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ABSTRACT Advanced Persistent Threat (APT) groups pose significant cybersecurity threats due to their
sophisticated and persistent nature. This study introduces a novel methodology to understand their collabo-
rative patterns and shared objectives, which is crucial for developing robust defense mechanisms. We utilize
MITRE ATT&CK Techniques, software, target nations, and industries as our primary features to understand
the characteristics of APT groups. Since essential information is often buried within the unstructured data
of Cyber Threat Intelligence (CTI) reports, we employ Natural Language Processing (NLP) and Named
Entity Recognition (NER) to extract relevant data. To analyze and interpret the complex relationships
betweenAPT groups, we compute similarity among the features usingweighted cosine similaritymetrics and
Machine Learning (ML) models, enhanced by feature crosses and feature selection strategies. Subsequently,
hierarchical clustering is used to group APTs based on their similarity scores, helping to identify common
behaviors and uncover deeper relationships. Our methodology demonstrates notable clustering performance,
with a silhouette coefficient of 0.76, indicating strong intra-cluster similarity. The Adjusted Rand Index
(ARI) of 0.63, though moderate, effectively measures agreement between our clustering and the ground
truth. These metrics provide robust validation, surpassing commonly recognized benchmarks for effective
clustering in cybersecurity. Our methodology successfully classifies 23 distinct APT groups into six clusters,
highlighting the importance of techniques and industry features in the clustering process. Notably, techniques
such as T1059 (Command and Scripting Interpreter) and T1036 (Masquerading) are prevalently deployed,
observed in 18 out of 23 APT groups across all six clusters.

INDEX TERMS Advanced persistent threat (APT) groups, cyber threat intelligence (CTI) report, feature
engineering, hierarchical clustering, named entity recognition, weighted similarity measurement.

I. INTRODUCTION
A significant concern for enterprises and organizations in the
digital age is the surge in cyber threats. With the number
and scale of Advanced Persistent Threat (APT) [1] groups
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escalating, the need for effective defense measures has never
been greater. Organizations face an increasing demand to
protect their digital assets and sensitive data against hack-
ers, cybercriminals, and state-sponsored entities. To combat
these risks, they must be armed with current and accurate
Cyber Threat Intelligence (CTI), which provides insights into
potential attackers, their tactics, techniques, and procedures,
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as well as vulnerabilities and attack methods. The adoption
of CTI has seen a marked increase, moving from a smaller
fraction of organizations to becoming a more widely adopted
practice over a recent period [2], [3], with a substantial 80.8%
of organizations affirming an enhancement in their security
posture, particularly in detection, prevention, and response
capabilities. This reliance underscores the evolving complex-
ity of the cyber threat landscape and the growing consensus
on CTI as an indispensable element of contemporary cyber
defense.

Cybersecurity firms, serving as the primary sources of this
intelligence, cater to a diverse clientele with state-of-the-art
solutions. They have broad access to threat intelligence data
and produce comprehensive reports that delve into emergent
cyber threats, offering guidance on best practices and defense
strategies.

Recent trends underscore an increasing focus on
key sectors by APT, with these adversaries conducting
in-depth reconnaissance followed by sophisticated incursions
designed to mask their presence and secure long-term access
to target networks. The complexity and persistence of these
attacks have been escalating, with entities repeatedly vic-
timized by the same or similar APT groups. This trend is
visually represented in Fig. 1, which illustrates the simi-
larities between APT Group A and Group B, particularly
highlighting shared MITRE ATT&CK technologies, loca-
tions, and target countries. Such patterns, as accentuated by
data from FireEye’s M-trends report [4], showcase a pressing
need for in-depth, actionable intelligence that can inform and
refine organizational defense strategies.

FIGURE 1. Sample illustration of similarities between APT Group A and
Group B - highlighting MITRE ATT&CK techniques, locations, and target
countries.

Studies such as, Wang et al. [5] made significant progress
in analyzingAPT behavior by incorporating key features such
as TTPs, software, location, and target industries. However,
their approach did not involve extensive feature engineering
or employ similarity measures and deep learning techniques,
which limited the depth and sophistication of their analy-
sis. Similarly, [6] introduced the APT detection framework
AULD (Advanced Persistent Threats Unsupervised Learning
Detection), which applies a clustering algorithm to detect
suspicious domains in APT attacks. While it effectively clus-
ters malicious domains, it is limited by its narrow focus on
domain (DNS)-based detection. Meanwhile, [7] proposed a
hierarchical clustering framework to identify IoT-based APT

attacks using IoT honeypots and TTP (Tactics, Techniques
and Procedures) extraction. Reference [8] also focused on
identifying attack groups by comparing the similarity of dis-
tributed domains, helping to detect recurring cyber-attacks
from the same group. Although these approaches are effective
within their specific contexts (DNS or IoT), they lack the
integration of broader multi-dimensional analysis required
for comprehensive APT clustering.

Recent works have attempted to address these limita-
tions by incorporating additional features. For example,
[9] presented a machine learning approach using hierarchi-
cal clustering to discover significant correlations between
MITRE ATT&CK techniques, demonstrating that certain
techniques can predict others with high accuracy. Li et al.
[10] proposed an innovativemethod to automatically discover
correlations between APT groups using rough set theory,
achieving a high correlation precision. Their work focused on
quantifying relationships between attack behavior patterns,
offering an additional perspective on APT group relevance.
However, these methods still lack a comprehensive, multi-
dimensional view of APT behavior.

Our research builds on these efforts by integrating
weighted feature importance across multiple dimensions,
including MITRE ATT&CK techniques, software, target
industries, and geographic locations. This allows for a more
nuanced understanding of APT group behavior, offering
improved clustering accuracy and actionable insights for
defense strategies. We also extend previous efforts like [11],
which utilized multimodal feature fusion and heterogeneous
graph attention networks to capture deeper relationships
between IOCs and APT groups. Our approach enhances
this by incorporating decision trees and deep feature extrac-
tion, refining feature importance and improving clustering
accuracy.

