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ABSTRACT Measuring optical quality in camera lenses is crucial in evaluating cameras, especially for
safety-critical visual perception tasks in automotive driving. While ground-truth labels and annotations are
provided in publicly available automotive datasets for computer vision tasks, there is a lack of information on
the image quality of camera lenses used for data collection. To compensate for this, we propose anAutomated
Reference-free Defocus characterization for Automotive Near-field cameras (ARDÁN) to evaluate Slanted
Edges for ISO12233 in five publicly available automotive datasets using a valid and invalid region of interest
(ROI) selection system in natural scenes. We use the mean of 50% of the Modulation Transfer Function
(MTF50) in three Camera Radii (CaRa) segments and the Overall Spread in Heatmaps (O’SHea) for an 8× 5
distribution to evaluate the quality of edges in natural scenes. From the experiments performed, lenses with
uniform spatial domains (i.e. little distortion) showed that MTF50 was constant between (0.18-0.25cy/px).
With image rectification on the same scenes, MTF50 results artificially increased, no longer representing
the camera lens. In contrast, for strong radial distortion, MTF50 varied extensively across the spatial domain
between (0.12-0.4cy/px), where, in particular, Woodscape gave the highest average of MTF50 per region for
natural scenes.

INDEX TERMS Automotive, camera radii (CaRa), energy inspection limit above Nyquist (EiLíN), natural
scenes, optical quality, the overall spread in heatmaps (O’SHea), radial distortion, regional mask to lens
alignment (RMLA), slanted edges, valid and invalid region of interest (ROI) selection system.

I. INTRODUCTION
Measuring optical quality in camera lenses has traditionally
been restricted to laboratory conditions [1]. Laboratory
conditions involve specialized test charts explicitly designed
for the type of lens used in measurements. It is much
more challenging to measure the optical quality of wide
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field-of-view (FOV) cameras mainly because specialized test
charts and laboratory settings need to be designed depending
on the degree of FOV, which can be anywhere between
60◦-190◦ for fisheye cameras. For an automotive setup, four
190◦ cameras have been proven to work to capture the
surround-view of a typical five-seater vehicle [2].
Automotive camera datasets generally do not have the

optical properties measured before the release of the dataset,
which is crucial information in determining which data to
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FIGURE 1. Strong Radial Distortion affecting Image Quality. Notice how
the left side of the bounding box(blue) has visually lower quality than the
right side where image scenery moves from the center to the periphery of
the camera (see further optical artifacts evident in this scene in
Jakab et al. [9]).

use for computer vision. Additionally, it is unrealistic to
expect the optical quality of cameras to stay consistent with
laboratory production tests, as cameras can change with time
due to consistent usage and external factors such as varying
temperatures in the natural environment. Therefore, cameras
in an automotive scenario can vary in terms of optical quality
and can inadvertently impact automotive perception. It has
been shown in previous work that external factors such as
windshields placed in front of automotive cameras [3], [4],
the varying geometric properties of camera lenses [5], [6]
and the robustness to realistic optical aberrations [7] can
directly impact image quality and in turn the computer vision
performance on the road.

It has been investigated for quite some time how image
and optical quality impact computer vision and perception
performance [8], [9]. However, in many circumstances, the
optical quality of a system is unknown. For example, public
datasets do not typically provide optical quality information,
as they have not been measured in laboratory experiments.
In this study, we intend to investigate and measure camera
quality from natural scenes and simulation, especially for
fisheye cameras with strong radial distortion. It is essential
to know how the details captured through a camera are
impacted as if they were deployed directly in the automotive
environment. By obtaining measurement results, we aim to
bridge the gap in knowledge for public datasets in terms of
optical quality assessment and enable researchers to account
for the optical quality in the data when using computer vision
or perception systems in self-driving cars.

If the real-time evaluation of cameras is possible in natural
scenes, and the optical quality of cameras can be continuously
measured, we have the potential for increased road safety and
better quality automotive perception on the road.

There has been little research on how automotive cameras
could degrade further in optical quality once deployed in
the environment and can have an inherent effect on com-
puter vision algorithms. Unlike standard Digital single-lens
reflex(DSLR) and typical smartphone cameras (which were
the basis of experiments for Zwanenberg et al. [10], [11]),
automotive fisheye cameras have strong radial distortion

at the periphery of the image and other optical artifacts
such as vignetting which can be seen due to the camera
optical system or a camera and imaging sensor mismatch [9].
A real-time cameramonitoring systemwould provide the user
with information on when to replace degraded automotive
cameras should a drastic change in camera behavior occur.
Having high-quality cameras for automotive driving tasks is
important, considering that computer vision models depend
on high-quality perception.

Zwanenberg et al. proposed Natural Scenes Spatial Fre-
quency Response (NS-SFR) [10], [11], [12], [13], [14] which
measures slanted edges in natural scenes to estimate the
image quality of lenses utilizing BSISO12233:2017 [15]
Slanted Edge algorithm originally developed by Burns et al.
[16]. Zwanenberg’s experiments were centered around DSLR
and smartphone cameras with a narrow FOV [12].

The initial work of ARDÁN was presented previously in
conference proceedings [17]. In this paper, we extend this
initial work as follows:

1) Introduce the alignment of regional masks in datasets,
which improves the application of masks on any
dataset.

2) Examining both rectified and unrectified images of the
same natural scene in the KITTI [18] dataset where
geometric distortion is removed in the rectified images,
investigating its impact on measurements.

3) Examining a wide range of different camera per-
spectives for automotive cameras where cameras can
be mounted on top of the vehicle(e.g., see datasets
KITTI [18] and KITTI-360 [19]) or close to the ground,
typically associated with fisheye datasets (e.g., see all
four camera perspectives for Woodscape [20].

4) Introducing slope monitoring and energy measurement
above Nyquist to investigate and enhance slanted edge
selection in automotive scenes.

5) Performing a rigorous region-by-region image sharp-
ness analysis in heatmaps.

6) Updating from the ISO12233:2017 standard to the
ISO12233:2023 standard using default settings, which
now corrects for non-uniformity and angle-based
correction to account for both geometric distortion and
vignetting effects found in cameras.

In this paper, our contributions are as follows:

• We propose Regional Mask to Lens Alignment
(RMLA) to remove ego-vehicle occlusion and mechan-
ical and optical vignetting [9],

• We introduce a Valid and Invalid Region of Interest
(ROI) Selection System to evaluate five automotive
datasets where all camera perspectives are tested sepa-
rately for ISO12233:2023 [21],

• We introduce Camera Radii (CaRa) to investigate the
strong radial distortion from the center to the periphery
of fisheye cameras,

• We propose the Overall Spread in Heatmaps
(O’SHea) technique to examine region by region results
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for optical quality in a 8×5 (explained in Section III-H)
heatmap segmentation of images in datasets,

• We investigate the use of constraint techniques such
as monitoring the Slope of the Modulation Trans-
fer Function (Slo-MTF) and introducing an Energy
Inspection Limit above Nyquist (EiLíN) to examine
region-by-region of results for optical quality in a 8 ×
5 rectangular segmentation of dataset images,

Our experiments use five datasets where, four are real-
life datasets with 90◦ (KITTI) [18], 180◦ (KITTI-360)
[19], 185◦ (LMS) [22] and 190◦ (Woodscape) [20] FOV
respectively. The 5th dataset (SynWoodscape) [23] is a
CARLA simulation [24] which incorporates the 190◦ FOV
of the 4th dataset.

The experiments outlined here address the gap in the
literature to evaluate public datasets for image quality where
the perceived sharpness or edge contrast as seen through
cameras is measured when deployed in the automotive
environment. A pipeline to evaluate multiple datasets using
a controlled strategy for measurement, applying constraints
to slanted edge selection, and producing both qualitative and
quantitative analyses for evaluation, is developed.

We hope other researchers will find our methods for estab-
lishing optical quality measurements in natural scenes useful.
Our code is available at https://github.com/danieleceUL/
ARDAN.

In the following sections of this paper, we will discuss
Related Works in Section II, Methodology in Section III,
Datasets in Section IV, Results in Section V, Limitations with
FutureWork in SectionVI, and the Conclusion in SectionVII.

