradients, significantly reducing the risk of personal
information leakage. As shown in Figure 1, users upload these
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FIGURE 1. FL architecture.

gradients to the cloud server, which then aggregates the data
and feeds the results back to users. By this method, users and
server collaborate to cultivate a comprehensively optimized
global model, ensuring the security of personal data while
achieving efficient model training.

2) NEURAL NETWORK
We now introduce a classic deep neural network - fully
connected neural network (FCNN). Figure 2 shows the
architecture of FCNN. The neurons in each layer are densely
connected to the neurons in the preceding and following
layers by weight ω.

FIGURE 2. The architecture of FCNN.

FCNN can be represented by f (x, ω) = ỹ, where x is the
input and ỹ is the corresponding output. Assuming the entire
dataset D = {< xi, yi >, i = 1, · · · ,T }, the loss function be
defined as:

Lf (D, ω) =
1
|D|

∑
(xi,yi)∈D

Lf ((xi, yi), ω), (1)

where Lf ((xi, yi), ω) = l(y, ỹ) = ||y, ỹ||2.
The objective of neural network training is to achieve an

optimal set of parameters ω, which minimizes the value of
the loss function. To achieve this goal, we use Algorithm 1:
the mini-batch gradient descent method (SGD).

3) THRESHOLD PAILLIER CRYPTOSYSTEM
In VPPFL, we use the threshold Paillier cryptosystem [26]
to construct a secure framework since it has two important

Algorithm 1 SGD
input : Dataset D = {(xi, yi) : i = 1, . . . ,N },

Learning rate θ ,
Loss function

Lf (D, ω) = 1
|D|

∑
(xi,yi)∈D Lf ((xi, yi), ω).

output: The optimal model parameters ω.

Randomly select an initial ω0;
At the j-th iteration, randomly select a small batch of

data Dj ⊆ D;
for (xi, yi) ∈ Dj do
Calculate gj(xi,yi)← ∇Lf ((xi, yi), ωj);

end
Calculate gj∗← 1

|Dj|

∑
(xj,yj)∈Dj g

j
(xi,yi)

;

Update weight ωj+1← ωj − θ · gj∗;
until convergence is satisfied;
return ω.

features: 1) Threshold property: Each user cannot decrypt the
ciphertext alone, at least t users are need to work together
to decrypt the ciphertext; 2) Homomorphic additivity:
Multiplying ciphertexts equals adding plaintexts, enabling
operations on plaintexts through ciphertext calculations.
These two features provide sufficient functionality and
privacy protection for our scheme.

In the threshold Paillier cryptosystem, the public key pk =
(G,K ) is openly shared with all participants, where G = 1+
K , K = pq, with p and q are two large primes. The private
key is split into N keys, denoted as (sk1, sk2, . . . , skN ), with
each user holding his own private key.

For a plaintextM , encrypting it using the public key pk will
yield the ciphertext

c = Epk (M ) = GMxK mod K 2, (2)

where x is a random positive integer in the multiplicative
group ZK2 .
This cryptosystem has homomorphic additivity, which

can be described as: c = Epk (M1 + M2) =

G(M1+M2)(x1x2)K mod K 2
= Epk (M1) · Epk (M2),where

M1 and M2 are the two plaintexts, and x1 and x2 are random
positive integers in Z∗

K2 .

4) ONE-WAY FUNCTION
The generation of one-way function is based on hardness of
the irreversible logarithm problem, which ensures that the
semi-malicious cloud server cannot infer the user’s privacy
information through the function values of gradients. The
specific process is as follows:

Assume a is a generator of order k , and b is a large prime
number. Construct a one-way function h: Z→ Zp as:

h(M ) = aM mod b, M ∈ Z. (3)

It satisfies homomorphic addition, i.e.∀x1, x2 ∈ Z, h(x1) =
ax1 mod b, h(x2) = ax2 mod b, then h(x1 + x2) =
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ax1+x2 mod b = (ax1 mod b) · (ax2 mod b) mod b =
h(x1)h(x2).

III. SYSTEM MODEL AND SECURITY REQUIREMENTS
A. SYSTEM ARCHITECTURE
As shown in Figure 3, our system consists of three parts:
semi-malicious cloud server (CS), trusted authority (TA) and
semi-honest users (Users).