APTs are defined by their deliberate sequence of malicious
activities—Tactics, Techniques, and Procedures (TTPs)—
each chosen to advance the adversary’s strategic goals.
Security professionals must decipher these granular details to
counter the threat effectively. However, much of this essen-
tial information is buried within unstructured CTI reports,
complicating extraction and analysis. Advances in Natural
Language Processing (NLP) and Named Entity Recognition
(NER) [12], [13] have enabled the categorization of APT
groups by their distinct characteristics, revealing potential
inter-group dynamics.

While behavioral analysis in sandboxes [14], [15] and
binary analysis [16], [17] offer ways to match malicious
samples used by attackers to known or novel APT families,
it is insufficient for identifying the groups behind attacks,
given the many-to-many relationships between APT groups
and techniques. Data-driven approaches have demonstrated
strong performance in network security, as they allow for the
discovery of broader patterns and relationships within large
datasets. Our research builds on these strengths to develop a
more accurate clustering of APT groups, consideringmultiple
dimensions of their behavior.
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Despite technological advancements, the industry contin-
ues to face significant challenges. The nuanced characteris-
tics and covert interrelationships between APT groups are
frequently missing from CTI reports, leaving gaps in collec-
tive cybersecurity knowledge. For instance, the ‘‘Fox Kitten
Campaign’’ revealed a hidden alliance between Iran-linked
APT groups APT34/OilRig and APT33/Elfin [18]. Identi-
fying such strategic collaborations is crucial for crafting
anticipatory defense mechanisms.

While prior studies have expanded our understanding of
APT behavior, they often concentrated solely on data-level
analysis, overlooking the critical semantic connections that
illuminate the strategies and origins of APTs. Our research
addresses this gap by delving into both the explicit tactics
and subtler semantic ties evident in CTI reports. This dual
approach strives for a deeper understanding and more effec-
tive counteractions against these threats.

Our primary focus lies in dissecting APT activities, scruti-
nizing pivotal aspects such as MITRE ATT&CK techniques,
software usage, and the geographical locations and indus-
tries targeted. This in-depth analysis aims to provide a
holistic view of APT operations, underscoring their tactical
movements, technological capabilities, and strategic intents.
By employing a robust NLP model for NER tasks, our
research accurately labels crucial features (MITREATT&CK
techniques, software, locations, and industries) across a range
of open-source CTI datasets. Feature selection and fea-
ture crosses further refine our analysis. Subsequently, our
approach utilizes weighted similarity metrics, informed by
decision trees, and further enhanced by deep feature extrac-
tion using Deep Neural Networks (DNNs). This method
allows for a more nuanced and accurate analysis of APT
group relationships. In summary, our study makes the follow-
ing contributions to the field of CTI.

• We propose a novel AI-enhanced weighted similarity
metric combining Feature Crosses, Feature Selection,
and weighted cosine similarity metrics using deci-
sion trees and DNNs. This method addresses exist-
ing literature gaps by capturing explicit relationships
(e.g., common MITRE ATT&CK techniques and soft-
ware) and subtle relationships (e.g., patterns in geo-
graphical and industry targets) among APT groups.
It significantly improves clustering accuracy over tradi-
tional methods that rely on shallow feature extraction or
simplistic techniques.

• We created a comprehensive dataset from 709 CTI
reports, annotated with specific APT groups and their
associated features. In total, 35 distinct APT groups and
their associated features were identified. This dataset
was split into 23 labeled APT groups, which were clus-
tered to train and validate our clustering model, and
12 unlabeled APT groups, which were used to uncover
hidden patterns and enhance the model’s robustness and
depth of our findings.

• We provide in-depth insights into APT group operations
by analyzing their behavior by considering features such

as MITRE ATT&CK Techniques, software, geographic,
and industrial targets based on the CTI reports. This
detailed focus reveals critical patterns and trends in
APT activities, offering actionable intelligence for better
defense strategies.

The paper is structured as follows: Section II outlines the
research methods, Section III reviews related literature, and
Section IV defines the problem statement. Methodology and
execution are detailed in Section V, followed by results
and evaluation in Section VI. Discussions are presented in
Section VII, and the Conclusion in Section VIII summarizes
key findings and contributions.

II. BACKGROUND
The background section outlines the essential methodologies
for clustering the APT groups, including data extraction and
preparation, sophisticated feature engineering, and advanced
clustering and similarity measurement techniques.

A. MITRE ATT&CK FRAMEWORK
CTI reports are critical for detailing the activities of threat
actors, especially APT groups. These reports offer insights
into the groups’ goals, the industries and regions they target,
and the methods they employ in their attacks [19]. However,
the inherently unstructured format of CTI reports presents
challenges for extracting clear and actionable insights.

To navigate these complexities, the MITRE ATT&CK
framework [20] serves as a cornerstone resource, offering a
structured compilation of known adversary behaviors. The
work [21] statistically analyzes the MITREATT&CK dataset
to enhance security strategies for enterprises, ICS, andmobile
infrastructures, offering a structured analysis from threat
profiles to techniques, and providing actionable insights for
future cybersecurity research.

Leveraging the framework, we have advanced our capabil-
ity to distill pertinent details from CTI reports, categorizing
the diverse techniques and software deployed by APTs.
By aligning the insights gained from MITRE ATT&CK with
the intelligence extracted from CTI reports, our analysis has
become more nuanced and comprehensive.

B. NAMED ENTITY RECOGNITION
NER is a subtask of NLP that focuses on identifying and
classifying named entities, such as industries, locations, and
software, within unstructured text data. In our approach,
we leveraged NER to automatically identify and extract these
important entities from the CTI reports based on a model
combining BERT [22] (Bidirectional Encoder Representa-
tions from Transformers) with a Conditional Random Field
(CRF) layer. This model, known as BERT-CRF, harnesses
BERT’s powerful contextual embeddings with the sequence
modeling capabilities of a CRF layer to improve the accuracy
of entity classification.