II. RELATED WORK
Assessing the optical quality of cameras has been a crucial
part of the computer vision deployment process regardless
of application. For cameras to be of reasonable quality,
the components must undergo production tests individually
and during assembly. In most cases, tests are performed
repetitively throughout the pipeline to ensure that optical
quality is retained after each assembly step. The industry
sets tolerance limits for the mass production of cameras.
One challenge in deploying cameras is monitoring camera
systems’ inherent aging and environmental influences in real-
time. The combination of mass production and optical quality
tests for computer vision should be established [25].
The typical image quality measurement is the process

of measuring the camera’s sharpness, and a measurement
test chart is used to produce test images. Typically, slanted
edges are a proven and universally accepted method of
measurement where edges that transition from dark to white
pixels or vice versa are measured through the camera’s
lens [21]. There have been several improvements in mea-
suring optical performance for slanted edges, such as the
polynomial edge fitting added to the slanted edge technique
in the fourth version of the algorithm [16]. Sfrmat4 is
a Matlab software script function (see the Burns Digital
Imaging website [26] for more information), which provides

a Spatial Frequency Response (SFR) from digital image files
using the Slanted Edge Method. It follows the ISO12233
standard [15], developed by the Technical Committee ISI/TC
42 to resolve photographic cameras’ measurements [27]. The
ISO12233:2023 [21] version of the Slanted Edge Method has
replaced the fourth version of ISO12233:2017 [15] (sfrmat4),
which now provides polynomial edge fitting to curved edges.
The polynomial edge fitting optimization compensates for
the fact that slanted edges are not always a straight line in
practice. Sfrmat5 [21] provides experiments with advanced
edge fitting, a comparison with two smoothing windows
called Tukey and Hamming, as well as the correction for
non-uniformity in images [28]. The Slanted Edge Method,
as detailed in the latest standard [21], isolates a bounding
box region from a photographed image where there is a clear
grayscale transition between dark to white pixels tilted at an
angle which forms a slanted edge [10, p. 22].
In recent years, optical quality experiments have tran-

sitioned to measuring camera imagery outside laboratory
conditions [29], [30]. Zwanenberg et al. [10], [11], [12], [13]
proposes the latest such pipeline where edges were extracted
from natural scenes using canny edge detection and masking
to optimize natural scene measurements using the fourth
version of the Slanted EdgeMethod (sfrmat4) [15]. This work
[10], implemented a large-scale version of the Slanted Edge
Method [15] in linearized natural scenes wherein slanted
edges were found and extracted for measurement called
the Natural Scenes Spatial Frequency Response(NS-SFR)
technique. The Slanted Edge Method [15] is applied to each
extracted edge within the natural scene. This edge extraction
can be repeated across a dataset of images to obtain a strong
pattern of measurements independent of the scene. A brief
outline of the original NS-SFR framework is as follows
[11, pp. 55-57]:

1) An image dataset originating from the same camera
system must be provided as an input where each image
is selected at a time for processing.

2) Each image is rotated by 90◦ (i.e. for vertical edges),
linearized using Adobe RGB [31] or sRGB [32]
linearization and normalized for image processing.

3) Edges are detected using the Canny edge detector
adapted to the previous step’s vertical and horizontal
edge orientations.

4) A proximity filter is applied to horizontal and vertical
images to remove edges within five pixels of the
neighboring edge.

5) Edge locations are passed through ROI selection,
which crops ROI windows from the linearized image.
An edge isolation filter separates the edge of interest
from unwanted artifacts, such as other edges or scene
textures (also known as pixel-stretching).

6) The isolated edges are examined and filtered to ensure
uniformity on either side of the edges.

7) Finally, the edges are processed using the Slanted Edge
Method(sfrmat4) [15], producing a series of NS-SFRs
for each image.
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8) By iterating over the entire image dataset, an overall
picture can be obtained about the optical quality of the
camera used for the dataset.

In earlier work, Zwanenberg et al. [13] investigated the
procedure of extracting edges from pictorial natural scenes
using different edge detection methods where the Canny edge
detection filter produced the most suitable measurements in
terms of Signal-to-Noise Ratio (SNR) [33]. The suitability
of the edge detection filters was evaluated by applying
different variations of Gaussian white noise to a test image
and extracting edges from it using the NS-SFR framework
specified above. The degree of Gaussian white noise applied
to the slanted edge (measured in SNR) showed that at around
14dB (i.e., a ratio of 5:1) or higher ratios, the Canny edge
detection filter was much more efficient than the feature-
matched filter (i.e., the second edge detection filter compared
in this work) [13]. The latest work by Zwanenberg et al.
[12] improves the computational time of the framework by
up to (22x) faster than the original. Furthermore, the pixel-
stretching technique used in the original NS-SFR framework
for the slanted edge regions was replaced by edge masking,
which produced computationally optimized results.

From the measurements of slanted edges, the Spatial Fre-
quency Response (SFR) otherwise known as the Modulation
Transfer Function(MTF) can be obtained which indicates
the sharpness of the camera and is a spatial resolution
measurement. The MTF curve varies with optical and
imaging system performance as described by Zwanenberg
et al. [10, pp. 1-2]. A typical measurement for cameras
would be measuring 50% of the MTF curve, otherwise
known as MTF50, which is a measurement of sharpness
[10, p. 36-37]. MTF50 is a measure of image sharpness,
where an unsharpened camera system would produce a low
MTF50 score and a highly sharpened camera system with a
high MTF50 score.

The above studies into the NS-SFR pipeline are significant,
as they provide a robust approach tomeasuring optical quality
directly from natural scenes. However, from the studies
performed, there has been no investigation or measurement
of NS-SFR with fisheye lenses, which have inherently strong
radial distortions. Fisheye optics vary significantly due to
its spatially variant optical properties. For example, a single
MTF50 score for a fisheye camera at the center of the
lens is different for the periphery of the same camera.
Obtaining regional scores would be a more effective strategy
in measuring such distortions. Currently, a strategy for
fisheye cameras is to devise a measurement test chart to the
particular degree of FOV measuring against strong radial
distortion (see [1] for more information on pre-distorted test
charts). Due to the additional feature of the slanted edge
measurement, polynomial edge fitting, edges are no longer
required to be a perfect straight line. In 2020, Burns et al.
[34] showed the inherent effect of circular slanted edges
where a curved test chart directly affected image quality
measurements. In these cases, it is reasonable to assume that
the inherent circular nature of fisheye cameras will influence

image quality measurements spatially. This is because curved
edges can now bemeasured with the NS-SFR framework, and
curved edges are muchmore apparent in fisheye imagery than
in typical rectilinear or pinhole cameras.

Finally, an issue we address is the evaluation of automotive
camera image simulations, especially fisheye simulations.
As of the writing of this study, little to no research has
been performed in this area. To ensure the simulations we
use for training data in computer vision algorithms are of
reasonable quality, we measure the optical quality of the
simulation and establish a set of standards for simulation
to produce synthetic data of sufficient quality for self-
driving training. Reliability and safety are paramount when
utilizing synthetic data for autonomous driving. A framework
recently proposed by Mueller et al. [35] has been developed
to assess the differences between real-life and synthetic
images. This framework can evaluate synthetic data rendered
from a graphics engine with a virtual camera model or
taken by a high-quality Digital Single-Lens Reflex (DSLR)
camera using the ISO12233:2017 [15] standard. From the
results in [35], it was found that the Zernike model (which
can be analytically described by Zernike polynomials [36])
most closely modeled the real-life lens from the laboratory
indicating that this framework can potentially serve as a
benchmark for future simulation evaluations. ARDÁN, the
proposed platform of this study, aims to address the research
gaps identified above by reusing the optimized NS-SFR
pipeline [12] for all experiments where the optimized method
is refined to use the ISO12233:2023 standard to measure
slanted edges in automotive datasets.

III. METHODOLOGY
These experiments aim to extract a set of edges from
a dataset that can be used subsequently to estimate the
spatial frequency response, which, in turn, is the camera’s
image quality. The pipeline for experiments can be seen
in Figure 2. Each dataset contains one particular type of
camera capturing a set of dynamic frames of a natural scene.
Once appropriate edges are extracted, the measurements are
performed on each ROI, and the image quality for each
edge is estimated for each given edge. The edge locations
are then categorized into three radial distances aligned with
the camera aperture. The edge locations are also separately
categorized into 8 × 5 regions where the edge locations
are grouped according to the respective pixel coordinates.
Finally, the mean Slanted Edge-based Spatial Frequency
Response(e-SFR) is calculated for each radial distance and
region. The final results are then visualized. The values
obtained from both strategies will provide insight into the
image quality pattern for each particular camera used. The
constraints from previous work [17] were initially chosen
to reduce and isolate good measurements for slanted edges
in natural scenes, which can be very noisy above Nyquist,
where different textures, shapes, and or components can
be found. Lighting conditions and external factors in the
environment can also affect image quality. The recommended
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FIGURE 2. The ARDÁN Pipeline. Each camera perspective of a dataset
should apply regional masks, use optimized NS-SFR, apply regional
selection constraints (i.e., Slo-MTF, EiLíN), and finally, relevant analyses
for camera evaluation (i.e., CaRa, O’SHea).

guidelines for acceptable edges can be found on the Imatest
website(see [37] for information on Modulation Transfer
Function (MTF) curves and Image appearance). For example,
in datasets such asWoodscape, there was a strong presence of
edge enhancement and noise or aliasing in the measurements
of the ROI Selection. The minima constraint from current
work (as depicted in Figure 3) might not be sufficient in

FIGURE 3. Diagram of MTF constraints. Note: all slope changes are
checked at an offset of 0.1 from both local maximum and minimum
locations. This is partly due to the low probability of finding a large slope
change within proximity of these locations.

measurements where local minima can exceed the 0.4 SFR
threshold but can still be classified as a good measurement.
Overall, this strategy minimizes large peaks in measurements
and reduces wavy field curvature measurements or large
astigmatism from affecting results.

