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ABSTRACT Pre-training for 3D object recognition typically requires a large-scale 3D dataset to learn
effective 3D geometric representations. However, constructing such datasets is costly due to the extensive
3D data collection and human annotation required. This paper explores a synthetic pre-training approach that
learns 3D geometric representations by reconstructing structural point clouds without relying on real data
or human annotation. We propose the Point Cloud Perlin Noise (PCPN) dataset, which is an automatically
generated point cloud dataset that uses Perlin noise to simulate natural 3D structures found in the real world.
The proposed method enables the rapid generation of diverse 3D geometric patterns using a simple Perlin
noise-based formula, significantly reducing the human effort typically involved in creating conventional 3D
datasets. We applied PointMAE to the PCPN dataset for pre-training, demonstrating improved performance
in downstream tasks such as 3D shape classification and part segmentation. Our experiments showed that the
proposed pre-trained model outperformed a model trained from scratch on ModelNet40 by 1.4%. In addition,
our pre-training strategy proves effective for 3D object recognition without requiring real data or supervised
labels. This study highlights that Perlin noise can capture 3D structural properties and that the diversity of
geometric patterns is crucial for learning effective 3D geometric representations.

INDEX TERMS Deep learning, computer vision, 3D object recognition, point cloud, transfer learning, self-
supervised learning, formula-driven supervised learning.

I. INTRODUCTION

3D object recognition using point clouds is gaining attention
in computer vision due to its potential in applications such
as autonomous driving, industrial robotics, virtual reality,
and augmented reality. The advantage of point clouds is
that their data structure is invariant to camera viewpoint
differences and can express fine-grained geometric shapes.
Thus, 3D object recognition using point clouds offers a more
robust and detailed representation of 3D geometric structures
in the real world compared to images. In addition, 3D
sensors (e.g., LIDAR) have gradually become more afford-
able and can capture data from real-world environments.
Consequently, there is a growing demand for 3D object
recognition models based on point clouds.
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However, from the perspective of application, one of the
main challenges is the cost of constructing a large-scale
point cloud dataset. This challenge can be primarily divided
into two aspects: (i) point cloud collection and (ii) human
labeling. First, point cloud collection requires direct manual
3D scanning from real environments, the creation of 3D
computer-aided design (CAD), or reconstruction from multi-
view images. All of these approaches require an enormous
amount of time to collect tens of thousands of point clouds.
Moreover, except for CAD-generated objects, point clouds
are relatively noisy and often include occlusions and missing
data. Second, human labeling requires annotators to consider
the position and orientation in 3D space for each point cloud.
While images only require labeling on a 2D plane, annotating
point clouds is generally more time-consuming because the
positions of objects in 3D space must be considered. Thus,
constructing a point cloud dataset requires considerably more
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human effort and time compared to constructing an image
dataset. In addition, missing point clouds adversely affect the
learning of 3D geometric representations.

To address the aforementioned challenges in construct-
ing point cloud datasets, self-supervised learning enables
pre-training by automatically assigning pseudo labels to
unlabeled point clouds [1], [2], [3], [4], [5], [6]. The
pre-trained model using self-supervised learning has been
reported to improve performance in various 3D vision tasks,
such as 3D shape classification and part segmentation [6],
[71, [8]. One of the latest self-supervised learning methods
is the masked autoencoder (MAE)-based approach, which
uses masked modeling inspired by bidirectional encoder
representations from transformers (BERT) [7]. For example,
PointMAE learns 3D geometric representations by recon-
structing masked embeddings from input point clouds [7].
Thus, self-supervised learning is a promising approach to
alleviating the challenges of point cloud dataset construction
in 3D vision.

However, self-supervised learning is thought to be reaching
a plateau due to the limitations of existing pre-training point
cloud datasets in terms of the quantity and variation of
training data. Currently, self-supervised learning relies on a
3D CAD object dataset called ShapeNet [9], which consists
of 51,300 objects across 55 categories, as a pre-training
dataset. ShapeNet is extremely small in scale compared to
datasets like ImageNet [10] and Pictures without humAns
for Self-Supervised Pretraining (PASS) [11], which are used
for self-supervised learning in image recognition. Given
that point cloud and annotations are manually collected,
expanding the size of point cloud datasets in the future will
remain just as costly.

Thus, it seems ideal to develop a pre-training approach
without the costs of point cloud collection and human
labeling. A recent approach that is gaining importance is
the artificial generation of synthetic data with automatic
label assignment. For example, the research strategy in [12]
generates synthetic images according to specific rules and
employs self-supervised learning to extract visual feature rep-
resentations from these images. Researchers have conducted
studies using simple shapes with the ‘dead leaves’ model
and natural images generated by StyleGAN [13], successfully
acquiring superior feature representations compared to those
learned from random parameters. We believe this concept
can also facilitate the acquisition of feature representations
for 3D object recognition, not just for images. Thus, this
paper hypothesizes that the concept will be effective not only
for image recognition but also for learning 3D geometric
representations.

One of the frameworks used in the video recognition
domain is based on video Perlin noise. Kataoka et al. [14]
automatically generated simple motions using Perlin
noise [15] and achieved effective initialization for training a
3D spatiotemporal convolutional network. In this approach,
the spatial domains of x,y and the temporal domain
of ¢ are considered to have different properties, and the
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simple motions generated by Perlin noise may not have
been sufficient as pre-training data for action recognition.
Therefore, this paper investigates whether a structured point
cloud in the x,y,z domains can be used to acquire 3D
recognition features, replacing the task of video recognition
with point cloud recognition. We generated Point Cloud
Perlin Noise (PCPN) and explored the learning of geometric
feature representations for 3D object recognition.

This paper proposes a pre-training strategy that involves
the automatic construction of a point cloud dataset called
PCPN, utilizing self-supervised learning, as shown in
Figure 1. The PCPN is a point cloud dataset for pre-
training, which automatically generates structured point
clouds based on Perlin noise. The PCPN can be constructed
more easily than real-world data. In addition, we utilized
PointMAE [7] as a pre-training strategy because it does
not suffer from missing parts in the 3D structure, unlike
captured real-world point clouds. PointMAE is inspired by
BERT [16], a pretext task proposed for natural language
processing. BERT masks words in sentences and restores the
original text, whereas PointMAE deliberately creates masked
tokens from input point clouds and reconstructs the original
data. Therefore, we build the PCPN pre-trained model for 3D
object recognition using PCPN masked modeling.