FIGURE 3. System architecture.

Semi-malicious cloud server (CS): The main task of CS
is to aggregate the gradients uploaded by users, broadcast
the function values of gradients to all users, decrypt the
aggregation results, and send them to users. We require CS
to only obtain ciphertexts and the final aggregation results,
without knowing any other information.

Trusted authority (TA): TA is an authoritative and trust-
worthy entity (e.g. a government agency). It does not collude
with any party. Its main task is to initialize model parameters,
generate a one-way function, and generate key pairs for all
users. Then, it sends the one-way function and key pairs to
users through secure channel and broadcasts public key. After
that, unless there is a dispute, it will go offline.

Semi-honest users (Users): Users are the owner of the data,
who participate in the training process, and ultimately obtain
the globalmodel. Each user sends his encrypted local gradient
and the function value of gradient to CS during each round,
and cooperates with CS to decrypt the aggregation results.
Finally, all users verify the aggregation results returned
by CS.

B. THREAT MODEL
Semi-malicious CS attack: CSmay deceive users by reducing
the gradient aggregation of one or more users in order to save
costs.

Half-honest user attack: He may try to use the information
he has to infer the private data of other users.

Collusion attacks: There may be collusion attacks between
a small number of users and CS, and the private information
of other users can be inferred by sharing information such as
model parameters.

External malicious attack: There is a malicious adversary,
denoted as A, who will use any means to obtain useful

information from users. For example, A can launch active
attacks by infiltrating CS, modifying or injecting false data,
returning incorrect aggregation results to deceive users into
revealing more privacy data.

C. SECURITY OBJECTIVES
We aim to propose an efficient, secure, and verifiable
privacy-preserving FL scheme. Specifically, the following
objectives should be achieved:

1) Privacy of user’s data: No entity other than the user
himself should be able to access sensitive information of the
user, including an external adversary A and CS.
2) Every user should be able to independently verify

the aggregation results. If CS returns incorrect aggregation
results, users should have the right to deny the results and
request CS to reaggregate the results.

3) The scheme should allow a small portion of users to
join or dropout the training process without interrupting the
overall training of the model.

IV. VPPFL
In this section, we provide the detailed design of VPPFL.
Our scheme consists of four main stages: 1) Initialization;
2) Encryption; 3) Decryption and 4) Verification. Figure 4
illustrates the process flow of VPPFL.

1) Initialization
TA takes on the role of initializing the system parameters

and generating key pairs. The specific process for generating
the public and private keys is as follows, as shown in
Algorithm 2.

Parameter Generation: The parameters that need to be
initialized include the global weight ω, learning rate θ ,
training epoch, the safety parameter κ , and the one-way
function h.
Key generation and distribution: First, TA randomly

generates two large prime numbers p = 2p′ + 1, q =
2q′ + 1, where p′, q′ < κ . Second, TA generates the RSA
modulus K = pq, ensuring that gcd(K , ψ(K )) = 1. Then,
TA randomly selects β ∈ Z∗K and calculates m = p′q′ and
1 = N !. Next, TA disguise m as α = mβ mod K .

TA sets public key pk = (K ,G, α) and private key SK =
βm, whereG = K+1. TA splits the private key SK as follows:
selects t random numbers a1, a2, . . . , at ∈ {0, 1, . . . ,Km −
1}, then generates the polynomial f (x) = βm+ a1x + . . .+
atx t−1 mod Km. Finally, TA sends f (n) to each participant
Pn(1 ≤ n ≤ N ) through secure channel.
2) Encryption
Each user Pn(1 ≤ n ≤ N ) encrypts his own gradient: for

the gradient vector gn = [gn1, gn2, . . . , gnm], Pn chooses a
random number xn ∈ Z∗K , uses the public key pk to calculate
ciphertext Encpk (gn) = GgnxKn mod K 2, and the one-way
function value of gradient h(sum(gn)) = asum(gn) mod b.

Each user Pn sends the ciphertext Encpk (gn) and the
one-way function value of his gradient h(sum(gn)) to
CS. CS broadcasts the received one-way function values
of gradients {h(sum(g1)), h(sum(g2)), . . . , h(sum(gN ))}, and
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FIGURE 4. The process flow of VPPFL.