Given the sentence from the CTI report, ‘‘BRONZE BUT-
LER is a cyberespionage group with headquarters in Japan,’’
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the BERT-CRF model would operate as follows: BERT first
processes the entire sentence to understand the context around
each word. It identifies ‘‘BRONZE BUTLER’’ as a probable
named entity of the APT group and ‘‘Japan’’ as a geographic
location. The CRF layer then uses this information, along
with the learned transitions between entity labels from the
training data, to predict the most likely sequence of labels for
the entire sentence.

However, we encountered a challenge when dealing with
technique IDs defined by MITRE ATT&CK. These IDs were
typically presented in tabular form in some of the reports.
To address this, we manually supplemented the technique ID
information into our dataset to ensure its completeness and
accuracy.

C. FEATURE ENGINEERING METHODS
Effective clustering of APT groups necessitates a meticulous
selection and engineering of features that capture the essence
of their behavior and impact. In our study, we focus on a
curated set of features that are pivotal for understanding and
distinguishing between APT groups: MITRE ATT&CK tech-
niques, software utilized, industries targeted, and geographic
locations of the attacks.

1) FEATURE SELECTION
Before we perform the clustering of APT groups, it is imper-
ative to identify the most informative features within our
dataset. Feature selection is a crucial step in our machine
learning pipeline, designed to manage the complexities inher-
ent in the high-dimensional data associated with APT groups.

Our methodology employs the filter method [23] to iden-
tify a subset of significant features. This process is articulated
as

Score (Fi) = f (Fi,Y ) , (1)

where Score (Fi) quantifies the importance of each feature Fi
concerning the target variable Y . In our study, Y represents
the cluster of APT groups based on their behaviors and
characteristics. The filter method relies on statistical mea-
sures such as correlation coefficients, mutual information,
and chi-squared tests to evaluate the relevance of each feature
to Y . High-scoring features are indicative of greater relevance
to the clustering outcome and are thus selected for further
analysis.

2) FEATURE CROSSES
With the relevant features identified, we utilize Feature
Crosses to create new combined features that can model
the interactions and relationships between the original fea-
tures [24]. This technique is vital for capturing complex,
non-linear relationships that may exist in the interactions
between different APT group behaviors. For example, if we
consider the interaction between any two features deployed
by APT groups, a new feature might be represented as

Fnew = f
(
Fi,Fj

)
, (2)

where Fnew represents the newly formed feature through
the interaction of Fi and Fj. Specifically, if we examine
the interaction between technique and software features, this
relationship can be represented as

Fnew = Ftechnique ∗ Fsoftware. (3)

By creating these crossed features, we are equipped to
uncover hidden patterns and dependencies, enhancing our
clustering framework’s ability to discern the nuanced behav-
iors that define each APT group.

D. SIMILARITY MEASUREMENT AND CLUSTERING
In our analysis, we quantify the similarity between APT
groups using the weighted cosine similarity metric, which is
formulated as

Similarity =

∑n
i=1 wiaibi√∑n

i=1 (wiai)2
√∑n

i=1 (wibi)2
. (4)

In this expression, ai and bi are the feature vectors of the
APT groups being compared, wi is the weight assigned to
each feature based on its importance derived from the feature
selection method and n is the total number of features.

Our methodology employs both decision tree models and
DNNs to derive these critical feature importance scores. The
decision tree model, trained on a foundational dataset com-
prising labeled data points, uses measures such as entropy or
Gini impurity to optimize its decision-making process. This
results in the generation of feature importance scores that
reflect each feature’s contribution to the model’s predictive
accuracy.

Parallelly, DNNs offer a complementary perspective by
capturing complex, non-linear relationships between fea-
tures, further enriching the feature importance assessment.
This dual approach enables a comprehensive evaluation of
feature significance, which is instrumental in calculating our
weighted similarity measure. To refine the weighted simi-
larity scores further, we incorporate the models’ accuracy
into weighting process and apply normalization techniques
to address data imbalances, ensuring equitable representation
across all classes. Building upon these refined similarity mea-
sures, we employ hierarchical clustering [25] to categorize
APT groups.

Despite its computational intensity, hierarchical clustering
is invaluable for revealing intricate patterns and relation-
ships that might otherwise remain obscured. By combining
weighted cosine similarity with hierarchical clustering, our
framework effectively identifies significant structures within
the data, facilitating a comprehensive exploration of APT
group behaviors and interactions.

III. RELATED WORK
Several studies have contributed significantly to cluster anal-
ysis and APT group clustering, utilizing different features
and methodologies. The key contributions are compared
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TABLE 1. Comparison of various related work.

in Table 1, focusing on the features used, similarity measures
applied, and the clustering algorithms employed.

Ding et al. [26] constructed a knowledge graph to uncover
hidden correlations between APT groups and their techniques
using hierarchical clustering. While this approach provides
insights into TTP relationships, it lacks the integration of
broader features like industry and geography, which are
critical for understanding APT group behavior in different
contexts. In contrast, Fu et al. [27] analyzed attack events
using IoC features with spectral clustering, demonstrating the
potential of honeypot data to enhance defense mechanisms.
Although useful for small-scale attacks, this work does not
consider a multi-dimensional approach that includes strategic
features such as software and industry targeting. Similarly,
Faridi et al. [28] explored malware clustering using behav-
ioral attributes and cosine and Jaccard similarity, but their
focus on malware types rather than APT group behaviors
limits its applicability to broader APT clustering tasks.

Reference [10] tackled APT clustering through rough
set theory to automatically discover correlations between
APT groups, offering high precision but lacking a
multi-dimensional integration of APT behaviors.
Xiao et al. [11] introduced a more advanced technique by
utilizing multimodal feature fusion and heterogeneous graph
attention networks to capture relationships between IOCs and
APT groups. This method provides a deeper understanding
of APT behaviors by combining semantic and structural
features. However, [11] is heavily focused on graph-based
analysis, and while it captures intricate relationships between
technical indicators, it does not incorporate broader strategic
features, such as targeted industries or geographic locations,
limiting its strategic applicability.