The proposed method was compared to ModelNet40 [17],
ScanObjectNN [18], and ShapeNetParts [19], as baseline
frameworks for 3D shape classification and part segmenta-
tion, which are fundamental 3D vision tasks. As a result, the
proposed PCPN pre-trained model performs similarly to or
better than the previous baselines in 3D shape classification
and part segmentation tasks. In particular, the proposed
method outperforms learning from scratch on ModelNet40 by
+1.4%. The feature representations of the pre-trained models
were compared using centered kernel alignment (CKA)
similarity [20]. Visualization of CKA similarity revealed that
the PCPN pre-trained model learns a feature representation
similar to that of the ShapeNet pre-trained model. The PCPN
is generated based on mathematical formulas and, at first
glance, appears to be 3D data that differs from real-world
data. Our experimental results suggest that PCPN is a useful
pre-training dataset for 3D object recognition. Furthermore,
the proposed method does not require manual data collection
or annotation. The contributions of this paper are as follows.

« In this paper, point clouds were automatically generated

based on Perlin noise, and PCPN was constructed as the
pre-training dataset for PointMAE. PCPN can flexibly
control geometric shapes by adjusting the parameter set.

o PCPN’s point clouds were intentionally masked and

reconstructed to the original point clouds using Point-
MAE to learn 3D geometric feature representations. The
PCPN pre-trained model improves recognition perfor-
mance in 3D shape classification, part segmentation, and
3D object detection, without requiring human effort.

« Visualization of CKA similarity metrics revealed that the

feature representations of the PCPN pre-trained model
are similar to those of the ShapeNet pre-trained model.
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FIGURE 1. Overview of Point Cloud Perlin Noise pre-training process. The pre-training converts the input point clouds with a random embedding (e.g.,
60%) as mask tokens, and other embeddings as visible tokens. Encoder processes only visible tokens. Mask tokens are added to input sequence of
decoder of prediction token to reconstruct point clouds. Parameters learned in pre-training are set as initial parameters for fine-tuning the downstream

tasks.

o 3D synthetic data generated from mathematical for-
mulas are effective as a pre-training dataset for self-
supervised learning, just like real or hand-crafted data
such as 3D CAD objects.

The rest of this paper is organized as follows. Section II
reviews the related work. Section III explains the construction
of the PCPN and the pre-training strategy. The experimental
settings, verification, additional experimental validation, and
analysis are presented in Sections IV, V, VI, and VII
respectively. Based on the experimental results, Section VIII
discusses the proposed method based on the experimental
results. Finally, Section IX summarizes the main contribu-
tions of this paper.

Il. RELATED WORK

A. POINT CLOUD DATASETS

Most 3D datasets have been constructed to evaluate the
performance of 3D object recognition models in various
tasks. Existing 3D datasets can be broadly categorized into
two types: (1) object-level 3D model datasets and (2) scene-
level 3D scan datasets. While some urban-scale aerial 3D
scene datasets also exist, this paper focuses primarily on
object-level and scene-level datasets without describing them
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in detail. The following is an introduction to the point cloud
datasets in each category.

(1) Object-level 3D model datasets. These datasets are
primarily used for 3D recognition tasks such as 3D shape
classification and 3D part segmentation. Object-level 3D
model data can be categorized into two types: (i) synthetic and
(i1) real-world. (i) Synthetic datasets [9], [17] are generated
from 3D CAD objects without occlusions or backgrounds.
Creating 3D CAD objects requires specialized knowledge of
CAD software, making it inaccessible to everyone. (ii) Real-
world datasets [18] are captured using 3D sensors, such as
depth cameras, and include occlusions, backgrounds, and
noise. Real-world datasets tend to be smaller in size due to the
significant human resources required compared to synthetic
datasets.

(2) Scene-level 3D scan datasets. These datasets are
used for 3D recognition tasks such as 3D object detection,
semantic segmentation, and tracking. Scene-level 3D scan
data can be categorized into two types: (i) indoor and
(i) outdoor datasets. (i) Indoor datasets [21], [22] are
designed for 3D scene understanding in environments such as
houses, schools, and universities, where each furniture object
is assigned a semantic label, and objects must be recognized
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based on their context within the 3D scene. In contrast,
(i1) outdoor datasets [23], [24] are developed for autonomous
driving, where objects are sparse and spatially well-separated.
In most cases, outdoor data are point clouds captured by cars
equipped with LiDAR sensors. 3D sensors used to collect
data for indoor and outdoor scenes often differ, and each
requires specialized post-processing. Furthermore, compared
to a single 3D object, annotating 3D bounding boxes and
labeling each point cloud with semantic tags is a complex and
labor-intensive process.

These factors represent significant bottlenecks for point
cloud datasets compared to images. We believe that one
key direction for advancing 3D object recognition lies in
constructing point cloud datasets without the need for manual
data collection and human labeling.

B. 3D OBJECT RECOGNITION NETWORKS WITH POINT
CLOUDS

Compared to data such as images, videos, and voxels, point
clouds present significant challenges when designing neural
networks for learning 3D geometric representations. This is
because point clouds are an irregular data format consisting
of 3D coordinates, and neural network design for point
clouds must account for two key properties: permutation
invariance and shift equivariance. As aresult, neural networks
that can directly process point clouds have lagged behind
those designed for other data types. In 2016, the first neural
network to directly process point clouds, PointNet [25],
was introduced. The introduction of PointNet marked a
significant paradigm shift in 3D object recognition. PointNet
addressed the aforementioned challenges, leading to the
rapid development of 3D object recognition using point
clouds in deep learning. It introduced an end-to-end network
that directly processes point clouds, utilizing multi-layer
perceptrons and max pooling to extract global information.