Algorithm 2 KGA(TA)
output: Private key (sk1, sk2, . . . , skN ).

Randomly generate two prime numbers p′ and q′, where
p′, q′ < L;
Calculate p = 2p′ + 1, q = 2q′ + 1, p and q are also
prime numbers;
Calculate RSA modulus K = pq, and ensure that
gcd(K , ϕ(K )) = 1, where ϕ(K ) = (p− 1)(q− 1);
Calculate decryption key m = p′q′ = ϕ(K )

4 ;
Randomly choose a β ∈ Z∗K , calculate α = mβ mod K ;
Calculate 1 = N !;
Set private key SK = βm, public key pk = (K ,G, α,1),
where G = 1+ K ;
Split the private key SK : select t random numbers
a1, a2, . . . , at−1 ∈ {0, 1, . . . ,Km− 1}, generate a
polynomial f (x) = βm+ a1x + . . .+ atx t−1 mod Nm,
calculate skn = f (n) and send skn to the corresponding
participant Pn(1 ≤ n ≤ N ).

aggregates the ciphertexts to obtain the encrypted gradient
ciphertext,

c =
N∏
n=1

Encpk (gn). (4)

3) Decryption
For the ciphertext c, CS randomly selects t(1 ≤ t ≤

N ) users to send decryption requests. Suppose the selected
participants form a set S. The selected participant computes
the decryption share sn = c21skn mod K 2 and sends it to CS.

CS can then compute the aggregation results

g∗ = L(
∏
n∈S

s2µnn mod K 2)×
1

412α
mod K , (5)

where µn = 1 × λS0,n ∈ Z, λS0,n =
∏

n′∈S\{n}
−n′
n−n′ , L(u) =

u−1
K .
4) Verification
Each user Pn(1 ≤ n ≤ N ) receives the one-way function

values of gradients {h(sum(g1)), h(sum(g2)), . . . , h(sum(gN ))}
from CS, then he calculates h(sum(g′∗)) =

∏N
n=1 h (sum(gn),

and h(sum(g∗)) = asum(g∗) mod b based on the aggregation
results g∗ returned by CS. If h(sum(g′∗)) = h(sum(g∗)), the
next round of training will begin. Otherwise, CS is required
to reaggregate the results.

Algorithm 3 provides a detailed description of the VPPFL
process.

Next, we provide a proof of correctness for our scheme.
Theorem 1: If CS honestly performs the aggregation

operations in the VPPFL, the aggregation results will pass
verification.

Proof: The encrypted gradients uploaded by the users to CS
are {Encpk (g1),Encpk (g2), . . . ,Encpk (gN )}. If CS honestly
performs the aggregation operation, it will get the encrypted
aggregation results as Encpk (g∗) =

∏N
n=1 Encpk (gn).

Subsequently, CS randomly sends decryption requests to t
users, and the numbers of the selected participants form a
set S to perform the decryption operation. After receiving
the decryption request from CS, each user in S sends the
decryption share sn = c21skn mod K 2 (n ∈ S) to CS.
We have

∏
n∈S s

2µn
n = c41

∑
n∈S f (n)µn

= c41
∑

n∈S 1f (n)λ
S
0,n
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Algorithm 3 VPPFL
Round 0 (Initialization)
TA:
Generate a set of private keys {sk1, sk2, . . . , skN } and a public key pk = (K ,G, α,1) based on Algorithm 2. Broadcast the
public key to all participants;
Send the private key skn = f (n)(1 ≤ n ≤ N ) to the corresponding user Pn via a secure channel;
Select a large prime number b and a generator a of order k to create a one-way function. Send the function to all users and
then go offline.
Round 1(Encryption )
Users:
Each user Pn selects a mini-batch subset Djn ⊆ Dn and calculates gn←

∑
(xi,yi)∈D

j
n
∇Lf ((xi, yi), ωj);

Calculate the encryption of gradient Encpk (gn) and the one-way function of the gradient h(sum(gn)) and then upload them
to CS.
CS:
Receive Encpk (gn) and h(sum(gn)) from user Pn;
Calculate the aggregated encrypted gradient c←