The methodology for experimental analysis is shown in
Figure 2 where the measurement pipeline can be broken
down into the following components: Regional Masks in
Section III-A, Regional Mask to Lens Alignment (RMLA) in
Section III-B, Reusing Optimized NS-SFR in Section III-C,
Slope of Modulation Transfer Function (Slo-MTF) in
Section III-D, the Energy Inspection Limit above Nyquist
(EiLíN) in Section III-E, Valid and Invalid ROI Selection in
Section III-F, Camera Radii(CaRa) in Section III-G and the
Overall Spread in Heatmaps(O’SHea) in Section III-H,.

A. REGIONAL MASKS
Regional Masks are masks applied to images isolating a
region to perform optical quality measurements. This region
is otherwise known as the natural scene taken by the camera.
This is important, especially in fisheye cameras where ego-
vehicle occlusion and camera vignetting partially obstruct the
camera’s field of view. For example, the Woodscape dataset
(a typical automotive fisheye dataset) contains four views,
all containing camera vignetting and ego-vehicle occlusion
in the images. Therefore, as illustrated in Figures 4a-4d,
a regional mask is defined and applied for each image
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FIGURE 4. RMLA and CaRa on all four perspectives of Woodscape. Note: Inner (yellow) and outer (orange) CaRa, RMLA(red), and 8 × 5 Heatmap spatial
domain(white grid) for FV Woodscape. CaRa are aligned with the periphery of the fisheye camera, and any edge categorized represents the lens
location.

isolating the natural scene; these Regional Masks are created
manually but may be automated [38]. All regional masks are
created using the Freehand ROI tool from MATLAB [39]
allowing the user to customize a particular ROI mask to
isolate the natural scene. A new mask is created if a new
camera fits the scene.

B. REGIONAL MASK TO LENS ALIGNMENT (RMLA)
With the addition of Regional Mask Lens Alignment, there
would be uniform measurements obeying the geometry of
the natural scene and the camera’s aperture regardless of
the perspective (especially in wide FOV images such as
Woodscape, which is difficult to avoid). The implemen-
tation of Regional Masks and CaRa are generalized for
surround-view perspectives, such as Woodscape, as seen in
Figure 4.

C. RE-USE OPTIMIZED NS-SFR
The ROI selection technique and parameter tuning of the NS-
SFR optimized algorithm [12] is reused here. Canny Edge
Detection with edge masking is used to find edges from the
natural scenes and isolate edges of interest. The NS-SFR
parameters that determine slanted edge selection in natural
scenes are the following:

1) Contrast Range (0.1 - 0.9) - the contrast range between
the transition from dark to white in a region with a
slanted edge:
a) Low contrast (<0.1) is prone to noise error,
b) High contrast (>0.9) is prone to non-linear

sharpening and image processing,
2) Edge Angle Range (0◦ - 360◦) - there is no restriction

on the angle range of slanted edges as it limits the
number of edges that can be found in a natural scene
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except for 0◦ and 45◦ which are filtered out and is not
possible due to errors [15],

3) Step Edge Noise Floor (ST) (0.02) ensures that the
gradient on either side of the edge is uniform. For
example, a value of 0.02 signifies a change of pixel
value or digital number (DN) of 4.5 for an 8-bit
image [11],

4) Edge Spread FunctionWidth (esfW) (default value is
5 pixels) remove edges too close together. For example,
edges can be 5 pixels apart in an image,

As a basis for a complete and controlled analysis, the default
parameters originally proposed by Zwanenberg et al. were
used [11] (i.e., ST=0.02, esfW=5 pixels). This was done to
understand what happens if distortion is applied to the images
and whether a consistent pattern can be observed across the
datasets.

D. SLOPE OF MODULATION TRANSFER FUNCTION
(SLO-MTF)
The Slope of Modulation Transfer Function (Slo-MTF),
otherwise known as the rate of change ofMTF, is an important
factor to consider when evaluating the quality of slanted
edges. A typical MTF has a smooth descending curve,
as seen in Figure 3. For an MTF function, a negative slope
signifies the transition from white to black pixels or visa-
versa from a smooth edge spread function. Therefore, it is
important to investigate the slope change of MTF curves
and to ensure that the transition is relatively smooth to
ensure a monotonically descending slope (i.e., the slope
must always be <0). A check for slope change is added
to constraints (see Figure 5 for sample results). In this
work, we introduce this slope check between the first local
maximum and minimum measurements, where the most
significant drop in MTF across the sampling points is.
This is mostly between the range of 0 and 1. If no edge
enhancements exist in MTF measurements, the first local
maximum is taken where a magnitude of 1 is expected
(otherwise, the maximum MTF peak can be 1.4). Slope
change is monitored until the first local minimum, As shown
in Figure 3, the purple arrow between both purple horizontal
limits indicates a check for slope change between the first
local maximum and above the first local minimum. The slope
should be monotonically descending. This approach removes
unsmooth slope measurements such as the light green line
from Figure 5c in ROI selection corresponding to Figure 5a,
thus improving the quality of data being collected. The
following results are from experiments using the 2023 version
of the slanted edge algorithm [21].

E. ENERGY INSPECTION LIMIT ABOVE NYQUIST (EILÍN)
An additional feature of the proposed method is providing
a limit to energy past the Nyquist Frequency, which is
MTF above 0.5 cy/px. An ideal slanted edge should have
minimal energy past this point, where high energy may
indicate aliasing in slanted edge measurements. Having high
energy past Nyquist while arguably not a definitive indicator

of aliasing [40], discarding these measurements, removes
the possibility of aliasing being an issue in this context
where an over-estimation ofMTF50measurements can occur.
This is especially important since all measurements are in a
highly unpredictable and dynamic environment, which is the
definition of the natural scene. As a strategy to address over-
estimation, we utilize the local minima constraint of 0.4 SFR
(introduced previously in Section III-F) where the MTF area
should not exceed the area under this constraint, which is 0.2
(0.5cy/px × 0.4SFR).

F. VALID & INVALID ROI SELECTION
We apply the following constraints to slanted edge selection:

1) Local Maxima < 1.4 SFR - If local maxima exceed a
peak of 1.4 SFR (∼= 25% overshoot), the measurement
is discarded. 25% overshoot or less is acceptable [37]
for slanted edges,

2) Local Minima < 0.4 SFR - If the local minima exceed
0.4 SFR, the measurement is discarded. A low thresh-
old of <0.4SFR will filter out signals with excessive
noise past the Nyquist frequency (0.5cy/px) [13],

Measurements that meet the above requirements are
marked by a green bounding box, and those that do not are
marked by a red bounding box (see Figure 5). Invalid edges
with strong edge enhancement, noise artifacts, or invalid
measurements are labeled as red bounding boxes. Edge
enhancement is a typical artifact found in image quality
measurements with a slight rise and fall at the beginning
(usually between 0-0.3 cy/pixel) of theMTF signal. Excessive
edge enhancement (i.e., a peak MTF value greater than 1.4)
is undesired mainly because it affects the degree of image
quality measurements obtainable from the slanted edge.
Noise in slanted edges is also problematic, causing aliasing
or false artifacts to appear in measurements. Measurements
disproportionately affected by these artifacts are discarded
from the results. Green bounding boxes represent valid ROIs
resembling quality slanted edges with few artifacts.

G. CAMERA RADII (CaRa)
To analyze the images further, three Camera Radii(CaRas)
will categorize the location of each slanted edge according
to its relative distance from the center of the image. The
basis of this is the expectation that the optical effects of
the lens will be (at least approximately) radially symmetric.
The technique used to create each segment is by taking the
Euclidean distance from the central point to the farthest edge
of the Regional mask. In the case of KITTI, the corner of
the image was taken as the farthest distance from the center
of the image, as no mask is defined. The following formula
represents the Euclidean distance calculation:

re = max
(√

(xc − xm)2+(yc − ym)2
)
∀(xm, ym) ∈ [Xm,Ym]

(1)

where re is the Euclidean distance representing the radius
of the largest radial distance (i.e., the orange circles (please
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FIGURE 5. A demonstration of filtering out MTF measurements that have an inconsistent positive or negative (+/−) slope change using the Slo-MTF
technique. Slo-MTF is applied between the first local maximum (a value of SFR = 1 in both cases) and the first local minimum (a blue x symbol) along
each MTF curve for ISO12233:2023 [21]. (a) and (b) show the ROI selection of horizontal slanted edges in the natural scene of FV Woodscape before and
after Slo-MTF is applied. (c) and (d) show MTF measurements on FV Woodscape before and after Slo-MTF is applied.

see Figure 4 as an example of CaRa on Woodscape) except
for KITTI where the orange circle is not visible due to the
radius being the distance from the corner to the center of
the image [17]), the point (xc, yc) represent the location of
the center of the image or mask, (xm, ym) represent points
along the periphery of the Regional mask [Xm,Ym] (see red
outline of RMLA in Figure 4) and can be the location of the
bottom right corner of the image if no mask is present. (Note:
If no ROI is set, [Xm,Ym] is the periphery of the image).
The radii of CaRA are obtained by dividing the maximum
radius re into N proportional parts. The ratios determined
in these calculations are suitable mainly because they give
sufficient segments to divide the images into three categories
(i.e., center, middle, and edge) and generalize well regardless

of camera type. Ratios smaller than this are unsuitable (i.e.,
there tends to be bias towards having too many slanted edges
favored for one segment).