Since the introduction of PointNet, 3D object recognition
models have been able to directly process point clouds,
leading to significant progress in various 3D recognition
tasks, such as 3D shape classification [26], [27], [28],
[29], [30], [31], [32]. Recently, graph-based methods like
dynamic graph CNN (DGCNN) [30] and graph attention
convolution [31], which represent point clouds as graphs
where each point is a node and relationships with other
points form edges, have gained popularity. These methods
are effective in capturing local geometric structures. In 2023,
PointTransformer [33], recognized as a state-of-the-art 3D
recognition model, was applied in various domains, from
natural language processing to point clouds. Compared to
conventional 3D object recognition models, PointTrans-
former can learn dependencies among features over long
distances in the feature space.

However, transformers require a considerable amount of
training data due to their lower inductive bias compared
to other networks. For example, in image recognition,
the Vision Transformer (ViT) [34] achieved state-of-the-art
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performance on ImageNet by pre-training on JFT-300M [35]
in 2020. It should be noted that JFT-300M is a dataset
containing millions of images that is not publicly available.
In contrast, for 3D object recognition using point clouds,
there are no large-scale 3D pre-training datasets comparable
to JFT-300M. This paper focuses on PointTransformer
and investigates whether synthetic 3D data generated from
mathematical formulas can provide effective pre-training for
transformer-based networks. By demonstrating that synthetic
pre-training is possible without manually generating point
clouds, this paper presents a new direction for synthetic
pre-training in 3D object recognition.

C. SELF-SUPERVISED LEARNING

Self-supervised learning enables 3D geometric representa-
tion learning by assigning pseudo labels to unlabeled 3D
data [6], [7], [8], [36], [37], [38], [39], [40]. Its primary
advantage is that it facilitates 3D geometric representation
learning without the need for manual labeling, achieving
performance comparable to supervised pre-training. From an
application perspective, self-supervised learning is ideal for
enhancing 3D object recognition performance when working
with limited 3D data.

Recent self-supervised learning on point clouds can be
categorized into two main types: (i) self-supervised learning
on a single object and (ii) self-supervised learning on a
3D scene. (i) In self-supervised learning for a single 3D
object, the most common approach involves performing
a reconstruction task [7], [8], [40], [41]. For example,
PointMAE [7] uses a pretext task that randomly masks
regions in point clouds and reconstructs them to their original
form. PointMAE achieved 93.8 (ii) For self-supervised
learning in 3D scenes, the mainstream approach is to learn
point cloud correspondences using contrastive learning [1],
[371, [38], [39], [42]. For example, PointContrast [1] applies
contrastive learning at the point cloud level to analyze 3D
scenes from different viewpoints. On datasets like SUN
RGB-D [22] and ScanNet, PointContrast was the first to
demonstrate pre-training effectiveness in the context of
self-supervised learning in 2020.

However, while self-supervised learning can reduce anno-
tation costs, the scale of training data remains highly
dependent on existing 3D datasets. As a result, even if
a pretext task is designed to learn better 3D geometric
representations, the learnable data distribution is still limited.
Unlike image recognition and natural language processing,
where large amounts of data can be easily collected from the
web, the current method of constructing 3D datasets does not
scale as easily, as described in Section II-A.

Thus, we believe that the baseline of self-supervised
learning can be improved by constructing 3D datasets without
human effort. This paper hypothesizes that 3D data generated
from specific rules, such as Perlin noise, may be more suitable
for PointMAE than 3D objects acquired from real-world or
CAD data, as these generated 3D objects have fewer missing
point clouds.
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FIGURE 2. Overview of the generation process of PCPN. Generation of PCPN consists of three steps: (i) calculation of Perlin noise, (ii) superimposition
of Perlin noise (iii) 2D to 3D projection. The blue box on the left shows how to determine the noise value for each pixel. The generation of Perlin noise in
(i) is repeated O times for the number of superimpositions in (ii). In (ii), O noises are superimposed according to the algorithm in Algorithm. 1.
Superimposed Perlin noise is projected from 2D to 3D by transforming each noise value as a coordinate along the z-axis.

Ill. POINT CLOUD PERLIN NOISE

This section introduces the construction of a PCPN.
Section III-A outlines the design concept of PCPN.
Section III-B explains the generation of Perlin noise in
point clouds. Finally, Section III-C describes the pre-training
strategy for applying the PCPN to PointMAE.

A. OVERVIEW

This paper proposes a PCPN, which is a 3D pre-training
dataset for self-supervised learning. A PCPN is constructed to
automatically generate a variety of point clouds from formu-
las based on Perlin noise, which mimics real-world patterns.
Perlin noise is a type of noise commonly used to simulate
natural phenomena in computer graphics and was proposed
by Ken Perlin in 1985. Perlin noise exhibits four critical
properties: (i) mimicking natural phenomena, (ii) scale
invariance, (iii) local continuity, and (iv) controllability.

(i) The mimicry of natural phenomena refers to Perlin
noise’s ability to emulate and generate various patterns
in the real-world. This results in the generation of point
clouds that represent pseudo-real-world patterns. (ii) Scale
invariance stems from the fractal nature of the Perlin noise,
enabling it to exhibit self-similar patterns observable at
different scales. This facilitated the generation of consistent
point clouds. (iii) Local continuity refers to the property of
Perlin noise, which generates locally consistent continuous
values. This allows the generated point clouds to maintain
diversity and consistency, which is challenging to achieve
with other random noise methods such as white noise.
(iv) Controllability refers to the adjustability of the generation
of Perlin noise by modifying parameters such as noise
frequency and amplitude. This allows the fine-tuning of the
properties of the generated point clouds to align with specific
tasks or objectives. Based on these properties, we propose
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a PCPN based on Perlin noise for a 3D pre-training
dataset.

B. GENERATION OF POINT CLOUD PERLIN NOISE

This section describes how the PCPN is generated, as shown
in Figure 2. We use Perlin noise [15], [43], [44], [45] as the
generation rule for a point cloud dataset. The point cloud
dataset is defined in the PCPN as D = {p;}ny, where p; is
a single point cloud and N is the total number of data points.
pi is expressed as p; = {(xis, Vi1, Zit)}n, Where n denotes the
number of point clouds per instance. The point clouds p; are
synthesized using the following steps. The PCPN generation
consists of three steps: (1) calculation of the Perlin noise,
(2) superimposition of the Perlin noise, and (3) 2D to 3D
projection as shown in Figure 2. Details of each step are
explained as described in the following sections.