Wang et al. [5] took a multi-dimensional approach by
clustering APT groups using TTPs, software, industry, and
country. However, this work lacks similarity measures and
deep learning techniques, reducing its ability to capture
complex relationships between features. Al-Shaer et al. [9]
improved on this by incorporating cosine similarity and

hierarchical clustering to find correlations between MITRE
ATT&CK techniques, demonstrating high predictive power.
However, [9] still lacks broader feature integration, limiting
its ability to handlemore complexAPT behaviors. In contrast,
[7] proposed Group Tracer, using hierarchical clustering to
identify IoT-based APT attacks with IoT honeypots and TTP
extraction. While effective for IoT-specific attacks, it lacks
generalization across industries or locations. Similarly, [6]
introduced an unsupervised learning model to cluster the
suspicious domains via DNS logs. However, its narrow focus
on DNS limits its broader applicability to APT groups, which
often use multiple attack vectors.

Our research builds on and extends previous studies by
incorporating multi-dimensional feature integration, address-
ing gaps in earlier works that primarily focused on individual
features like TTPs, IoT data, or DNS logs. In contrast to
these feature-specific approaches, our work integrates fea-
tures such as TTPs, software, industries, and geographic
locations, providing a comprehensive view of APT group
behavior. By emphasizing feature importance and appropriate
weighting, we overcome biases in technique usage across
approximately 190 techniques and 130 APT groups, as illus-
trated in Fig. 2 from our dataset. This integration enables us
to refine clustering accuracy, offering deeper insights into the
strategic behavior of APT groups for more effective threat
analysis and defense strategies.

Our approach also enhances traditional methods by
incorporating a weighted similarity measurement algorithm,
positioning our research as a significant advancement in CTI
analysis.

IV. PROBLEM FORMULATION
Our goal is to develop a weighted similarity measure for clus-
tering ‘n’ APT groups using four features: MITRE ATT&CK
Techniques, software, target countries, and industries, aiming
to create ‘m’ clusters. We assess our clustering approach with
two metrics:
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FIGURE 2. Distribution of techniques used by APT groups.

1) The Silhouette Coefficient, which measures how well
data points fit within their cluster compared to other
clusters, is suitable for unsupervised learning scenarios.

2) The Adjusted Rand Index (ARI), which quantifies
the similarity between the clustering outcome and the
ground truth labels, is useful for evaluating clustering
with known labels.

Due to limited labeled data, we use a mix of decision
tree-derived training data and additional labeled data not used
in training to calculate ARI, providing a robust validation
of our clustering effectiveness. This method, complemented
by an evaluation of a separate labeled dataset, enables a
comprehensive assessment of our weighted similarity metric
and clustering strategy’s accuracy and generalizability.

V. METHODOLOGY FOR CLUSTERING APT GROUPS
In this section, we present our framework for clustering APT
groups. The overall system architecture is depicted in Fig. 3.
The architecture has four fundamental components: Feature
Extraction, Data Aggregation, Ground Truth Generation, and
Clustering Method. This approach ensures a comprehensive
analysis by integrating these critical aspects to understand and
classify APT group behaviors accurately.

A. FEATURE EXTRACTION
During the Feature Extraction phase, our primary goal is
to meticulously identify and extract relevant features that
accurately represent the behaviors and characteristics of APT
groups from a comprehensive dataset of over 700 CTI reports.
To achieve this, we integrate NER with the advanced capa-
bilities of the BERT-NER model. This model, adapted from

the open-source implementation [22], is further augmented
with a CRF layer to enhance its precision in identifying and
classifying named entities related to APT groups within the
text.

The process of feature extraction through the BERT-NER
model can be described as follows:

1) Data Preprocessing: Each CTI report is tokenized into
words or sub-words. These tokens serve as input for the
BERT-NER model.

2) BERT-NER Model with CRF Layer: The tokenized
data is passed through the BERT-NER model, where
the BERT component generates contextual embeddings
for each token. The CRF layer then utilizes these
embeddings to predict the most probable sequence
of labels (e.g., technique ID, software used, target
industry) for the tokens, considering the context and
dependencies between labels.
During the training phase, the model’s parameters
are optimized by minimizing the objective function,
defined as

L (θ) = −6N
i=1 logP (yi | xi; θ) +

λ

2
||θ ||

2 , (5)

where, xi represents the input token sequence, yi rep-
resents the corresponding sequence of labels, θ is the
parameters of the model and λ is the regularization
parameter.

3) Training Parameters: To fine-tune our BERT-NER
model, we adopt a batch size of 8 and train the
model for 8 epochs. This setup is chosen to bal-
ance between model performance and computational
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FIGURE 3. System architecture for clustering APT groups.

FIGURE 4. Example of a CTI report processed by the BERT-NER model.
[LOC- location, APT- group name, Org – Sector].

efficiency. An example of a CTI report processed by
the BERT-NER model is shown in Fig. 4.

4) Manual Verification: Given the variability in how CTI
reports present information, techniques detailed in
tables require manual checking to complement the
automated NER process. The parameters used to man-
ually check the MITRE Techniques include the tech-
nique ID, description, and examples provided by the
MITRE database. These details help ensure accurate
identification and contextualization of each technique.
Also, the validation of the manual check on MITRE
Techniques is performed through cross-verification
with existing CTI reports with labels and the
MITRE ATT&CK framework to ensure accuracy and
consistency.

By leveraging the BERT-NER model enhanced with a CRF
layer, we significantly reduce the time and manual effort

required for feature extraction from CTI reports. Thus, the
combination of automated and manual methods ensures a
thorough and accurate representation of APT group charac-
teristics, laying a solid foundation for further analysis in the
subsequent phases of our methodology.