H. OVERALL SPREAD IN HEATMAPS (O’SHea)
In addition to CaRa, we introduce Overall Spread in
Heatmaps (O’SHea) as a method for a more rigorous optical
quality evaluation. Typically, image sensors are rectangularly
aligned to the lens of the camera, where the horizontal and
vertical sizes of the image produced have a given ratio or
resolution. Many standard camera resolutions are available
that can be translated to screen resolution sizes of 720p or
High Definition, 1080p (Full HD), 1440p (2k), and so on,
which would all be compatible with typical television or
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FIGURE 6. Qualitative results for Unrectified KITTI horizontal slanted edges.

display screens. The standard HD resolution ratio, which is
1280×720 pixels, is approximately 1.78:1, and if examining
larger resolutions, this ratio remains constant. We choose a
heatmap ratio, which would approximate the resolution ratio
without exceeding it, where dividing images by 8× 5 would
result in an equivalent ratio of 1.6:1.

IV. DATASETS
To do a comprehensive set of experiments in this study,
we use a diverse set of data that has variations in radial
distortion, varying degrees of FOV, and varying camera
positions in natural scenes. We also wish to demonstrate that
the proposed method can produce results that have already
been achieved in previous work [10], [12]. The KITTI dataset
is an ideal candidate for comparison with previous work [17]
where images contain minimal distortion (see Figure 6 for
sample results of KITTI unrectified qualitative results)for a
narrow FOV camera. KITTI is a proven and tested dataset
for the automotive driving scenario in training and testing
computer vision algorithms [18]. In addition, there are
synchronized and processed versions of the KITTI dataset
where the distortion has been removed from the images (see
Figure 7 for rectified KITTI qualitative results). Undistortion
is a common means to force images to adhere to the pinhole
projection model, which simplifies the camera model [41].
However, undistortion requires interpolation of pixel values,
which can impact the apparent optical quality. Therefore,
additional experiments for the same natural scene with and
without distortion would be of great interest in experiments.

Of course, our focus is on extending the functionality
of the NS-SFR algorithm to automotive near-field/fisheye
cameras. Thus, we also select a set of automotive datasets
where the fisheye camera is positioned in a surround-view
configuration. For example, the Woodscape dataset [20]
contains four different viewpoints of surround view, and
the camera system is built for low-speed maneuvering and
automated parking. KITTI-360 [19] is a second surround-
view fisheye dataset that has two cameras positioned on
top of a vehicle at 180◦ to each other. In comparison
to Woodscape, the KITTI-360 natural scene has a greater
visibility of the nearby buildings beside the road than the
mirror views of Woodscape due to the added height of
the camera position. Hence, both datasets provide a diverse
set of experiments for the fisheye camera. In both fisheye
datasets, ego-vehicle occlusion is present in all images.
These regions are not part of the natural scene and must
be removed by a custom regional mask using RMLA to
avoid biasing the results. In contrast to the Woodscape
[20] and KITTI [19] fisheye datasets, the LMS dataset [22]
consists of a circular fisheye camera with no ego-vehicle
occlusion. In addition, LMS has provided a checkerboard
calibration test chart in laboratory conditions, which is useful
for measuring slanted edges equivalent to those found in
natural scenes. Finally, a synthetic fisheye dataset is required
to compare the simulation to real-life optical quality. As a
result, the SynWoodscape dataset [23] can be considered
where the intrinsic calibrationmodel ofWoodscape is applied
to the simulation.
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FIGURE 7. Qualitative results for Rectified KITTI for horizontal slanted edges.

TABLE 1. Automotive datasets used in experiments.

The list of datasets used in this study is shown in Table 1.
Six possible camera perspectives are listed in the datasets.
The experiments conducted in this work divide the datasets
up into their respective perspectives as shown in the ARDÁN
pipeline 2:

1) Front View (FV)
2) Mirror View Left (MVL)
3) Mirror View Right (MVR)
4) Rear View (RV)
5) Left1

6) Right1

Each dataset has one lens calibration and a customized
regional mask except KITTI which does not have any ego-
body occlusion hence, no mask was needed [17].

1Note: the final two camera perspectives are referred to as general left and
right for KITTI-360 concerning the ego-vehicle position where the camera is
on top of the vehicle not at the wing mirror as is the case for the Woodscape
perspectives.

V. RESULTS
This section presents the results from the datasets outlined
in Section IV. We will first outline how each dataset will be
used in experiments. As a basis for performance comparison,
we will investigate how the proposed method behaves with
the KITTI dataset as a suitable benchmark for experiments.
Two versions of the same scene are used as a basis for
experiments, as shown in Table 1 where one is unrectified,
and the other is rectified (distortion is removed). We will
then experiment on datasets with wide FOV (i.e., 180◦+),
which have strong radial distortion at the periphery of the
natural scenes. Both horizontal and vertical edges are shown
in experiments.

A. KITTI
In this section, we will present an example of a KITTI
ROI selection of a natural scene using NS-SFR with edge
masking as a basis for identifying slanted edges in natural
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FIGURE 8. (a) Unrectified and (b) Rectified horizontal MTF measurements are compared in one instance of the second gray KITTI
camera for horizontal edges using ISO12233:2023 [21]. Note: distortion is removed from the same scene in (b), where it clearly
shows a positive boost in MTF50 values. A minority of MTF50 is clustered around 0.1-0.12cy/px. In contrast, the majority is tightly
clustered around 0.28-0.3cy/px, which could show a trend of positive bias for rectified images (see Figures 6 and 7 for the
qualitative results).

scenes [13]. Finally, we will present the CaRa Evaluation
shown in Figure 10 of the entire KITTI images from Table 1
both with unrectified and rectified versions as a comparison.

1) KITTI ROI SELECTION
In Figures 6 and 7, a sample comparison is shown between
slanted edge selection from a natural scene in KITTI
where Figure 7 is rectified removing distortion from the
original KITTI image. Each image has a valid and invalid
ROI selection. An increasing number labels each candidate
edge, i signifying that this is the ith edge identified out
of a potential n edges from the natural scene. Therefore,
in the case of Figure 6 out of 64 potential edges, there
are only 13 valid edges which represent approximately
20%. Likewise, in Figure 7, out of 60 potential edges,
there are 12 valid slanted edges (representing the same
ratio as before, but this depends on lighting conditions

and pixel contrast, signifying the complexity of measuring
from natural scenes). The measurements no longer represent
the measurements of the actual camera lens. Any image
manipulated in this manner can affect a valid slanted edge
measurement, artificially inflating the results. As evidence
of how distortion affects results, Figure 8 illustrates the
difference for horizontal edge measurements. The shape
of a typical slanted edge should resemble that of Muller
et al. [42] experiments where MTF50 was approximately
between the (0.07-0.2) range for both superposition and the
isoplanar patches algorithm for PSF model approximations
with square blocks of 3202pixels2(ISO320) [42]. Natural
Scenes measurements offer a more representative camera
performance analysis over conventional test charts where the
step edge of natural scenes does not result in an artificial
e-SFR boost associated with test charts and non-linear
processing where the inclusion of the surrounding scene
reduces sharpening effects of e-SFRs [12]. Comparing MTFs
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FIGURE 9. MTF plots for KITTI CaRa of one grayscale (first row) and one colored (second row) using ISO12233:2023 [15] for horizontal and vertical
edges in unrectified KITTI cameras with NS-SFR parameters (ST=0.02, esfW = 5).

for both Figures 8a and 8b, the rectified cases overall give
tightly clustered measurements. For unrectified KITTI, the
MTF50 measurements are uniformly spread out showing a
fair representation of results (see Figure 6 corresponding
to 8a) whereas, themajority of slanted edgemeasurements for
MTF50 would be tightly clustered around 0.1 and 0.3 cy/px
(see Figure 7 corresponding to 7).
Also, the rectified scene has less pixel information at the

periphery. In Figure 7, the car’s wheel is now less visible in
the foreground than in Figure 6. Eising et al. [2] illustrates
the complexity of warping techniques for images with strong
radial distortion and highlights the need to develop algorithms
that natively address distortion rather than rectifying and
manipulating the image data.