1) CALCULATION OF PERLIN NOISE

In the calculation of the Perlin noise step, the single noise
value séx’ ) at coordinates ¢ = (x, y) € R? is determined on a
2D plane H. The single noise value sgx, ) is computed multiple
times and superimposed in step (ii) to compute the final noise
value s(x y). Space H is divided into a regular square grid, and
L = {(x4,yq)}4=4 are assumed to be four grid points in the
neighborhood of c. The set of coordinates L is expressed as

follows:

L= {(x], IyD, (x| + 1, [yD,

(xl, Iyl + D), (x[ + L, [yl + D} ey

For each of the neighboring grid points L, we find the
pseudo-random gradient vector g ,) which is unique to
the coordinates. Because the same gradient vector must be
assigned identical coordinates, a hash function is set to derive
the vector. Hash function /4 consists of table P, which is a list
of values from 0 to 255 in random order.
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Hash Table P Gradient Vector Table G
Index | Value Index | Vectors
0 157 0 1,0
1 72 1 (11
2 238 2 (-LD)
3 55 3 (1,
4 (-1,-1)
5 0,1)
254 201 6 (-1,0)
255 8 7 0,1)

FIGURE 3. Hash table H and gradient vector table G. We use hash table
P and gradient vector table G to compute pseudo-random gradient
vectors on each grid in the 2D plane, which are necessary for calculating
Perlin noise at each pixel. In the hash table P, each index from 0 to

255 corresponds to a random value from 0 to 255. In gradient vector
table G, vectors on the two-dimensional plane are assigned to the indices
from 0 to 8.

A unique value is computed for each coordinate using the
hash function and the gradient vector is selected from table G,
which contains the unit-length gradient vectors based on the
calculated value. P and G are shown in Figure 3. The j-th
element in P and G are denoted as P[j] and G[j], respectively.
Using the modulo operation with the value of each coordinate
as the dividend and 255 as the divisor, the gradient vector
g(x',y) unique to the coordinates is obtained as follows:

h vy = PIP[(x"mod 255)] + (y'mod 255)], )
g(x’,y’) = G[h(x/,y/)mod 8] (3)

At each grid point, the dot product of the position vector
$pyy = (X' — x,¥" — y)$ and the gradient vector g,/
is calculated, and this value is defined as T as follows:

T,y) = Py - 8y )

The single noise value s(x, ) is derived by linearly interpolat-
ing T at the surrounding grid points. The coefficient of linear
interpolation is defined as f(¢). The noise value at (x,y) is
then derived using the following equation:

f(t) =61 — 15(* + 1073, 5)
Sy = Lerp(Lerp(To, Ty, f (),
Lerp(T2, T3, f (). f ). ©)

T, is equivalent to Ty, y,) at grid point (xg, yg) in L. Lerp is a
function for linear interpolation, Lerp(u, v, w) = u+wv—u)w.

2) SUPERIMPOSITION OF PERLIN NOISE

As shown in the center of Figure 4, multiple layers of Perlin
noise are derived by varying the frequency and amplitude and
then combining them. This process result in Perlin noise that
is more natural and complex. Here, in this paper, we selected
three essential parameters—Octaves (0), Persistence (V),
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and Lacunarity (U)—as generation parameters in the Perlin
noise procedure. The number of waves to be superimposed is
referred to as Octaves (O); the scaling factor for the amplitude
of the superimposed waves is termed Persistence (V'); and
the scaling factor for the frequency is called Lacunarity (U).
These elements work together to increase the variation in the
generated noise. The algorithm for this Perlin noise super-
position is illustrated in Algorithm 1. Specifically, we set
Octaves (O) to [1.0, 10.0], Persistence (V) to [0.01, 1.00],
and Lacunarity (U) to [1.0, 5.0]. We determined these
ranges experimentally, considering that if the parameters
were set too low, the diversity of the Perlin noise would
decrease, while if set too high, the noise could become overly
chaotic.

The single Perlin noise séx’y) is superimposed through an
iterative process, repeated for O times. In each iteration, the
final noise value s(y,y) is calculated by adding the weights
as the amplitude, which corresponds to the weight of the
resulting noise, and the frequencies of the coordinates are
input into the Perlin function, as shown in Eq. 6. The
final noise value at coordinates ¢ is computed using the
function. Figure 4 illustrates the results of the PCPN when
three parameters of Octave O, Persistence V, and Lacunar-
ity U are varied. By altering each parameter, it becomes
possible to generate a more diverse array of geometrical
shapes.

3) 2D TO 3D PROJECTION

The noise value sy is calculated for each of n coordinates
in {(xk, yx)}» on the 2D plane H, as described previously.
Each calculated noise(xy, yr) is treated as a new z-axis
coordinate z; and set (xx, yk, Zx) are set as one of the point
clouds in pg. This process is repeated N times to derive
D{p1,p2, ..., px}n. Using the above process of projection
to 3D, complex and natural geometrical shapes can be
generated, as shown in Figure. 4.

C. PRE-TRAINING WITH PointMAE

In this paper, we develop a pre-trained model by applying
PointMAE [7] to PCPN. PointMAE has the highest reported
accuracy in self-supervised learning for 3D object recog-
nition. We consider that PCPN can theoretically generate
data infinitely and has no missing data, making it suitable
for reconstruction tasks such as PointMAE. The PointMAE
pre-training method involves three steps: (1) dividing the 2D
space into patches, (2) masking and patch embedding, and (3)
autoencoder pre-training.

1) PROJECTING INTO A 3D SPACE

We downsample point clouds using farthest-point sampling
and determine m center points. For each center point cloud,
we apply the k-nearest neighbor algorithm and group the
selected points into patches PT € R”*K*3_The point clouds
in each patch overlap and the coordinates within each patch
are normalized by the center point cloud.
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FIGURE 4. Geometrical diversity of the superimposed Perlin noise. We superimpose multiple Perlin noises by the algorithm shown in
Algorithm. 1 to generate more natural and complex Perlin noise. There are three parameters for the superposition of Perlin noise: Octaves,
Persistence, and Lacunarity. The PCPN becomes more diverse in geometric structure by changing the value of each parameter.