B. DATA AGGREGATION AND GROUND TRUTH
GENERATION
In the process of data aggregation for our research, we metic-
ulously synthesized information from a wide array of sources
to construct a comprehensive dataset on APT groups. This
involved incorporating data from the MITRE ATT&CK
framework, which served as a foundational resource due
to its detailed compilation of cyber threat tactics and tech-
niques. Additionally, we curated over 700 CTI reports
from sources including [29] and [30], and our own col-
lections, providing a broad perspective on APT operations
and strategies. A significant challenge in cybersecurity
research is the presence of multiple aliases for a single soft-
ware or APT group, as reported by different cybersecurity
firms. To tackle this, we standardized the names based on
MITRE ATT&CK’s ‘‘Associated Groups’’, ensuring consis-
tency across our dataset. For example, the APT group known
variably as ‘‘Ajax Security Team,’’ ‘‘Operation Woolen-
Goldfish,’’ ‘‘AjaxTM,’’ ‘‘Rocket Kitten,’’ ‘‘Flying Kitten,’’
and ‘‘Operation Saffron Rose’’ was uniformly referred to as
‘‘Ajax Security Team’’ in our dataset. Similarly, the software
‘‘ZxShell,’’ also known as ‘‘Sensocode,’’ was consistently
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TABLE 2. Clustering of APT groups based on shared characteristics and documented instances in CTI reports.

labeled as ‘‘ZxShell.’’ This approach not only streamlined our
dataset but also mitigated the potential confusion arising from
the diverse nomenclature used across different cybersecurity
reports.

We also consulted Malpedia [31], an esteemed online
repository of malware, to enrich our dataset with detailed
information onmalware families, attack techniques, and Indi-
cators of Compromise (IoCs). This extensive compilation of
data allowed us to create a standardized taxonomy for APT
group aliases and their associated software, enhancing the
dataset’s coherence and utility for analysis.

Our integrated dataset featured 35 distinct APT groups,
from which we identified 23 that met our strict criteria for
classification as ‘‘ground truth’’. These criteria included con-
sistent reporting across multiple sources and the presence of
verifiable IoCs. The remaining 12 groups were excluded due
to insufficient data tomeet these standards. Table 2 showcases
the clusters, associated APT groups, and instances in CTI
reports, validating our clustering approach and illustrating the
effectiveness of our method in categorizing APT groups. This
table acts as a pivotal element in generating the ground truth
of our clustering process.

C. CLUSTERING METHOD
Our clustering methodology is meticulously designed to
address the complexities of cyber threat analysis by har-
nessing a combination of ML models such as decision
tree modeling and DNN for enhanced feature importance
assessment and similarity measurement. Visualized in Fig. 3,
the process unfolds in three stages: Feature Processing,
Weighted Similarity Measurement, and Hierarchical Cluster-
ing. This part becomes the key contribution of our solution
architecture.

1) FEATURE PROCESSING
We initiate our clustering methodology with the collection
of 19 labeled data points (from a subset of 23 APT groups
identified as ‘‘ground truth’’), which forms the foundation of
our decision tree model. This model is pivotal in uncovering
the relationships between different features (such as MITRE
ATT&CK techniques, software used, and targeted indus-
tries) and their corresponding labels representing unique APT
groups.

For the feature selection, the decision tree algorithm
uses entropy and Gini impurity measures to calculate the
importance of each feature [32] in predicting APT group
behaviors. These importance scores are crucial for under-
standing which features contribute most significantly to
distinguishing between APT groups. After identifying the
crucial features, we employ Feature Crosses to explore inter-
actions between attributes. For instance, if a decision tree
identifies both a specific MITRE ATT&CK technique (e.g.,
Tech_T1027) and a piece of software (e.g., Soft_ZxShell)
as significant, a Feature Cross might combine these into a
single feature to capture their interplay. This step is vital for
uncovering the complex, non-linear relationships amongAPT
group behaviors.

After feature selection and crossing, we perform Feature
Concatenation, merging selected and crossed features into
a unified set. For example, if APT28 has been identified
using technique T1027 and software ZxShell, and targets the
finance industry in Russia, the concatenated feature vector
could be [1, 1, 0, 1, 1] combining individual and crossed fea-
tures. This process ensures a holistic representation of APT
group attributes for AI model training, enriching analysis and
improving clustering accuracy. Table 3 illustrates a sample of
feature processing for two APT groups.
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TABLE 3. Sample illustration of feature processing.

2) WEIGHTED SIMILARITY MEASUREMENT
Building upon the foundation laid in the Feature Processing
phase, we advance to the Weighted Similarity Measurement
segment. Here, our methodology incorporates both machine
learning models—specifically, decision trees—and DNNs to
refine the representation of features.

Decision trees help determine the importance of features,
while DNNs extract complex patterns, producing a sophisti-
cated set of features. The feature weights are calculated as

Fweight =

√∑n
i=1

(
Accuracyi ∗ Fimportance ∗ Normi

)2
n

, (6)

where, Fweight represents the final weighted importance of
each feature. n is the total number of features, Accuracyi is
the accuracy of the prediction model for the ith feature,Normi
is the normalization parameter applied to ith feature to coun-
teract data imbalance and ensure equitable representation
across all classes. The resultant weighted features form the
basis of our similarity measurement, facilitating a nuanced
comparison between APT groups through weighted cosine
similarity.

3) HIERARCHICAL CLUSTERING
The final step in our methodology is Hierarchical Clustering,
where we employ the derived similarity scores to categorize
APT groups into distinct clusters. This technique leverages
dendrograms to visually represent the structure of the data
and elucidate the hierarchical relationships within clusters.
By calculating similarity scores based on the weighted fea-
tures, we ensure that our clustering process is grounded in a
robust understanding of APT group behaviors.