∏N
n=1 Encpk (gn);

Broadcast the received h(sum(gn)) to all users.
Round 2(Decryption)
CS randomly selects t users and sends the decryption requests to them;
After receiving the decryption request, user Pn(1 ≤ n ≤ t) calculates decryption share sn = c21f (n) mod K 2 and sends it
to CS;
CS:
Receive the decryption shares sn(1 ≤ n ≤ t) from the users ;
Calculate λS0,n←

∏
n′∈S\{n}

−n′
n−n′ ;

Calculate µn← 1× λS0,n;

Decrypt the aggregation gradient g∗← L
(∏

n∈S s
2µn
n mod N 2

)
×

1
412α

mod K ;

Send g∗ = [g1∗, g
2
∗, . . . , g

m
∗ ] to the users.

Round 3(Verification)
Users:
Each user receives g∗ from CS;
Calculate h (sum(g∗))← asum(g∗) mod b;
Calculate h

(
sum(g′∗)

)
←

∏N
n=1 h (sum(gn));

if h
(
sum(g′∗)

)
= h (sum(g∗))

Users perform parameter update ωj+1← ωj − θ ·
(∑

n∈N g∗
)
/
(∑

n∈N |D
j
n|

)
;

else
Users request CS to recompute the aggregation results.

= c41
2mβ
= (Gg∗xK mod K 2)41

2mβ

= G412mβg∗ mod K 2(∵ ∀x, x2Km = 1 mod K 2)
= 1+ 412mβg∗K mod K 2(∵ G = 1+ K ).
Therefore, L

(∏
n∈S s

2µn
n mod K 2

)
= 412mβg∗ = g∗ ×

412α mod K .
Given that 1 and α are components of the public key,

CS is thus able to obtain the aggregation results g∗ =
L

(∏
n∈S s

2µn
n mod K 2

)
×

1
412α

mod K .

Participants will receive the aggregation gradient g∗
returned by CS and the broadcasted one-way function values
of gradients {h (sum(g1)) , h (sum(g2)) , . . . , h (sum(gN ))},
then they will obtain sum(g∗) by summing up all elements
within g∗. Since threshold Paillier encryption satisfies
homomorphic addition, i.e. Encpk (g∗) =

∏N
n=1 Encpk (gn),

the following equation holds: g∗ = g1 + g2 + · · · + gN .

Based on the homomorphic property of the one-way
function, if the following equation holds, then the aggre-
gation gradients will pass verification:

∏N
i=1 h (sum(gi)) =∏N

i=1 a
sum(gi) mod b = a

∑N
i=1(sum(gi)) mod b =

asum(g∗) mod b = h (sum(g∗)).
Therefore, the aggregation results will pass verification.

V. SECURITY ANALYSIS AND PERFORMANCE
EVALUATION
A. SECURITY ANALYSIS
In this section, we conduct theoretical analysis and security
proof of the VPPFL, including data privacy and the verifia-
bility of the aggregation gradients.

We first introduce some notations. Consider a server CS
interactingwith a set ofN users, and let the security parameter
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be κ . We use Ui to denote the set of users that successfully
uploaded their local gradients in round i− 1, such that U4 ⊆

U3 ⊆ U2 ⊆ U1. Users from these sets can dropout at any
time during the process.

Given a subset W ⊆ U ∪ S, the collective perspective
of users in W can be represented as a random variable
REALκW (g,U1,U2,U3,U4), where κ is the security param-
eter. To prove that our scheme is secure, we first introduce
a definition; only schemes that meet the conditions of this
definition are considered secure.
Definition 1: If any adversary A has a negligible advan-

tage over the following game in polynomial time for security
parameter κ , then the scheme is indistinguishable under the
choice of plaintext attack, and the scheme is said to be
ICD-CPA secure.

Initialization stage: Enter the security parameter κ , chal-
lenger C generates the system parameter para and private key
sk , and sends the system parameter para to opponent A.

Challenge Phase: The adversary chooses two messages
m0 and m1 and sends them to the challenger C. Here, the
two messages are of equal length, i.e. |m0| = |m1|. Upon
receiving these two messages, the challenger C randomly
selects b ∈ {0, 1}, computes C∗ = ENC(param,mb), and
then sends C∗ to the adversary A.