Algorithm 1 Superimposition of Perlin Noise

0: function OcravePeruny (x, y, Octaves, persistence)
0: total <0

0: frequency <« 1

0: amplitude « 1

0: maxValue < 0

0: for i = Otooctaves — 1

0 total < total+ perlin(x x frequency, y x frequency) x
amplitude

0 max Value <— maxValue + amplitude
0 amplitude <— amplitude x persistence
0 frequency <« frequency x 2

0: end for

0: finalNoise s(y,y) < total/maxValue

0:  return finalNoise s(y,y)

0: end function=0

2) MASKING AND PATCH EMBEDDING

We randomly select n out of the m patches created during
stage (i) and create masked patches PT . € RM™K*3,
For unmasked patches PT umaskea € RUTD*KX3 e use
the lightweight PointNet to convert them into Epmasked €
RU=m*C  where C is the number of dimensions for
the tokens. The mask token is the shared weight token
TK pask € RU=MXC,

3) AUTOENCODER PRE-TRAINING
The encoder and decoder are composed of standard
transformer blocks. The positional embedding adopts the
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coordinates of the center points of each patch converted
by a multi-layer perceptron (MLP), which is added to each
transformer block in the encoder and decoder. In the encoder,
E\nmaskea 18 the input, and the encoded token TK ,;masked €
RO=mxC g the output. Furthermore, in the decoder, the
output of the encoder TK ,maskes and masked token T4k
are combined as the input, and only T, is decoded to
output the token Fu € R™C. By inputting Fs into
the MLP as the head, we obtain the reconstructed patch
PT prea € Rxkx3, During training, the minimization of the
loss function is given by

_ 1! in la— b2
L Pyl B 1

mask

a€PTpreq
- > min fa—bl3 )
—_ min a — 2-
|PT ask | bePT s a€PTpreq

Figure 5 illustrates the input and output of PointMAE.
It can be observed that PointMAE can predict the masked
input shapes for both the PCPN and ShapeNet datasets.
This paper aims to acquire pre-trained parameters that
are beneficial for downstream tasks by performing self-
supervised pre-training through such reconstruction tasks.

IV. EXPERIMENTAL SETTING

This section describes the verification of the effectiveness
of PCPN pre-training for 3D object recognition through
comparative experiments. Section IV-A describes the pre-
training setup. In Section V describes the fine-tuning setup
for each downstream task.
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FIGURE 5. The input point clouds and reconstructed results of PointMAE pre-training. This visualization result shows the input point clouds and
output results of pre-training PCPN and ShapeNet using PointMAE, respectively. This visualization result reveals that PointMAE can train PCPN and

ShapeNet to restore the original point clouds.

A. PRE-TRAINING SETUP

In this experiment, the PointMAE approach [7] was employed
to pre-training the proposed PCPN using the PointCloud
Transformer architecture [33]. All experiments were per-
formed on a system equipped with four NVIDIA TITAN
V100 GPUs, and PyTorch 1.8.0 was used as a deep
learning framework. During the pre-training phase, a data
augmentation strategy was applied that scaled and translated
each point within a point cloud. The scaling factor and
translation value were randomly chosen from a uniform
distribution, with a scaling range of 2/3 to 3/2 and a
translation range of 0.2.

To evaluate the performance of the proposed model after
fine-tuning, three PCPN datasets are constructed at different
scales: 1,000, 10,000, and 100,000, named PCPN-1k, PCPN-
10k, and PCPN-100k, respectively. In addition, to assess the
effectiveness of pre-training with the PCPN, we used the
ShapeNet dataset for comparison. ShapeNet is a standard
dataset commonly used in self-supervised learning tasks with
single-object focus, such as PointMAE [17]. It consisted of
55 object categories and 51,300 3D CAD models.

To pre-train the PointCloud transformer, we employed
AdamW as the optimizer and applied cosine learning rate
decay to minimize the specific loss function during the
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training process. The selection of hyperparameters, including
an initial learning rate of 0.001, a weight decay of 0.05, and
a batch size of 256, was guided by the settings recommended
in the original PointMAE paper [7]. The pre-training was
performed for 300 epochs.

B. FINE-TUNING SETUP ON EACH DOWNSTREAM TASK

In the downstream task, we evaluated the PCPN pre-trained
model in comparison with ShapeNet pre-trained Point-
MAE and previous 3D object recognition methods in
3D shape classification, few-shot learning, and part
segmentation.

1) 3D SHAPE CLASSIFICATION

For 3D shape classification, we utilized two benchmark
datasets: ModelNet40 [17] and ScanObjectNN [18]. Model-
Net40, widely used for 3D object classification tasks, is a
single-object dataset comprising 40 categories, including
9,843 samples for training and 2,468 samples for testing.
On the other hand, ScanObjectNN is a real-world dataset
design to handle the complexity and variety of real-world
3D objects, consisting of 15 categories, 2,312 samples for
training, and 581 samples for testing. The performance
of the proposed method was evaluated using ModelNet40
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and three subsets of ScanObjectNN {OBJ-BG, OBJ-ONLY,
and PB-T50-RS}. OBJ-BG includes the surroundings of an
object, whereas OBJ-ONLY comprises a 3D object without
any background. PB-T50-RS is a more challenging subset in
which all 3D objects undergo translation, rotation (about the
gravity axis), and scaling to simulate real-world scenarios in
which objects may not be in standard orientations or scales.

In the fine-tuning phase, we used AdamW [46] as the
optimizer with an initial learning rate of 0.005, which was
then adjusted according to the cosine learning rate decay
schedule across 300 epochs. Each pre-trained model was fine-
tuned on point clouds with 1,024 points for ModelNet40
and 2,048 points for ScanObjectNN. In addition, to evaluate
the performance of the 3D shape classification, we used
the overall accuracy as an evaluation metric. In partic-
ular, we compared the highest accuracy achieved within
300 epochs as the performance metrics. We set up these
experimental conditions and evaluation metrics in accordance
with the PointMAE in order to make a fair comparison with
the previous studies.

2) FEW-SHOT LEARNING

In the few-shot learning experiments, we randomly selected
K classes from ModelNet40 and sampled N + 20 objects for
each class. These K classes were used to form the K-way,
N-shot subsets used for training. Each pre-trained model was
then evaluated on the remaining 20 objects per class. In this
paper, we prepared 10 subsets by varying K and N with values
of {5, 10} and {10, 20}, respectively.