2) KITTI CaRa EVALUATION
In Figure 9, four MTF50 plots are shown where only
the unrectified cameras are considered for this analysis

due to the reasons outlined in the previous part of this
section. We are only interested in the original unrectified
images of KITTI, which contains the actual camera lens
used for data collection. In this set of experiments, the 2nd

and 4th cameras of KITTI are used, where one captures
images in grayscale and the second in color. The 1st and
3rd cameras of KITTI have very similar results to that
seen in Figure 9; hence, only showing results from two
cameras would be sufficient in terms of assessment of
outcomes. As shown in Figure 9, horizontal and vertical
edges are captured from the same scenes where the image
is divided up spatially into three CaRas (please see KITTI
CaRa regions in Figure 10). The three radial segments
can be classified as either center (green), middle (blue),
or edge (red). Evidently, in Figure 9a and 9d, the shape
of the MTF function largely resembles that of the MTF
from Muller et al. [42] where MTF50 values are between
0.16-0.24 cy/px. This demonstrates the reproducibility of
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FIGURE 10. KITTI CaRa on 4th camera RGB).

results from Zwanenberg et al. [11] using the default NS-SFR
parameters for step edge noise (ST=0.02) and Edge Spread
Function Width (esfW= 5 pixels). Comparing the horizontal
edges in the three segments in Figure 9a and 9c, MTF50 is
higher for grayscale images by approximately 10.09% for
the central segment (green), 9.08% for the middle segment
(blue) and 13.49% for the edge (red) segment. However, for
vertical edges in Figure 9b and 9d, the results are roughly
the same where differences are less than or equal to 3.8% in
each segment. Also, comparing horizontal edges in Figure 9a
and 9c to vertical edges in Figure 9b and 9d, the majority of
MTF50 results are higher for horizontal edges by a minimum
of 5.86% than vertical edges (except for the middle segment
for the colored camera where a lower MTF50 was recorded
by 4.14%) indicating that for the KITTI images there tends to
be a larger selection of horizontal edges over vertical edges
as natural scenes tend to have more horizontal edges than
vertical edges especially where in automotive driving the road
has a majority of horizontal features (illustrating the scene-
dependent properties of the NS-SFR).

B. KITTI-360
In this section, we will present the analysis of KITTI-360.
KITTI-360 consists of two fisheye cameras with 180◦ FOV,
each situated on the roof of the ego-vehicle aimed at both left
and right perspectives as in Table 1. The spatial distribution
of ROI selection of the left camera is considered in natural
scenes in Figure 11. Finally, we will present both radial
distance and heatmap analysis of KITTI-360 where a typical
pattern is observed from the data.

1) KITTI-360 CaRa EVALUATION
In Figure 11, the spatial distributions of both horizontal
and vertical edges are displayed with their respective mean
MTF (see Figure 11c and 11d). Similar to the KITTI
measurements, three radial distance segments classify the
location of slanted edges in natural scenes where Figure 11c
and 11d represent their equivalent mean MTFs for each
segment. It was found that approximately the same image
quality can be found in KITTI-360 as KITTI, indicating
that despite the radial distortion that is introduced in KITTI-
360, NS-SFR can extract edges successfully from the images
regardless of location. Also, in KITTI, there are fewer vertical
edges found in the natural scenes than there are horizontal

edges when comparing Figure 12a to 12c. This does
not affect slanted edge measurements significantly where
the differences between MTF50 measurements between
Figure 11c and 11d for each segment is within 1.491% where
horizontal edges are slightly higher in quality than vertical
edges. One distinct effect is evident in the KITTI-360 images
is the spread of MTF graphs where the central segment
(green) has the sharpest slanted edges with MTF50 of around
(0.19305-0.1957) cy/px, followed by the middle segment
(blue) of between (0.18031-0.18309) cy/px and finally the
edge segment (red) of between (0.15344-0.16835) cy/px.
This would be an expected result as distortion is less evident
at the center than at the periphery.

2) KITTI-360 O’SHea EVALUATION
As a means of further insight into MTF50 measurements,
a heatmap analysis was performed on the spatial domain of
KITTI-360 using 8 × 5 heatmap regions where the corner
four regions i.e., (1,1), (8,1), (1,5) and (8,8) are ignored
(see Figures 11a and 11b where the corner regions of the
grid are outside the natural scene). Heatmaps are powerful
tools where patterns can be observed in each image region.
In this case, we calculate the mean MTF plot for each
region where slanted edge locations fall into the heatmap
region. The heatmap regions are then classified into three
categories depending on their location in the spatial domain,
similar to the CaRa Evaluation in the previous section. The
heatmap regions are evaluated according to the segments of
CaRa. The centroids of each heatmap region are isolated,
and depending on where they fall in the radial segments,
they are categorized as central, middle, or edge. As shown
in Figure 11b, two regions are classified as central (green),
12 regions are classified in the middle (blue), and finally,
22 regions are at the edge (red). O’SHea heatmaps can be
referred back to the locations from 11b, which is directly
comparable to 12. The MTF plots in 12a and 12c have
corresponding heatmaps in Figure 12b and 12d. As can be
seen from Figure 12b, edge segments have the widest range
of slanted edges (i.e., 0.149-0.199 cy/px), middle segments
have the second widest (i.e., 0.176-0.210 cy/px) and finally,
the central segments have the narrowest range (i.e., 0.202-
0.204 cy/px). The highest MTF50 score for the middle
segment was recorded at 0.210 cy/px, illustrating that a
few outliers may affect results. Due to the wider range of
scores in the middle segment, this outlier is not apparent in
the mean score for CaRa results. Similarly, in Figure 12d,
edge segments have the widest range of slanted edges
(i.e., 0.150-0.197 cy/px), middle segments have the second
widest (i.e., 0.170-0.210 cy/px) and finally, the central
segments have the narrowest range (i.e., 0.203-0.204 cy/px).
This illustrates the usefulness of both methods for spatial
domain analysis, where the heatmap technique provides
greater insight into the overall results on a region-by-region
basis. See additional results for the right camera in Figure 28
appendices.
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FIGURE 11. MTF plots of KITTI-360 CaRa using ISO12233:2023 [21] on the left camera with NS-SFR parameters of (ST=0.02, esfW=5) with (a)CaRa: Inner
(yellow) and outer (orange), RMLA(red) and 8 × 5 O’SHea(cyan grid), (b)O’SHea Heatmap centroid locations with respect to CaRa, (c) Horizontal Edge MTF
plot and (d) Vertical Edge MTF plot.

C. LMS
In this section, we will present the analysis of the LMS
dataset, which has a circular fisheye aperture similar to
KITTI-360. LMS consists of a single rear-facing fisheye
camera with 185◦ FOV situated at the rear bumper of the
vehicle. The main purpose of testing on the second circular
fisheye camera is to identify any patterns in results and
whether the KITTI-360 results can be replicated by varying
the scene. Compared to KITTI-360, we get a different ROI
selection pattern.

1) LMS CaRa EVALUATION
In Figure 14, the spatial distributions of both horizontal and
vertical edges are displayed with their respective mean MTF

for each radial segment (see Figure 14a and 14c). Similar
to KITTI-360, the pattern of ROI selection more or less
follows the degree of distortion in the camera (notice that the
spatial distributions of both horizontal and vertical slanted
edge locations follow a pattern of upsidedown parabolic
shapes which straighten out as they reach the center and are
inverted from center to the bottom of the spatial domain).
However, in contrast to KITTI and KITTI-360, there were
much more valid ROIs found above the ground in the spatial
domain (see Figures 14a and 14c where the density of points
is much less above the road (see Figure 14a where from
approximately >651.6 pixels on the y-axis, there is an outline
of the road visible which visually can be seen in Figure 13a at
approximately the same pixel range). Figure 13a also clearly
shows a parked car on the left-hand side of the road. This
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FIGURE 12. KITTI-360 Spatial Distribution and O’SHea MTF50 Analysis for ISO12233:2023 [21] on the left camera with NS-SFR parameters
of (ST=0.02, esfW=5). Note: Colors represent the spatial domain location according to CaRa (see Figure 11), i.e., center (green),
middle(blue), and edge(red). Each region displays the mean MTF50, and the number of data points found where <20 samples are shown
in italics.

means that due to the camera position or the position of the
ego-vehicle, the camera will tend to capture more slanted
edges of the parked cars situated on the left side than the right
side due to proximity and better visibility of the edges on
those vehicles. This gives rise to the phenomenon observed
in Figure 14a where a cluster of points is located in the
regions (x, y) = (143.75 ←→ 431.25, 651.6 ←→ 868.8)
pixels which are situated at the left-hand side of the road
as in Figure 13a. Also, the quality of MTF50 results more
or less resembles both KITTI and KITTI-360 results (see
Figures 13c and 13d). The main difference is the spread

of MTF graphs compared to KITTI-360. When comparing
Figure 13c to 11c, LMS has an opposite spread of MTFs
that are higher quality edges found at the periphery of the
camera than at the center, which is unexpected behavior.
However, for vertical edges, both Figures 11d and 13d are
approximately the same with LMS containing slightly higher
mean MTF50 with a minimum of 8.5% improvement for the
central segment. The contrasting behavior in both horizontal
and vertical instances might suggest that CaRa Evaluation
alone is not sufficient to understand natural scenes. Using
CaRa Evaluation alone does not give clear insight as to
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FIGURE 13. MTF plots of LMS using ISO12233:2023 [21] with NS-SFR parameters of (ST=0.02, esfW=5) with (a) CaRa: Inner (yellow) and outer (orange),
RMLA (red) and 8 × 5 O’SHea (cyan grid), (b) O’SHea Heatmap centroid locations concerning CaRa, (c) Horizontal Edge MTF plot and (d) Vertical Edge MTF
plot.

why the periphery cases would be higher than central
cases. Therefore, the spatial domain should be separated
and analyzed by region, as would be possible in heatmaps.
Therefore, it is much more useful to look at heatmap results
in this case than CaRa results.