Output: The adversary A outputs a guess b′ for b. If b′ = b,
the adversary A wins the challenge; otherwise, the adversary
A loses the challenge.

The advantage of the adversary A in winning the above

game is defined as Advϵ,A(κ) =
∣∣∣Pr(b = b′)− 1

2

∣∣∣.
1) Data privacy
Theorem 2: VPPFL can resist collusion attacks between

the CS and fewer than t users. That is, for all κ, g,W ⊆ U∪S,
and U4 ⊆ U3 ⊆ U2 ⊆ U1, there exists a PPT simulator SIM
whose output is indistinguishable from the output of REALκW .
REALκW (g,U1,U2,U3,U4) ≡ SIMκ

W (g,U1,U2,U3,U4).
Proof: We assume the set of participants colluding with

CS is Pcollude = {P1,P2, . . . ,PNum}, where Num < t .
If the adversary A want to obtain the plaintext gradient
gn from the encrypted gradient Encpk (gn), he needs to get
the decryption key Sk . However, none of the parties can
obtain this decryption key individually, at least t users are
required through Shamir’s secret sharing. In fact, Shamir’s
secret sharing scheme has been shown to be semantically
secure under the DDH hardness assumption [27]. Therefore,
in the case of fewer than t users colluding, the output of the
simulator SIM is computationally indistinguishable from the
output of REAL.
Theorem 3: In VPPFL, no party can obtain the private

information of other users.
Proof: The data that CS can obtain the encrypted aggrega-

tion gradients and the one-way function values of gradients
{h(sum(g1)), h(sum(g2)), . . . , h(sum(gN ))}. The data that a
user Pi can obtain include all users’ one-way function value
of gradient and their own split secret key ski.

From Theorem 2, we know that CS colluding with
fewer than t users, cannot extract other users’ private

information from the encrypted gradients. Therefore,
a single user also cannot derive any useful informa-
tion from the encrypted gradients. Both CS and all
users can obtain the one-way function values of gra-
dients {h(sum(g1)), h(sum(g2)), . . . , h(sum(gN ))}. Further-
more, users can also access the one-way function h(M ) =
aM mod b. Due to the irreversibility of the one-way function,
the plaintext sum(gi) is secure. Even in the extreme case
where sum(gi) is obtained, users wouldn’t get any private
information about gi, since sum(gi) is only the aggregation
value of the gradient.
Theorem 4: If the DDH difficulty question is assumed,

VPPFL is IND-CPA safe. That is, the proposed scheme can
meet the security definition of data privacy under the selection
of plaintext attacks.

Proof: If there exists an external adversary A who attempts
to eavesdrop on the encrypted gradients Encpk (gn) uploaded
by users to the server. Since Encpk (gn) is a valid ciphertext
in the Paillier cryptosystem, and this system has been
proven to be semantically secure under the DDH hardness
assumption [26]. The external adversary A cannot obtain
the corresponding plaintext information from the ciphertexts
generated by the users.

At the same time, as a result of Theorem 2, our protocol
is secure even if a small number of users collude with
CS. It can be obtained from theorem 3, even if any party
involved in the training calculates based on the input data they
obtain, intermediate results, etc. Therefore, the probability
that external adversary A will get the plaintext in polynomial
time is negligible.

Through the above proof, neither external adversary nor
internal adversary can obtain the private information of a
single user. Therefore, our protocol is IND-CPA secure.

2) Verifiability of the aggregation gradient
Theorem 5: If CS returns an incorrect aggregation gradi-

ent g∗, it will fail the verification process.
Proof: From Theorem 1, if CS tries to reduce the

amount of computation for aggregation, the aggrega-
tion gradient ciphertext will become

∏N
i=1 h(sum(gi)) =∏N

i=1 a
sum(gi) mod b = a

∑N
i=1(sum(gi)) mod b =

asum(g∗) mod b = h(sum(g∗)). If CS attempts to reduce
the computation cost by providing an aggregated gradient
ciphertext Encpkless(g∗) =

∏less
n=1 Encpk (gn), where less < N .