During the fine-tuning phase, we employed the AdamW
optimizer, starting with a learning rate of 0.0005, which
was then modulated following a cosine decay schedule over
150 epochs. ModelNet40 was fine-tuned using point clouds
consisting of 1024 points. The performance was evaluated
based on the mean and standard deviation of the highest
accuracy achieved across each subset. We set up these
experimental conditions and evaluation metrics in accordance
with PointMAE to ensure a fair comparison with previous
studies.

3) PART SEGMENTATION

Part segmentation, which involves identifying finer class
labels for all points of a 3D model, presents a significant
challenge. For the evaluation, we used the ShapeNetPart [9]
dataset, a benchmark specifically designed for part segmen-
tation. It comprises 16,881 3D models spanning 16 diverse
categories.

We evaluated performance using the mean intersection
over union (mloU) for all instances and IoU for each category.
This paper reports two key metrics that together provide
a comprehensive overview of the model’s performance:
mloUC and mloUI. The mIoUC measures the average over-
lap between the predicted and ground truth segmentations
for each category, while the mIoUI averages the IoU across
all instances, regardless of their category. We set up these
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TABLE 1. Comparison of PCPN and ShapeNet on object classification.
This table shows the Accuracy (%) of the downstream tasks of object
classification using ModelNet40 and ScanObjectNN. We evaluated
ScanObjectNN under three conditions, following the method of Pang
et.al. [7]. We also cite and compare the score of conventional methods
(PointNet, PointNet++, and PointCNN).

Pre-training ModelNet40 ScanObjectNN
OBJ-BG  OBJ-ONLY  PB-T50-RS
PointNet [25] 89.2 73.3 73.3 68.0
SpiderCNN [47] - 77.1 79.5 73.7
PointNet++ [48] 90.7 82.3 84.3 77.9
DGCNN [30] 92.9 82.8 86.2 78.1
PointCNN [26] 92.5 86.1 85.5 78.5
BGA-DGCNN [18] - - - 79.7
BGA-PN++ [18] - - - 80.2
GBNet [49] - - - 80.5
PRANet [50] - - - 81.0
From scratch 91.4 79.8 80.5 772
ShapeNet 92.1 83.5 86.9 87.4
PCPN-1k 92.8 84.2 87.2 82.5

experimental conditions and evaluation metrics in accordance
with PointMAE to ensure a fair comparison with previous
studies.

V. COMPARISON WITH PREVIOUS RESULTS

This section explains the experimental results for downstream
tasks. The proposed method was evaluated by verifying it
using benchmark datasets for 3D shape classification, few-
shot learning, and part segmentation.

A. 3D SHAPE CLASSIFICATION

Table 1 shows that the proposed PCPN-1k pre-trained model
consistently outperformed learning from scratch regardless of
the real or CAD data. This result indicates that the pre-trained
framework is effective for 3D shape classification. Moreover,
the PCPN-1k pre-trained model achieved higher performance
than the previous baseline ShapeNet despite the 1/50 dataset
size except for ScanObjectNN (PB-T50-RS). Specifically, for
ModelNet40, the PCPN-1k pre-trained model outperformed
the ShapeNet pre-trained model with a performance gain of
40.7%. For ScanObjectNN, the PCPN-1k pre-trained model
also outperformed the ShapeNet pre-trained model with a
gain of +0.7% for the OBJ-BG subset and an increase of
+0.3% for the OBJ-ONLY subset.

The stable and consistent improvements, independent of
the data domain, prove the effectiveness of the proposed
PCPN construction and pre-training using PointMAE. More
importantly, the PCPN pre-training framework consumes
much less human effort for 3D dataset construction and
computational resources for pre-training than ShapeNet pre-
trained PointMAE, further validating the efficiency and
effectiveness of the proposed method.

In contrast, for the PB-T50-RS subset of the ScanOb-
jectNN, the proposed method falls below the baseline.
PB-T50-RS is a relatively challenging subset of ScanOb-
jectNN that is subject to noise, occlusions, rotational exten-
sions, etc. We suspect that the PCPN-1k pre-trained model
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TABLE 2. Comparison of PCPN and ShapeNet on few-shot learning. We evaluated the Accuracy(%) of ModelNet40 under four conditions of few-shot
learning. In each experiment, we conducted experiments ten times and calculated the mean and standard deviation. We also cite and compare the score

of conventional methods (DGCNN-rand, and DGCNN-OcCo).

Methods ‘ 5-way, 10-shot ~ 5-way, 20-shot ~ 10-way, 10-shot ~ 10-way, 20-shot
DGCNN-rand [30] 31.6 2.8 40.8 4.6 19.9 £ 2.1 169 £ 1.5
DGCNN-OcCo [30] 90.6 £ 2.8 925+ 1.9 829+13 86.5+22
Transformer-OcCo [30] 94.0 £ 3.6 959+23 894 +5.1 924+46
PointBERT [6] 94.6 + 3.1 96.3 + 2.7 91.0+ 54 927+ 5.1
From scratch 87.8 5.2 93.3 +4.3 84.6 £5.5 894 1+6.3
ShapeNet 973+1.9 96.8 + 2.1 91.7 £ 43 934 +2.7
PCPN-1k 95.0 £ 3.0 953+5.6 89.6 4.1 92.6 + 2.8

performs poorly due to the fact that it is pre-trained based on
mathematical formulas that generate 3D data with no missing
data. Therefore, we speculated the performance could be
improved by generating point clouds with intentional misses
or occlusions in the PCPN generation algorithm process.

B. FEW-SHOT LEARNING

To investigate the effects of the proposed PCPN pre-trained
model on few-shot learning for 3D shape classification,
experiments were conducted to compare the effectiveness
of PCPN-1k pre-training frameworks on various 5, 10-way
and 10, 20-shots setting on ModelNet40. A pre-training
model that achieves good performance with a limited sample
of training data is ideal for 3D vision tasks because the
collection and manual labeling of 3D data is expensive.
Therefore, it is important to validate the effect of pre-training
on learning using a few shots.