2) LMS O’SHea EVALUATION
The spatial distribution of LMS is shown in Figure 13b. In
both Figures 14b and 14d, further analysis of LMS shows
that slanted edge selection is completely different once the
camera is positioned closer to the ground, unlike KITTI-
360 where cameras were positioned on top of the vehicle.
It is also worth noting that the KITTI dataset has minimal

distortion. Therefore, the spread in results was not as obvious
as is for LMS, which is a fisheye camera. The heatmaps
from Figure 14b and 14d show that better quality MTF50
measurements can be found on the ground from a cell range of
between (x, y) = (1 ←→ 8, 1 ←→ 2) inclusive, except for
the corner cells of (x, y) = (1, 1) and (x, y) = (8, 1) where
0 or 1 data points are found. Notably, cells (x, y) = (5, 2)
and (x, y) = (6, 2) have the highest MTF50 scores for
both horizontal and vertical edges. To illustrate how large
this contrast is, we can see the following observations. For
horizontal edges in Figure 14b, heatmap regions below the
2nd row of the heatmap show MTF50 values which increase
from regions above the 2nd from between (0.137-0.234) cy/px
to (0.247-0.366) cy/px. This is an improvement of about
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FIGURE 14. LMS Spatial Distribution and O’SHea MTF50 Analysis using ISO12233:2023 [21]. Rear View camera with NS-SFR parameters of
(ST=0.02, esfW=5). Each region displays the mean MTF50, and the number of data points found where <20 samples are shown in italics.

44.53% in the minima and 36.07% in the maxima cases.
Similarly, for vertical edges in Figure 14d, heatmap regions
below the 3rd row of the heatmap show MTF50 values which
increase from regions above the 3rd from between (0.113-
0.175) cy/px to (0.187-0.376) cy/px. This is an improvement
of 39.57% in the minima and 53.46% in the maxima case.

The heatmap results clearly show a distinct impact on
mean MTF50 CaRa results from Figure 13a, where scene
dependence could be a key contributing factor. If higher
MTF50 slanted edges can be found on the ground than in the
sky, the two contrasting trends will unpredictably influence
any radial distance measurement. Perhaps this shows that
heatmap analysis is more effective in automotive scenes
than CaRa Evaluation, especially if the fisheye camera is

positioned just above the road, as is in most automotive
scenes.

D. WOODSCAPE
In this section, we will present the analysis of Woodscape
where, unlike KITTI-360 and LMS, this dataset is calibrated
using the 4th order polynomial projection model [20].
Woodscape consists of four perspectives, mainly FV, MVL,
MVR, and RV, as shown in Table 1 where, out of the available
perspectives, the dataset was split up into roughly the same
number of samples. Woodscape has a slightly wider FOV at
190◦, which allows for capturing more of the natural scene,
implying a 360◦ surround-view system. Using the fine-tuned
parameters from KITTI-360, We apply the adapted NS-SFR
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FIGURE 15. MTF plots of Woodscape CaRa Evaluation using ISO12233:2023 [15] of Front View (ST=0.02, esfW=5). First row: horizontal edges, Second
row: vertical edges.

FIGURE 16. O’SHea: Heatmap Spatial Locations for Woodscape.

to all four perspectives, observing how this differs from the
previous two fisheye datasets.

1) WOODSCAPE CaRa EVALUATION
In Figure 17, the spatial distributions of both horizontal and
vertical edges are displayed with their respective mean MTF
for each radial segment (see Figures 15a and 15b). The FV
of Woodscape for horizontal and vertical edges are compared
(i.e., the first sample of 1514 images fromTable 1). In contrast
to LMS, the pattern of ROI selection for horizontal edges
follows the horizon where the ground meets the sky and the
foot of buildings (see Figure 17a). Also, most vertical edges
are found on both sides of the spatial domain, suggesting that
buildings on both sides of the road contain better edges than
the center (see Figure 17c), which is expected. Interestingly,

when comparing Figure 15a to 11c there is a significant
improvement inMTF50 of more than 32.18% in all segments.

Similarly, the MTF50 for vertical edges in all segments
improved by more than 28.84% when comparing Figure 15b
to 11d. There may be several reasons behind this improve-
ment. A major reason could be that the positions of both
KITTI-360 andWoodscape cameras are completely different,
where KITTI-360 is positioned on top of the vehicle, and
Woodscape is positioned close to the ground. It has already
been demonstrated via LMS (see previous section V-C) that
scene dependence affects measurements, especially if the
camera is close to the ground (see Figure 14). This implies
that Woodscape measurements are better mainly because
there is a better selection of slanted edges on the ground
than above the vehicle. This indicates that NS-SFR should be
limited to specific camera positions, mainly complete ground
or sky, to avoid conflicting results. A selection strategy
could also be determined where a cluster of results could
be categorized based on the background information of the
natural scene. For example, if the objects on the ground
were more of a priority, then image quality must be as high
as possible for objects to be recognized in computer vision
algorithms. Therefore, if the MTF values on the road and the
buildings are reasonably high between (0.25-0.3) cy/px (as is
the case for horizontal edges in Figure 15a), then the lens is
considered to have sufficient image quality for this purpose.
However, a more detailed analysis is needed to differentiate
the contents or objects of the road for greater insight. For
example, detecting edges on cars may be different from the
road in shadow measurements.

2) WOODSCAPE O’SHea EVALUATION
The spatial distribution of the front view of Woodscape is
shown in Figure 16. The heatmaps for Woodscape for both
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FIGURE 17. Woodscape Spatial Distribution and O’SHea MTF50 Analysis using ISO12233:2023 [21] of the Front View with NS-SFR parameters of
(ST=0.02, esfW=5). Each region displays the mean MTF50, and the number of data points found where <20 samples are shown in italics.

horizontal and vertical edges show no distinct pattern where
both edge and middle regions have roughly overlappingMTF
measurements (see Figures 17b and 17d). There is no distinct
pattern like that of KITTI-360 (see Figures 12a and 12c).
However, the heatmaps offer a different perspective; for
horizontal edges, the four highest MTF50 heatmap region
values (i.e., 0.311, 0.310, 0.305, and 0.298) can be near or
on the periphery of both the left and right of the spatial
domain. In contrast, for vertical edges, the six highest values
(i.e., 0.373, 0.332, 0.326, 0.305, 0.302, and 0.297) can all
be found towards the center or middle of the spatial domain
(more specifically along the horizon of the road). For vertical
edges, the center segment has the highest mean MTF50
value of 0.373 cy/px, which is at least 11.7% higher than
either edge or central segments, as shown in Figure 15b.

These results can be considered counter-intuitive, where two
completely different sets of behaviors are found for image
quality. A possible explanation for this phenomenon is the
effect of distortion on the spatial domain, where apparently,
distortion has sharper horizontal edges in natural scenes
towards the periphery. In contrast, sharper vertical edges can
be found at the center or middle spatial domain. A limitation
to the observation of the vertical edges is that there are less
than 20 data points isolated in the central regions of the
spatial domain. In contrast, the periphery regions have 40+
data points, suggesting higher confidence in the periphery
results than the center (likely due to the higher probability
of finding vertical edges on the buildings towards both sides
of the road). Results are inconclusive because the dataset is
small, and more fisheye datasets are needed to verify this
trend for natural scenes.
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E. SYNWOODSCAPE
In this section, we will present the analysis of SynWoodscape
(a synthetic version of Woodscape created in CARLA [24]),
which is calibrated using the 4th order polynomial projection
model as in Woodscape and the cube map projection
model [23]. Similar to Woodscape, SynWoodscape consists
of four perspectives, mainly FV, MVL, MVR, and RV,
as shown in Table 1 where out of the available perspectives,
the dataset was split up into the same number of samples
(i.e., 500 images for each perspective). Like Woodscape,
SynWoodscape has a wide FOV of 190◦. We use the same
parameter from the Woodscape experiments as a means
to investigate the difference between both real life and
simulation. In this section, all scenes can be considered
synthetic scenes as a way of differentiating from real life with
natural scenes.

1) SYNWOODSCAPE CaRa EVALUATION
In Figure 19, the spatial distributions of both horizontal
and vertical edges are displayed with their respective mean
MTF for each radial segment (see Figure 18c and 18d). The
FV of SynWoodscape for horizontal and vertical edges are
compared (i.e., the first sample of 500 images from Table 1).
There is a drop in MTF50 values for both horizontal and
vertical edges when comparing Figure 18c to 15a where
there is a 29.03% to 54.36% drop across all three segments.
Similarly, when comparing Figure 18d to 15b, there is a
24.68% to 50.74% drop across all three segments. This
suggests that simulation while generating much more ideal
slanted edges, measurements do not reflect reality and, in the
case of SynWoodscape, can produce results incomparable
to the measurements in real life. This is an expected result
mainly because SynWoodscape only applies distortion to the
simulated images and does not carry over the actual lens
properties into the simulation, highlighting the limitations of
current simulation models.