While hierarchical clustering builds a dendrogram to illus-
trate how data points are nested within clusters, we determine
where to cut the dendrogram to form meaningful clusters
based on a similarity threshold. For our clustering tasks,
we set a threshold at 0.8 for the weighted similarity mea-
surement. Values greater than this threshold indicate strong
similarity, ensuring that only highly similar APT group
behaviors and attributes are clustered together. This approach
enhances the robustness and accuracy of our clustering
methodology. This hierarchical clustering not only reveals
potential affiliations and subgroupings among APT entities

but also offers a comprehensive view of the cyber threat
landscape.

VI. EVALUATION
A. DATASET DESCRIPTION
To evaluate the robustness of our clustering methodol-
ogy, we leveraged a dataset encapsulated in Table 4. Our
dataset comprised 709 CTI reports collected from various
sources such as rcATT [29], GitHub [30], and self-collected
reports from security firms including FireEye, Google, and
Microsoft. These reports provide a rich source of data, cov-
ering 193 different MITRE ATT&CK techniques, 636 types
of software, operations across 199 countries, and targeting
52 industries. Each CTI report was meticulously annotated
to identify specific APT groups and their associated features
using BERT-NER. This involved tagging reports with rel-
evant MITRE ATT&CK techniques, software used, target
nations, and industries. Thus, we created a comprehensive
CSV file containing this information. These CSV files were
further utilized for feature engineering and the clustering
process. The selection of the strategic features—MITRE
ATT&CK techniques, software used, target industries, and
target countries—was based on their relevance to understand-
ing the operational behavior of APT groups.

• Techniques: These provide insights into the tactics and
methods employed by threat actors, helping to map out
their operational strategies.

• Software: The types of software used by APT groups
reflect their technical capabilities and preferred tools.

• Industries: Target industries highlight sector-specific
risks and vulnerabilities that threat actors exploit.

• Locations: Understanding the geographical focus of
attacks allows for the identification of regional threat
trends and geopolitical motivations.

This strategic selection ensures that the clustering process is
guided by features that directly impact threat analysis and
mitigation strategies. Our dataset includes 35 distinct APT
groups. Of these, 23 groups were labeled and assigned to
specific clusters based on consistent reporting and verifiable
IoCs. The remaining 12 groups were unlabeled due to insuf-
ficient data. This split allowed us to validate our clustering
results effectively. The connection between APT groups and
their features was established through a relational mapping

TABLE 4. Dataset overview.
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in the CSV files, where each APT group is linked with its
corresponding techniques, software, and targets.

B. EVALUATION METRICS
We used the following evaluation metrics to validate the
accuracy of the clustering process.

1) Silhouette Coefficient: The Silhouette Coefficient, first
proposed in the work [33], is a robust metric for
evaluating clustering quality by measuring cohesion
(similarity within clusters) and separation (difference
from other clusters). This metric was calculated using
the complete set of 35 APT groups to measure the
cohesion and separation of data within clusters. The
Silhouette Coefficient is essential for our study as
it quantifies how well each APT group’s behaviors
and attributes are grouped versus separated from other
groups.
Generally, a Silhouette value greater than 0.7 indicates
strong clustering performance, while values between
0.5 and 0.7 are considered moderate, and values below
0.5 suggest weak clustering. This validation confirms
the effectiveness of our clustering methodology in
accurately identifying patterns in APT activities.

2) ARI: This metric is frequently used in cluster validation
as it measures the agreement between two partitions:
one given by the clustering process and the other
defined by external criteria [34]. For our task, the ARI
is particularly valuable because it allows us to assess
the accuracy of our clustering results against known
classifications of APT groups. By comparing the clus-
ters generated by our methodology with the ground
truth, the ARI helps validate that our clustering pro-
cess accurately reflects relationships among the APT
groups.
The ARI ranges from−1 to 1, where 1 indicates perfect
agreement, 0 indicates random clustering and negative
values indicate worse than random clustering. An ARI
score greater than 0.65 is typically considered indica-
tive of good clustering performance, providing strong
validation for our clustering approach in identifying
meaningful patterns in APT activities.
In our case, ARI calculations were based on a
selected group of 19 labeled APT groups (chosen from
the 23 APT groups labeled as ‘‘ground truth’’ in Table 2
). These labels served as a benchmark to quantify the
alignment between our hierarchical clustering results
and the existing knowledge base.

3) Observational Analysis: Four APT entities (the remain-
ing four APT groups from the original set of 23 labeled
as ‘‘ground truth’’) Earth Lusca, Emissary Panda,
Andariel, and APT38 were scrutinized. These groups
were not included in the training or testing phase, pro-
viding an unbiased ground to validate our clustering
approach’s generalization capability.

Our evaluations aimed to position the APT groups within
their respective clusters accurately. In the case of Earth Lusca

and Emissary Panda, a successful clustering result would
place them within or adjacent to APT41 in Cluster 1. Sim-
ilarly, for Andariel and APT38, a corresponding placement
would be alongside the Lazarus Group in Cluster 2. The pre-
cision of this classification within the dendrogram hierarchy,
mirroring the established threat group associations, signifies
the effectiveness of our feature processing techniques and
underpins the contribution of our approach to Cyber Threat
Intelligence analysis.

C. EFFECT OF FEATURE SELECTION
The significance of feature selection in our clustering model
is illustrated in Table 5, where ‘X’ represents the charac-
teristics of APT groups, encompassing technology, industry,
software, and location features for various APT groups.
By varying ‘X’, we assessed the impact of different feature
set sizes on the model’s performance, focusing on the ARI
and Silhouette Coefficient metrics.

TABLE 5. Performance evaluation of feature selection.

Our analysis prominently features four APT groups:
APT37, Andariel, APT38 (Cluster 2), and APT33
(Cluster 6). We observed that certain techniques were fre-
quently used across these groups, as previously highlighted
through statistical analysis. By applying mutual information
and correlation analysis, we effectively filtered out these
commonly used techniques, leading to a notable enhance-
ment in the model’s performance. This optimization process
resulted in more accurately defined clusters, as reflected in
improved ARI scores.