As shown in Table 2, we validated the effectiveness of
the proposed PCPN-1k pre-trained model on ten ModelNet40
subsets of each few-shot learning experiment using the Point-
MAE experimental setting. Table 2 shows that the PCPN-
1k pre-trained model becomes much more efficient than
learning from scratch, with significant performance gains.
In particular, it was compared with learning from scratch in
four subsets, and it confirmed performance improvements
of 7.2%, 2.0%, 5.0%, and 3.2%. In particular, a significant
improvement in performance was observed in the 10-shot
case, where the amount of data was small. This result suggests
that the PCPN model pre-trained with PointMAE acquires a
universal 3D feature representation that can quickly adapt to
new downstream tasks without using any real data or manual
annotation.

However, an approximately 2.0% lower performance was
observed in all subsets compared to the ShapeNet pre-trained
model. The domain similarity between the evaluation dataset
of ModelNet40 and the pre-training dataset of the baseline
of ShapeNet is considered responsible for this result. Both
ModelNet40 and ShapeNet are 3D datasets of CAD models.
The categories of the two 3D datasets are very similar.
Therefore, the shape classification accuracy was believed to
be higher with fewer samples than with the PCPN.
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In the context of image recognition with synthetic pre-
training, the difference in image domains between natural
and synthetic images is a major challenge for pre-training
with limited data. However, although our results fall short of
pre-training with ShapeNet, the observation that the effects
of PCPN-1k pre-training can be confirmed even with a small
number of samples on 3D datasets with different domains is
of great value in academia and the industry.

C. PART SEGMENTATION

In this experiment, we evaluated the pre-trained model
using ShapeNetPart, which contains 16,881 objects from
16 categories. As shown in Table 3, the PCPN-1k pre-
trained model achieved a mIoUI of 85.8%, outperforming
from-scratch training by 0.7% mloU. Furthermore, the per-
formance was equivalent to that of the ShapeNet pre-trained
model. Through part segmentation, the PCPN pre-trained
model demonstrates an understanding of 3D objects through
the accurate identification and segmentation of individual
parts. The ability to segment 3D objects into their constituent
parts allows for a more detailed understanding of their 3D
geometry. This demonstrates the effectiveness of the PCPN
pre-trained model in tasks requiring nuanced 3D object
recognition.

VI. ABLATION EXPERIMENTS

In this section, we describe exploratory experiments con-
ducted based on the properties of PCPNs. Specifically,
we investigated the masking ratio for PCPNs during
pre-training and PCPN dataset size.

A. EFFECT OF MASK RATIO OF PointMAE
In this experiment, we investigated the optimal mask ratio
for PCPN pre-training using PointMAE. The effective mask
ratio for fine-tuning performance can vary depending on
the pre-training characteristics. PointMAE used a mask ratio
of 60% on ShapeNet. Therefore, we aimed to determine
the optimal mask ratio for PCPN in terms of fine-tuning
performance.

As shown in Table 4, the mask ratio of 60% outperforms
the ratios of 20%, 40%, and 80%. This result may be due
to the fact that the pre-training task becomes too easy when
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TABLE 3. Part segmentation results on ShapeNetPart dataset. We report the mloU across all part categories (mloUC %), the mloU across all instances
(mloUl %), and the loU (%) for each category. We also cite and compare the scores of conventional methods (PointNet, PointNet++, and DGCNN).

Methods mloUC  mloUI | aero bag cap car chair  earphone guitar knife
lamp laptop motor mug  pistol rocket skateboard  table

. 834 787 825 749 896 73.0 91.58 85.9
PointNet [25] - 87 | g08 953 652 930 812 579 728 80.6
. 824 790 877 773 908 71.8 91.0 85.9
PointNet++ [48] - 8.1 1§37 953 716 941 813 587 76.4 82.6
840 834 867 778 906 74.7 91.2 87.5

DGCNN [30] - 852 | go8 957 663 949 8l1 63.5 745 82.6
- 829 854 877 788 905 $0.8 91.1 87.7

From scratch 834 851 1 g53 956 739 949 835 61.2 74.9 80.6
852 838 892 807 916 75.7 92.0 88.0

ShapeNet 844 861 | g1 960 772 950 854 655 77.4 81.8
841 832 877 799 912 77.8 91.4 87.0

PCPN-1k 836 858 157 959 738 946 838 616 76.6 82.0

TABLE 4. The effect of mask ratio on pre-training. We compare the
performance on ModelNet40 and ScanObjectNN when the mask ratio on
pre-training changed to {20%, 40%, 60%, 80%}.

Mask ratio | ModelNet40 ScanObjectNN
OBJ-BG OBJ-ONLY  PB-T50-RS
20 % 92.5 84.2 86.6 81.6
40 % 92.8 86.2 84.7 81.0
60 % 92.8 84.2 87.2 82.5
80 % 92.7 85.2 84.2 80.5

TABLE 5. The effect of dataset size on PCPN pre-training. We compare
the pre-training performance on ModelNet40 and ScanObjectNN when
the dataset size of PCPN is changed to {1k, 10k, 100k}.

Pre-training | ModelNet40 ScanObjectNN
OBJ-BG OBJ-ONLY  PB-T50-RS
PCPN-1k 92.8 84.2 87.2 82.5
PCPN-10k 92.9 80.2 81.9 82.4
PCPN-100k 92.5 80.7 81.4 82.2

the mask ratio is low and too difficult when the mask ratio
is high.

B. SCALING PCPN

An important property of transformers is the scaling law,
which suggests that as the dataset size increases, the
performance of the transformer also improves. One notable
property of the proposed PCPN is its extremely low cost for
scaling the dataset size. The experimental results of varying
PCPN dataset sizes are shown in Table 5, where PCPN-1k
contains 1,000 samples, PCPN-10k contains 10,000 samples,
and PCPN-100k contains 100,000 samples.

As shown in Table 5, PCPN-1k outperforms PCPN-10k
and PCPN-100k. This result contradicts the scaling law
typically observed in transformers. We speculate that this is
due to the limited variety of PCPN data. Our proposed PCPN
is generated using only three shape variation parameters.
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Consequently, PCPN-10k and PCPN-100k produce similar
data, which may not increase the diversity of the dataset.
Furthermore, we believe that pre-training on a large amount
of similar data may have led to overfitting in PCPN. This is
an important finding for future pre-training with synthetic 3D
data, including PCPN. Based on these findings, we recognize
the need to improve the dataset construction method moving
forward.