2) SYNWOODSCAPE O’SHea EVALUATION
The spatial distribution of the front view SynWoodscape is
shown in Figure 18b. In Figure 19, the 8 × 5 regions of the
spatial domain are displayed alongside the values in heatmap
regions for both horizontal and vertical edges. Comparing
both Figures 19a and 19c, there are some similarities to the
spatial distribution of results for the three radial segments
(see Woodscape distributions in Figures 17a and 17c). Both
horizontal spatial distributions show most slanted edges
clustered along the road’s horizon. Vertical distributions both
show left and right peripheries with more slanted edges.
However, the quality of edges is approximately the same
(if not slightly better than) the KITTI measurements from
Section V-A where values were between (0.16-0.22) cy/px.
This shows that results are incomparable to Woodscape,
and there is still a long way to go when modeling lenses
in simulation. Furthermore, the heatmaps in Figures 19b
and 19d suggest no conclusive patterns emerging from the

spatial domain. The only observation that can be made is
that there are mostly higher MTF50 values found above the
ground, which contradicts behavior from Section V-D. As an
example, one might argue that stronger MTF50 values for
vertical edges can be found above the ground along row 5,
where the three highest values exist in coordinates (7,5), (2,5),
and (6,5), respectively (see Figure 19d). Further investigation
is required to prove this fact and once again shows the
contrastive effects of distortion on both simulation and real
life. For additional results, please see Appendices.

F. DISCUSSION
In this section, we will discuss results from all five datasets.
The results shown in this work give confidence, whereas
results recorded in heatmap regions give > 20 data samples,
suggesting a robust set of results in most cases. There can be
a few observations from the results shown in this section:

1) Rectified KITTI measurements have a higher overall
set of MTF50 values than the original KITTI (see
Figure 8 and Table 2 in Appendices). This can be due to
the nature of the rectification, which could artificially
boost results, and it is clear that the results no longer
represent the actual lens in the scenes.

2) In comparing both grayscale and RGB cameras, results
are similar, settling around the 0.15-0.2cy/px mark.
A few peculiar patterns are emerging where horizontal
edges are slightly higher for grayscale, whereas for
vertical edges, RGB has slightly higher values (see
Figure 9).

3) KITTI-360 results contain the most data out of all
possible experiments and clearly show a consistent
pattern in both cases where the center of the lens
has higher MTF50 results than the periphery (see
Figure 12).

4) In contrast to KITTI-360, a clear scene-dependent
scenario emerges for LMS results where from the
heatmaps for both horizontal and vertical edges, there
are slightly higher MTF50 results recorded below the
horizon. Additionally, in this area, fewer edges were
recorded, which could indicate that the lower results
above the horizon are more reliable than those on
the ground. Interestingly, the LMS CaRa distribution
follows a geometric pattern in results where data points
form parabolas or circle-like rings above the ground
(see Figure 14).

5) Woodscape results show strong patterns where most
of the horizontal edges can be found either along
the horizon, the ground, or the buildings, which are
unlike KITTI-360 or LMS. For vertical edges, most
measurements can be found along the buildings in
scenes, especially for front-view and rear-view cam-
eras, and are noticeably scarce compared to horizontal
measurements (see Figures 17 and Figures 21, 22
and 23 in Appendices).

6) SynWoodscape follows the same observations as
Woodscape however, MTF50 results are lower in most
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FIGURE 18. MTF plots of FV SynWoodscape CaRa using ISO12233:2023 [21] with NS-SFR parameters of (ST=0.02, esfW=5) with (a) CaRa: Inner
(yellow) and outer (orange), RMLA(red) and 8 × 5 O’SHea (cyan grid), (b) O’SHea Heatmap centroid locations with respect to CaRa, (c) Horizontal
Edge MTF plot and (d) Vertical Edge MTF plot.

cases than Woodscape, suggesting a clear gap between
simulation and reality (please see Figures 19 and
Figures 25, 26 and 27 in Appendices).

VI. LIMITATIONS AND FUTURE WORK
This study has shown it is possible to measure camera
sharpness from public datasets using the Slanted edgemethod
[21]. From this work, three observations can be made and
should be explored in future work:

1) Camera sharpness is insufficient to evaluate cameras
in all applicable scenarios quantitatively. As stated
in recent work by Wolf et al. [4], if the camera is
placed behind a windscreen, MTF50 measurements no
longer represent those of the camera itself but that of a
combination of both the camera and the windscreen.
In future work, the BDD100k dataset [43] released
publicly effectively recreates this same scenario where
all images of the dataset are taken behind the

vehicle’s windscreen. This provides an additional set of
experiments to investigate how the windscreen affects
MTF50 measurements in a real-world automotive
dataset. Based on the findings of Wolf et al. [4],
a reasonable assumption to make would be that the
MTF50 measurements from BDD100k [43] would be
affected negatively for horizontal slanted edges and
positively for vertical slanted edges due to two different
focus offsets of the combined system. Observations
from Wolf et al. [4] show that placing a windscreen in
front of the camera cancels both offsets, leading to a
sharpened camera system in practice.

2) The lack of publicly available automotive fisheye
datasets, especially for automotive simulation, limited
the selection of the experiments in this study. Generally,
each camera perspective should have a large number of
images available to obtain a strong measurement pat-
tern. With more images, the measurements performed
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FIGURE 19. SynWoodscape Spatial Distribution and Heatmap Analysis using ISO12233:2023 [21] of the Front View camera with NS-SFR
parameters of (ST=0.02, esfW=5). Each region displays the mean MTF50, and the number of data points found where <20 samples are shown
in italics.

in the datasets would better estimate the camera’s
actual performance, suppressing outliers and any noise
that may otherwise affect the measurements in small
datasets.

3) Future work should introduce image quality metrics
from the slanted edge and other relevant metrics for
computer vision applications. Extending optical quality
measurement strategies from natural scenes can bridge
the gap between optical quality and computer vision
performance. Recent works [25], [44] demonstrate that
economic success depends on understanding the rela-
tionship between optical quality, defining camera pro-
duction tolerance limits, and computer vision algorithm
limits. For example, Noise Equivalent Quanta (NEQ)
is an optical quality metric that stems from MTF

and is a frequency-dependent Signal-to-Noise (power)
ratio [45], [46]. Also, the newly proposed toolkit of
image quality metrics by the research community [47],
[48], [49] have not been sufficiently assessed for
automotive driving linking Artificial Intelligence (AI)
to optical systems performance.

VII. CONCLUSION
In this paper, we have performed optical quality measure-
ments from both real-life and simulation scenes in five
publicly available automotive datasets with varying degrees
of FOV (i.e., 90◦, 180◦, 185◦, and 190◦, respectively) using
ISO12233:2023 [21] version of the Slanted Edge Method.
This was done by applying regional masks to camera
perspectives (e.g., RMLA), selecting and categorizing the
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spatial locations of valid regions for measurement using
both CaRa and O’SHea techniques, and determining a set of
constraints forMTF results (e.g., Slo-MTF and EiLíN). These
contributions show that it is possible to measure and obtain
a valid set of measurements to evaluate public automotive
datasets using different camera systems, including fisheye.
In the experiments performed, lenses with uniform spatial
domains (i.e., little distortion) showed that MTF50 was
constant between (0.18-0.25cy/px). With image rectification
on the same scenes, MTF50 results artificially increased,
no longer representing the camera lens. In contrast, for
strong radial distortion, MTF50 varied extensively across the
spatial domain between (0.12-0.4cy/px), where, in particular,
Woodscape gave the highest average of MTF50 per region
for natural scenes. Results show that it is possible to extract
optical quality measurements from wide FOV cameras,
which compare in quality to the camera used. Additionally,
geometrical and scene-dependent patterns can be observed
from edge extractions. This method is novel and could
give crucial insight into how cameras behave in natural
scenes, identifying trends in image sharpness. It is clear from
both KITTI-360 and Woodscape experiments that distortion
directly affects the image quality of natural scenes and differs
depending on the scene and camera type. For example, KITTI
experiments show largely uniform results due to minimal
to no distortion in CaRa evaluation. In contrast, there are
clear variations between all three circular regions in fisheye
cameras where MTF50 measurements are spread out from
each other. It is clear from this work that it is essential
to establish the criteria for optical quality measurements
in natural scenes. The position of cameras on automotive
vehicles can influence the pattern of results obtained from
natural scenes. This is clearly shown in the spatial patterns
observed in both CaRa and O’SHea evaluations performed
in this work. Simulation may be considered for extending
experiments for natural scenes. If real-life lenses can be
modeled in automotive simulators, it would be possible to
easily replace lenses and perform measurements on the same
scene. This would be feasible, especially for investigating
corner case scenarios in optical quality. Simulation can
provide a method of utilizing real-time camera production
tests for computer vision in the future.

APPENDIX A
KITTI MTF50
In this section, we show a complete set of results for all four
unrectified and rectified KITTI cameras where the spatial
domain is divided into a 8×5 heatmap as shown in Figure 20.
Take the following examples:

1) regions (2,1), (2,2), (7,1), (7,2), (2,4), (2,5), (7,4) and
(7,5) all have the majority of the outer radial segment,

2) regions (2,3) and (7,3) all have the middle segment as
the majority,

3) regions (4,2), (5,2), (4,3), (5,3), (4,4) and (5,4) all have
the central segment as the majority,

The results for each of the four cameras in all regions are
recorded in Table 2.