Each user already knows the one-way function values of
gradients {h(sum(g1)), h(sum(g2)), . . . , h(sum(gN ))}, so they
can compute h

(
sum(g∗(less))

)
<

∏N
i=1 h (sum(gi)). There-

fore, any reduction in the computation cost by CS, indicating
laziness or tampering, will certainly be detected.

B. PERFORMANCE EVALUATION
To highlight the advantages of VPPFL, we conducted a
detailed comparison with some existing schemes, as shown
in Table 2. Moreover, we also implemented the PPVerifier
scheme to facilitate a more detailed comparison with our
scheme.
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TABLE 2. Scheme comparison.

The computational overhead of the scheme can be
described as follows. For simplicity, we only consider the
steps with high computational complexity. Let tmul , tinv,
and texp represent modular multiplication, modular inversion,
andmodular exponentiation operations, respectively. Assume
there is a server, N users, and each user holds a model
parameter vector of dimension d . The server randomly selects
t users to assist with decryption. Let κ denote the security
parameter. Table 3 shows the comparison results of the
computation and communication complexity of this solution
between the user and CS. The cost of VPPFL on the user and
CS is shown in Table 3.

TABLE 3. Computation and communication cost.

The computation cost of the CS mainly comes from
aggregating the gradients uploaded by users, decrypting
the aggregated gradient, and computing the hash value of the
aggregated gradient for verification. The CS aggregates the
local gradients uploaded by N users, involving N modular
multiplications, with a computation cost ofNtmul ·d . Decrypt-
ing the aggregated gradient involves one modular exponenti-
ation, one modular inversion, and t modular multiplications,
with a computation cost of (texp+ tinv+ t · tmul) ·d . Computing
the hash value of the aggregated gradient for verification
involves one modular exponentiation, with a computation
cost of texp.Therefore, the total computation cost for the CS
is (tinv + texp + (N + t)tmul)d + texp.The communication cost
for the CS mainly comes from broadcasting the decrypted
model parameters and the hash value of the gradient to all
users. The CS broadcasts the decrypted model parameters to
all users, with a communication cost of Nd · κ2. The CS also
broadcasts the hash value of the gradient to all participants,
with a communication cost of N · κ2. Therefore, the total
communication cost for the CS is N (d + 1) · κ2.

The users’ computation cost mainly comes from encrypt-
ing the local gradients and computing the hash value of
the gradient. Encrypting the local gradient involves two
modular exponentiations and one modular multiplication,
with a computation cost of (2 · texp + tmul) · d . Computing
the hash value of the gradient for verification involves one
modular exponentiation, with a computation cost of texp.
Therefore, the total computation cost for each user is (2 ·
texp + tmul) · d + texp. The users’ communication cost mainly
comes from uploading the encrypted gradient to CS and

FIGURE 5. Compares the accuracy of VPPFL, PPVerifier and Baseline.

FIGURE 6. Total computation cost.

broadcasting the hash value of the local gradient to all users.
Uploading the encrypted gradient to CS has a communication
cost of d ·κ2. Broadcasting the hash value of the local gradient
to all users has a communication cost of N ·κ2. Therefore, the
total communication cost for each user is (N + d) · κ2.

VI. EXPERIMENT EVALUATION
In this section, we conduct all-round experiments on VPPFL
to evaluate its performance.

A. EXPERIMENTAL ENVIRONMENT
We implemented VPPFL using MATLAB2016a. The
algorithm was implemented on the MNIST dataset
(http://yann.lecun.com/exdb/mnist/). The dataset includes
70,000 grayscale images, each 28 × 28 pixels, depicting
handwritten digits, segmented into 60,000 images for training
and 10,000 for testing. The experiment utilized a neural
network as the training model, consisting of an input layer,
an output layer and two hidden layers. We set the learning
rate is 0.2. The experiments were conducted on a computer
with Intel Core i5-1035G1, 1.0GHz CPU, and 8GB of
memory.
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TABLE 4. Computation cost of different parts of the training process.

FIGURE 7. Comparison of computation cost on client and CS.