Interestingly, while the software features demonstrated
minimal overlap among the APT groups, their exclusion
based on usage frequency had a marginal impact on the
model’s effectiveness. This observation suggests that soft-
ware features, though not predominant, can play a role in
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clustering APT groups when shared between them. This is
corroborated by our model’s ability to accurately associate
two of the scrutinized APT entities, highlighting the potential
of shared software features in revealing underlying connec-
tions among APT groups.

D. EFFECT OF FEATURE CROSSES AND FEATURE
CONCATENATION
This section delves into the intricate effects of feature crosses
and feature concatenation on the clustering model’s accu-
racy. Experimenting with feature crosses for all attributes
(excluding ‘‘software’’) resulted in noticeable variations in
performance metrics. The data in Table 6 showcases these
differences, indicating a general improvement in silhouette
coefficients and ARI with the application of feature crosses.
Notably, a depth of 3 for ‘‘Technique’’ feature crosses led
to a slight reduction in ARI, suggesting that the complexity
introduced by higher dimensionality could potentially dimin-
ish the model’s discriminative capability.

Subsequent evaluation on feature concatenation illus-
trated optimal clustering when ‘‘Technique’’ was paired with
‘‘Industry’’, as depicted in Table 7. Contrarily, incorporating
the ‘‘Software’’ feature in concatenations seemed to lessen
its impact on clustering efficacy. These experimental findings
underscore the critical role of feature selection strategies in
enhancing the model’s performance.

TABLE 6. Performance evaluation of feature crosses.

E. PERFORMANCE OF VARIOUS SIMILARITY MEASURES
AND ML METHODS
Our evaluation highlights a diverse range of performances
across different clustering methodologies, with machine
learning models enhancing the basic cosine similarity
approach especially when applied to the ‘Technique’ and
‘Industry’ features which demonstrated robust performance
in our feature engineering phase. As observed in Table 8,
cosine similarity alone yielded a low Silhouette Coefficient
(0.05) and ARI (0.06), indicating a limited capacity for clus-
tering APT groups effectively. This underscores the need for

TABLE 7. Performance evaluation of feature concatenation.

TABLE 8. Performance evaluation of various similarity measurement and
clustering approaches.

more sophisticated methods in high-dimensional data envi-
ronments.

Incorporating ML into the similarity measurement signif-
icantly improved the outcomes. The integration of Decision
Trees with cosine similarity boosted both the Silhouette Coef-
ficient to 0.68 and ARI to 0.28, successfully identifying the
Earth Lusca group. The subsequent application of XGBoost,
paired with normalization, further enhanced the performance,
achieving a Silhouette Coefficient of 0.59 and an ARI of 0.51,
again validating the Earth Lusca group.

The introduction of Random Forest techniques, along-
side cosine similarity and normalization, resulted in even
more pronounced improvements, evidenced by a Silhouette
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Coefficient of 0.64 and ARI of 0.55, accurately validat-
ing the Emissary Panda and Earth Lusca groups. However,
the most significant advancement was observed with the
integration of DNN. This combination achieved the high-
est Silhouette Coefficient (0.76) and ARI (0.63), effectively
validating multiple APT groups, including Emissary Panda
and Earth Lusca. This progression demonstrates the substan-
tial impact of blending traditional similarity metrics with
advanced machine learning and deep learning techniques.

In addition to our primary approach, we used K-means [35]
andMeanShift [36] clustering algorithms as baselines to eval-
uate our features. MeanShift is a centroid-based algorithm
that iteratively calculates the expected movement of the cen-
ter point until convergence. K-means, on the other hand,
divides the sample set into a predefined number of clusters,
minimizing the within-cluster sum of squares. For our analy-
sis, we set K to 6, reflecting the number of clusters identified
in our primary method. The performance of these models
is compared in the last two rows of Table 8, illustrating the
superior clustering accuracy of our approach.

F. INSIGHTS DERIVED FROM THE CLUSTERING OF APT
GROUPS
Our methods effectively revealed complex connections
between APT groups. A high silhouette coefficient of
0.76 indicates strong cluster cohesion, reflecting precise
and insightful clustering. Fig. 5 illustrates the percentage of
techniques (Fig. 5.a) and targeted industrial organizations
(Fig. 5.b) utilized by APT groups within three clusters, show-
casing the distribution and prevalence of key features across
the clusters. The subsequent explanations, however, delve
into detailed observations, uncovering insights into common-
alities and unique traits within and across these clusters.

In cluster 1, APT 41 and the Winnti Group demon-
strate a notable similarity, with approximately 19% (10
sectors) overlapping in their targeted industry sectors. This
is emblematic of shared strategic interests and potential col-
laborative behaviors. Moreover, common usage of specific
software tools—namely ShadowPad, PlugX, and others—by
approximately 6 groups within this cluster underscore shared
operational tactics and toolsets. Within cluster 1, Deep Panda
and APT 19 stand out for their high frequency of attacks
on organizations, despite their limited presence. Deep Panda,
targeting 11.8% of organizations, leads with the highest num-
ber of attacks, making up 43% within the cluster. APT 19,
though present in only 7% of organizations, follows closely
with a significant 17% of the attacks, underscoring its aggres-
sive approach despite targeting fewer entities. This pattern is
indicative of a focused approach and possible prioritization
of certain organizations by these groups.

Cluster 2 is unified not just by common targets but also
by methodology, with 11 specific techniques (constituting
6% of the total) and convergence on three specific industries
(also 6%), delineating a cohesive operational profile within
this group.

Specifically, APT37’s expanded target range to include a
diverse set ofWestern andAsian countries signifies a strategic
shift in their operations, pointing towards a broader ambition
and reach beyond their historically concentrated regional
focus.

Cluster 3 is marked by a geographical concentration on
the United States, with defense and electronics sectors being
notably more targeted compared to other clusters. Within this
cluster, Dragonfly emerges as a dominant entity, engaging
with 50% of the organizations that are also targeted by other
APT groups within the same cluster, highlighting its signifi-
cant role and shared operational interests with othermembers.