A. GRAYSCALE CAMERA 1 (G00)
The following observations can be made from Table 2:

1) Central Regions (6x) - horizontal edges have higher
values than vertical edges in all six segments except
for (5,2). Rectified values are higher than unrectified
values in all six segments except for vertical edges in
regions (4,3) and (4,4).

2) Middle Regions (16x) - horizontal edges have higher
values than vertical edges in 13 out of 16 regions except
for regions: (5,1), (6,1), and (6,5). For horizontal edges,
Rectified values are higher than unrectified values in all
regions. For vertical edges, rectified values are higher
than unrectified values in 14 of 16 regions except for
regions (2,3) and (6,5).

3) Edge Regions (18x) - horizontal edges have higher
values than vertical edges in 17 out of 18 regions except
for region (7,1). For horizontal edges, rectified values
are higher than unrectified values except in regions
(8,3) and (8,5). For vertical edges, there is no clear
majority of edges showing a trend.

B. GRAYSCALE CAMERA 2 (G01)
The following observations can be made from Table 2:

1) Central Regions (6x) - horizontal edges have higher
values than vertical edges in 5 of 6 segments except
for region (5,2). Rectified values are higher than
unrectified values in all six segments except for vertical
edges in the region (4,3).

2) Middle Regions (16x) - horizontal edges have higher
values than vertical edges in regions: (3,2), (2,3),
(3,3), (6,3), (7,3), (3,4), (6,4), (3,5) and (6,5). For
both horizontal and vertical edges, rectified values are
higher than unrectified values in all 16 segments except
for region (2,3).

3) Edge Regions (18x) - horizontal edges have higher
values than vertical edges in 17 out of 18 regions
(except for region (7,1)). For horizontal edges, rectified
values are higher than unrectified values except in
regions (8,2), (1,3), and (8,3). For vertical edges,
unrectified values are higher than rectified values
except in regions (7,2), (8,3), (7,4), (8,4), (2,5), and
(7,5).

C. COLORED CAMERA 3 (C02)
The following observations can be made from Table 2:

1) Central Regions (6x) -horizontal edges have higher
values than vertical edges in 4 of 6 segments except
for regions (4,2) and (5,2). Rectified values are higher
than unrectified values in all six regions.

2) Middle Regions (16x) - horizontal edges have lower
values than vertical edges in 11 of 16 regions except for
(2,3), (3,3), (3,4), (4,5), and (5,5). For horizontal edges,
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FIGURE 20. O’SHea ROI locations in KITTI.

TABLE 2. NS-SFR MTF50 on all four KITTI cameras for both unrectified(original) and rectified (undistorted) where each row corresponds to a heatmap
region in the 8 × 5 heatmap from Figure 20.

rectified values are higher than unrectified values in all
regions. For vertical edges, rectified values are higher
than unrectified values except for regions (7,3), (6,4),
and (6,5).

3) Edge Regions (18x) - horizontal edges have higher
values than vertical edges in 16 out of 18 regions
except for regions (7,1) and (7,4). For horizontal edges,
rectified values are higher than unrectified values
except in regions (8,3) and (8,5). For vertical edges,

unrectified values are higher than rectified values
except in regions (2,1), (7,1), and (2,5).

D. COLORED CAMERA 4 (C03)
The following observations can be made from Table 2:

1) Central Regions (6x) - horizontal edges have higher
values than vertical edges in 4 of 6 segments except for
regions (4,2) and (5,2). For horizontal edges, rectified
values are higher than unrectified values except in
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FIGURE 21. The Spatial Distribution of Woodscape for MVL, MVR, and RV views (ST=0.02, esfW=5). First column: horizontal edges, Second column:
vertical edges.

region (4,4). For vertical edges, rectified values are
higher than unrectified values except in region (5,3).

2) Middle Regions (16x) - horizontal edges have higher
values than vertical edges in 9 of 16 regions except
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FIGURE 22. O’SHea MTF50 Analysis of the Spatial Domain in Woodscape for MVL, MVR, and RV views (ST=0.02, esfW=5). Each region
displays the mean MTF50 and the number of data points found where <20 samples are shown in italics.
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FIGURE 23. MTF plots of Woodscape for MVL, MVR, and RV views (ST=0.02, esfW=5). First column: horizontal edges, Second column: vertical edges.

for regions (4,1), (5,1), (6,1), (6,2), (6,3), (5,5)
and (6,5). For horizontal edges, rectified values
are higher than unrectified values except in region

(2,3). For vertical edges, rectified values are higher
than unrectified values except in regions (4,1) and
(7,3).
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FIGURE 24. RMLA and CaRa on all four perspectives of SynWoodscape. Note: the Camera Radial Distances are aligned with the periphery of the
fisheye camera and any edge categorized would be representative of the actual lens location.

3) Edge Regions (18x) - horizontal edges have higher
values than vertical edges except for regions (7,1),
(7,4). For horizontal edges, rectified values are
higher than unrectified values except in regions (8,1),
(7,2), (8,2), and (8,3). For vertical edges, unrectified
values are higher than rectified values except in
region (2,5).

APPENDIX B
WOODSCAPE
This section contains additional results for Woodscape
MTF50 MVL, MVR, and RV camera perspectives. Figure 21
illustrates different patterns of MTF50 spatial distributions
in the camera perspectives. For example, the outline of road
markings and pavement features in the road for MVL and
MVR in Figures 21a and 21c have clustered points in the top
central background (see Figures 4b and 4c for comparison).
Similarly, for vertical edges, most can be found along the

periphery at the bottom left or right foregrounds of the images
(see Figures 21b and 21d) and compare to the same regions
pixel regions in Figures 4b and 4c. Finally, the RV camera
perspective illustrates a similar pattern of behavior to the FV
perspective, where the outline of the road contains tightly
clustered points for horizontal edges, whereas most of the
edges for vertical edges can be found at the periphery of
the camera (i.e., located on the buildings above the ground).
Furthermore, the degree of visibility for the RV perspective
is much smaller due to the greater presence of vignetting
in the camera lenses(visible in Figure 4a). This ultimately
leads to less CaRa being isolated in the particular regions
of interest. The spatial distributions are accompanied by
their respective O’SHea and CaRa evaluations in Figures 22
and 23, respectively. Noticeably, all MTF50 measurements
can be located within the range of 0.22-0.32cy/px illustrating
that it is possible to extract optical quality results from any
Woodscape perspective.
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FIGURE 25. The Spatial Distribution of Woodscape for MVL, MVR and RV views (ST=0.02, esfW=5). First column: horizontal edges, Second
column: vertical edges.

APPENDIX C
SYNWOODSCAPE
This section contains additional results for SynWoodscape
MTF50 MVL, MVR, and RV camera perspectives. Figure 25
illustrates different patterns of MTF50 spatial distributions

in the camera perspectives. As a comparison to Woodscape,
the spatial distributions are completely different in shape.
However, the locations of the clustered data points are similar
to that of Woodscape (see Figure 21). For example, the
outline of road markings and pavement features in the road
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FIGURE 26. O’SHea MTF50 Analysis of the Spatial Domain in SynWoodscape for MVL, MVR, and RV views (ST=0.02, esfW=5). Each region
displays the mean MTF50 and the number of data points found where <20 samples are shown in italics.

145666 VOLUME 12, 2024



D. Jakab et al.: ARDÁN: Automated Reference-Free Defocus Characterization

FIGURE 27. MTF plots of SynWoodscape for MVL, MVR, and RV views (ST=0.02, esfW=5). First column: horizontal edges, Second column: vertical edges.

for MVL and MVR in Figures 25a and 25c have clustered
points in the top central background (see Figures 24b and 24c

for comparison). Similarly, for vertical edges, most can
be found along the periphery at the bottom left or right
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FIGURE 28. KITTI-360 Spatial Distribution and O’SHea MTF50 Analysis for BSISO12233:2023 [21] on the right camera with NS-SFR
parameters of (ST=0.02, esfW=5). Note: Colours represent the spatial domain location according to CaRa (see Section V-B Figure 11a and
Figure 12 for left camera results), i.e., center (green), middle(blue) and edge(red). Each region displays the mean MTF50, and the number
of data points found where <20 samples are shown in italics.

foregrounds of the images (see Figures 25b and 25d) and
compare to the same regions pixel regions in Figures 24b
and 24c). Finally, the RV camera perspective illustrates a
similar pattern of behavior to the FV perspective, where
the outline of the road contains tightly clustered points for
horizontal edges, whereas most of the edges for vertical edges
can be found at the periphery of the camera (i.e., located on
the buildings above the ground). Furthermore, the degree of
visibility for the RV perspective is much smaller due to the
greater presence of vignetting in the camera lenses(visible in
Figure 24a). This ultimately leads to less CaRa being isolated
in the particular regions of interest. The spatial distributions

are accompanied by their respective O’SHea and CaRa
evaluations in Figures 26 and 27, respectively. Noticeably,
all MTF50 measurements can be located within the range of
0.22-0.32cy/px illustrating that it is possible to extract optical
quality results from any Woodscape perspective.
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