B. CLASSIFICATION ACCURACY
We implemented the PPVerifier protocol [24] as well as
the unencrypted original algorithm Baseline to analyze
the accuracy of our scheme in neural network training.
In practical use cases, as gradient vectors typically exist in
floating-point format, our approach requires preprocessing
them into integers before encryption. This is why our VPPFL
and PPVerifier slightly lag behind Baseline in terms of
accuracy. We kept all conditions the same.

As shown in Figure 5, with a total gradient count set
to 100,000 and 100 training rounds respectively. After
100 training rounds, both VPPFL and Baseline achieved
nearly the same 98% accuracy. This indicates that when
using VPPFL to protect the gradients, it can still maintain
the model’s accuracy. This is because only a small portion
of gradient information is lost.

C. COMPUTATION COST
In this section, we will delve into the total computation cost,
the impact of the number of gradients on computation cost,
the computation cost on CS and users, as well as the analysis
of computation cost when users dropout during the training
process.

1) TOTAL COMPUTATION COST
As shown in Figure 6, we set the total number of gradients
involved in training to 100,000. Although we incurred
some additional time cost compared to PPVerifier, this
cost is acceptable, and our scheme supports involvement

and dropout of users during the training process, which is
more aligned with practical applications. PPVerifier does
not support this feature. Therefore, the cost we incurred is
worthwhile.

2) COMPUTATION COST BETWEEN CS AND USERS
To facilitate observation, we set the number of users
participating in training to 10. As shown in Figure 7, with
an increase in the number of gradients, the computation cost
on the client side increases linearly. When each user has
10,000 gradients, the users’ computation cost will surpass
the CS computation cost. This places higher demands on the
computing power of users participating in training. Therefore,
each user needs to appropriately manage the amount of
data they participate in training each round, thus to avoid
training too much data at once to prevent excessive burden
on themselves. The server’s computation cost does not
significantly increase because CS does not participate in
the users’ training process, which ensures user privacy and
security.

3) THE COMPUTATION COST IN DIFFERENT STAGES
We analyze in detail the computation cost of different
stages in one round of training. We set the number of
users participating in training to 100. As shown in Table 4,
it is evident that the users’ computation cost are primarily
composed of encryption and verification stages, with this
portion of the expenditure occupying a very low proportion
of the total computation cost. The part that incurs the highest
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FIGURE 8. Comparison of computation cost on CS when users dropout.

FIGURE 9. Verification time for each user.

cost is the decryption process, which is handled by CS,
making it more inclusive for users with weaker computing
capabilities.

4) COMPUTATION COST ON CS WHEN USERS DROPOUT
As shown in Figure 8, we set the number of users participating
in training to 100. As the number of dropout users increases,
the computation cost on CS does not increase. The reason
for this is that the cloud server’s computation cost are mainly
concentrated in the decryption process, which involves
sending decryption requests to t users. Even if some users
dropout, CS only needs to send decryption requests to the
remaining users who are still online, thus not adding extra
computation for CS.

5) VERIFICATION TIME
Scheme [23] and scheme [25] both use a homomorphic hash
function to provide verifiability for users, but the overhead
is huge. We note this verification method as ‘‘LHH’’.
To highlight the superiority of our scheme, we compared
VPPFL with ‘‘LHH’’ and PPVerifier, and the results are
shown in Figure 9. It can be concluded that the overhead of
VPPFL for verification is almost negligible compared to the
homomorphic hash function of LHH.

VII. CONCLUSION
In this paper, we proposed VPPFL, a privacy-preserving FL
scheme for the semi-malicious server. VPPFL supports users
dropout and provides verifiability for each user during the

training process while preserving user privacy. Furthermore,
we proved the security of the scheme and validated the
practical performance of our scheme through simulated
experiments on real data theoretically.The scheme proposed
in this paper solves some problems in FL to a certain extent,
but there is still room for improvement. Our scheme relies
on a trusted third party to distribute the key, and assumes
that the entity is too strong to be breached. Once the entity
is compromised, then the data of all parties involved is no
longer secure, but in a real-world deployment of FL, it is
difficult to find such an entity. How to achieve verifiable
privacy protection FL without the participation of a trusted
third party is an important direction of follow-up research.

Data availability
The datasets are available online. The URL is as follows:

MNIST database: http://yann.lecun.com/exdb/mnist.
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