In cluster 4, despite the absence of commonly used soft-
ware, the APT groups share 59 techniques. This cluster is
distinguished by its use of unique techniques, notably T1598,
which is rarely employed by APT groups in other clusters.
Similar to Cluster 1, APT groups in Cluster 4 also predomi-
nantly target the energy sector.

Clusters 5 and 6 are characterized by their distinct focus
on the chemical industry, alongside government and finance
sectors. These clusters exhibit fewer unique techniques com-
pared to others, indicating potential specialized operational
expertise or strategic goals.

Beyond the confines of individual clusters, our analysis
has unveiled several key patterns common across all 35 APT
groups:

• ‘Technique’ and ‘Industry’ features are pivotal in the
clustering ofAPT groups. Predominantly targeted indus-
tries such as government, finance, and entertainment,
which account for approximately 75% of the focus
among APT groups (equivalent to 26 out of 35 groups),
have emerged as primary targets. This suggests that
these sectors are perceived as high-value and vulnerable
by the threat actors.

• Among the 35 unique APT groups examined, techniques
such as T1036 (Masquerading) and T1059 (Com-
mand and Scripting Interpreter) are extensively utilized,
employed by over 88% of these groups (amounting
to 31 APT groups). The ubiquity of these techniques
highlights their importance in the arsenal of APT groups
and the need for defenses to prioritize these attack
vectors.

VII. DISCUSSION
Our research endeavors to push the boundaries of under-
standing and analyzing APT groups through sophisticated
clustering techniques. By meticulously evaluating feature
selection, crosses, and concatenation, alongside the deploy-
ment of various similaritymeasurement approaches enhanced
by machine learning models, we’ve demonstrated marked
improvements in clustering performance.

Our methodical approach, underscored by the dataset com-
prising 709 CTI reports detailing attributes of 35 APT groups,
emphasizes the necessity of nuanced feature engineering
in CTI analysis. The effect of feature selection highlighted
in our evaluation, where specific techniques consistently
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FIGURE 5. Distribution of techniques and industry targets across clusters. (a) Percentage of attack techniques utilized by APT groups in each cluster.
(b) Percentage of industry sectors targeted by APT groups in each cluster.

deployed across groups were identified and filtered, aligns
with the work of Ding et al. [26] and further validates the
importance of strategic feature selection in revealing under-
lying threat dynamics.

Our clustering methodology, enhanced by machine learn-
ing models and similarity measures, marks a significant
performance improvement. This is particularly evident when
compared to works like Wang et al. [5], which lacked the
application of similarity measures and did not engage in
extensive feature engineering. WhileWang et al. successfully
clustered APT groups using multiple features (e.g., TTPs,
software, industry), the absence of machine learning tech-
niques and weighted feature importance limited their depth of
analysis. Our approach addresses these gaps by incorporating
feature weighting and similarity measurement algorithms,
refining both the granularity and accuracy of APT group
clustering.

We observed a significant performance leap facilitated
by the integration of AI models with traditional similar-
ity measures, underscoring the transformative potential of
AI in cybersecurity analysis. For example, [9] focused on
clustering MITRE ATT&CK techniques using hierarchical
clustering with cosine similarity. However, our work extends
beyond technique clustering, integrating additional features
to provide a more comprehensive understanding of APT
behaviors.

The clustering process also revealed key discriminators,
such as prominent techniques used by APT groups and
their new geographic targets, further illuminating APT group
behaviors. For instance, we found that groups such as APT41
and the Winnti Group share technique T1047 and employ
tools like Cobalt Strike,Mydoor, andWinnti for Linux, which
hints at shared methods or operational goals. This aligns

with the findings of Faridi et al. [28], who used behavioral
attributes for malware clustering but focused primarily on
malware types rather than the broader contextual features that
our research incorporates.

Furthermore, studies like [6] and [7], which focused on
specific environments like IoT-based attacks and DNS-based
detection, respectively, were limited by their scope. Our
research extends beyond these feature-specific approaches
by employing multi-dimensional integration, allowing us to
uncover subtle patterns and possible collaborations among
APT entities. For example, the clustering of APT41 and
Winnti Group suggests potential collaboration, as they share
not only techniques but also similar software and tools.
In conclusion, our research significantly advances the current
state of APT group clustering by integrating advanced fea-
ture engineering, machine learning, and multi-dimensional
feature integration.

VIII. CONCLUSION
In our study, we introduced an advanced approach to
cluster Advanced Persistent Threat (APT) groups by exam-
ining their unique characteristics and affiliations. Utilizing
Named Entity Recognition (NER), we pinpointed crucial
APT attributes, such as software choices, target countries,
and impacted industries. By amalgamating Feature Crosses,
Feature Selection, and a weighted cosine similarity metric,
we amplified the silhouette coefficient and Adjusted Rand
Index (ARI) to 0.76 and 0.63 values respectively. These val-
ues not only surpass the industrial norms but also affirm the
robustness of integrating technique and industry features in
identifying APT clusters. The clear patterns that surfaced —
such as the favored attack techniques and the changes in
geographic targets — provide crucial insights into APT
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clusters. This nuanced understanding of APT group behav-
iors supports the development of targeted defense strategies,
contributing to a more secure digital environment.

Looking forward, several potential avenues warrant explo-
ration: enhancing feature extraction through sophisticated
NER applications, curating larger labeled datasets, creating
predictive frameworks to identify and classify emerging APT
entities, and ensuring that our clustering methods scale seam-
lessly with the increasing influx of APT data.

Fundamentally, our research represents preliminary strides
toward a more profound understanding of APT trends and
predictions. By intertwining machine learning with iterative
methodological enhancements, we aspire to expand our com-
prehension of the dynamic world of adversarial actors, setting
the stage for a more robust cybersecurity landscape.
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