VII. ANALYSIS EXPERIMENTS

This section describes our evaluation of the feature represen-
tations obtained through training from scratch, training with
the ShapeNet pre-trained model, and training with the PCPN
pre-trained model. We visualized the feature space using
T-distributed stochastic neighbor embedding (t-SNE) [51]
and evaluated the obtained feature representations using
centered kernel alignment (CKA) similarity [20].

A. T-SNEs

The purpose of this experiment was to analyze how the PCPN
pre-trained model differs from the ShapeNet pre-trained
model in the feature space. Additionally, we aimed to
verify the effectiveness of the PCPN pre-trained model by
comparing it with models trained from scratch without pre-
training.

In Figure 6, we visualize the feature spaces of the
fine-tuned models on ModelNet40 using t-SNE. The feature
space of the PCPN pre-trained model exhibited more
compact clusters compared to the model trained from scratch.
However, when compared with the ShapeNet pre-trained
model, the ShapeNet model’s feature space shows more
distinct and compact clusters overall.

B. CKA-SIMIRALITY

In this experiment, we evaluated the similarity of 3D
feature representations among each pre-trained model using
CKA similarity [20]. CKA similarity is a non-parametric
method for measuring the correlation between two feature
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FIGURE 6. Visualization of feature space on ModelNet. We utilized T-SNE [51] to visualize the distribution of feature space when Scratch, ShapeNet
pre-trained model, and PCPN-1k pre-trained model are applied as pre-training parameters on ModelNet40. This figure reveals that the feature space is

organized differently depending on the pre-trained model.
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FIGURE 7. Visualization of CKA similarity between different pre-trained models. This figure shows the comparisons of feature representations of three
models, Scratch, ShapeNet pre-trained, and PCPN-1k pre-trained, on ModelNet40 using CKA similarity. The outputs of the 12 intermediate layers of the
transformer model used are compared. The axes of each figure indicate the number of the compared layers.

representations, providing robust results even for high-
dimensional data. Specifically, we compared the 12 attention
blocks of the PointCloud Transformer encoder across the
models trained from scratch, ShapeNet pre-trained model,
and PCPN pre-trained model. Fine-tuning was conducted on
ModelNet40 using each model as the initial parameter, and a
validation dataset was used to evaluate the similarity of the
feature spaces.

Several important observations are presented in Figure. 7
Firstly, models trained from random initialization exhibit
distinctly different feature representations compared to those
that are pre-trained. This suggests that pre-training equips
models with specific knowledge that guides them along a
different learning path from models trained with random
initialization. More intriguingly, a high similarity in feature
representations is observed between the ShapeNet pre-trained
model and our proposed PCPN pre-trained model. This
result implies that the PCPN model can learn effective
feature representations for 3D object recognition despite not
requiring CAD models or real-world data. These results
strongly suggest that the PCPN model is capable of
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acquiring useful knowledge through pre-training, forming
powerful representations for 3D object recognition. This
further substantiates the effectiveness of our proposed PCPN
pre-trained model and introduces new possibilities for future
research in 3D object recognition.

VIil. DISCUSSION AND LIMITATION

Our experimental results demonstrate that the proposed
pre-training framework based on Perlin noise is use-
ful and effective for synthetic pre-training in 3D object
recognition. These results suggest that the method has
the potential to support the development of applications
requiring 3D object recognition with limited amounts of
supervised 3D data, such as autonomous driving and robotic
navigation.

However, the proposed method has certain limitations.
First, we primarily verified the effect of PCPN pre-training
on ModelNet40, ScanObjectNN, and ShapeNetParts, which
limits the generalizability of our experimental results.
Nevertheless, many studies in self-supervised learning [52],
[53], [54] still rely on these datasets for evaluation due to the
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limited availability of diverse and high-quality 3D datasets.
By using these datasets in our experiments, we ensure that
our proposed method can be compared directly and fairly
with existing self-supervised learning methods. Additionally,
a drawback of our method is that the data domain of the
3D shapes generated by our method differs from that of
real-world or CAD data. This domain discrepancy could
result in lower data efficiency during pre-training compared
to competing methods.

Furthermore, Table 5 shows that scaling the size of
the PCPN did not result in linear performance improve-
ments. We speculate that one of the limitations of the
PCPN generation process lies in the limited variation
of 3D shape parameters. Therefore, it is important to
increase the number of generation parameters to enhance
the diversity of 3D shapes in the PCPN. In this paper,
we focused on our pre-training strategy using PointMAE,
the latest method in transformer-based self-supervised
learning. However, the performance of PCPN with other
self-supervised learning methods remains unknown. Thus,
it is crucial to explore better representation learning methods
for PCPN.

IX. CONCLUSION

This paper presents a pre-training method for automatically
constructing a point cloud dataset, named Point Cloud Perlin
Noise (PCPN), without the need for real 3D data collection or
human annotation. Large-scale point cloud datasets have long
been a bottleneck in pre-training for 3D object recognition
due to the high costs associated with data collection and
labeling. Our proposed method addresses this challenge
by generating a point cloud dataset using a mathematical
formula based on Perlin noise, thereby eliminating the need
for human intervention. Specifically, our method generates
diverse 3D patterns by varying key parameters within the
Perlin noise generation process. By training on the generated
point cloud through a reconstruction task, we develop a robust
pre-training model.

The experimental results demonstrate that the PCPN
pre-trained model achieve performance comparable to those
pre-trained models on conventional datasets. Moreover, our
approach not only alleviates the shortage of 3D data but
also enhances the diversity of 3D patterns within the dataset.
These findings confirm the effectiveness of the PCPN
pre-training strategy for 3D object recognition.

While this study introduces PCPN as an initial explo-
ration into automatic dataset generation for pre-training,
we anticipate that further refinement and the development
of more advanced learning techniques tailored to PCPN
will lead to even greater improvements in pre-trained model
performance. Additionally, expanding the scope of testing
to include more diverse 3D datasets represents a valuable
direction for future research. We plan to explore this in
future studies as more comprehensive 3D datasets become
available.
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