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ABSTRACT ccurate prediction of winding insulation degradation path is critical for preventing catastrophic
equipment failures and optimizing maintenance schedules in electric motors (EMs). Existing methods,
such as those based on monitoring high-frequency electrical parameters, often rely on point estimates and
neglecting the inherent uncertainties associated with real-world degradation processes. This paper proposes a
novel approach utilizing Gaussian Process Regression (GPR) to address this limitation. Building upon recent
advancements in high-frequency electrical parameter monitoring in which identifying inter-turn insulation
creep is a key degradation indicator, this work adopts GPR to predict the degradation path. GPR offers
a powerful framework for incorporating uncertainty quantification into the prediction process. It not only
excels at interpolation within the observed data range but also provides a distribution of possible future
degradation values. This probabilistic approach acknowledges the variability present in both real-world
measurements and the inherent process variability of insulation degradation. The prediction results from
proposed GPR-based approach are compared to a nonlinear Wiener-process-based model as a conventional
method, and a state-of-the-art optimization algorithm. The estimation accuracy in the worst case scenario of
the proposed method gives an error of 0.7% which is more accurate than 4.2%, and 50% resulted from the
Wiener-process-basedmodel and the commercial optimization solver respectively. These results demonstrate
a significant improvement in estimation accuracy by effectively handling both data and process-related
uncertainties.

INDEX TERMS Degradation estimation, Gaussian process regression, health monitoring, uncertainty
quantification, winding insulation reliability.

I. INTRODUCTION
In electrical rotating machines, the significance of winding
insulation for maintaining operational performance and
safeguarding safety is absolutely essential [1]. This insulation
acts as the pivotal protective layer, reducing the risks of
electrical leakages and short circuits which can escalate into
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system-wide failures. The increasing utilization of electric
vehicles (EVs) in various industrial applications highlights
the vital importance of consistent insulation reliability.
Failures in insulation can lead to interruptions in operations,
heightened maintenance costs, shortened equipment lifetime,
and occasionally, severe system malfunctions. Deterioration
of insulation due to thermal, mechanical, and environmental
factors always results in ongoing fluctuations in insulation
performance [2], [3].

141752

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0009-0000-8932-6629
https://orcid.org/0000-0003-3667-7462
https://orcid.org/0000-0002-5341-9708
https://orcid.org/0000-0002-4367-5097


M. Hashemi et al.: GPR for an Accurate and Uncertainty-Aware Winding Insulation Degradation Prediction

On the other hand when EMs are employed to EVs,
having an extended power density is essential to avoid the
adoption of mechanical devices such as gearbox or harmonic
derives [4]. However, higher power ratings inevitably lead
to a greater thermal load on the motor’s windings and
push the insulation towards its thermal limits [5]. Therefore,
an effective thermal management becomes crucial [6].
According to [7], the lifetime of the commonly used insu-
lation materials will be halved if the temperature increases to
an additional 10Â◦C. This implies that maximizing the life
of insulation through an efficient thermal load management
not only reduces the requirement for frequent maintenance
or replacements but also guarantees the safe and efficient
operation of electric machines [8].

Meanwhile, insulation degradation monitoring in EMs,
provides a framework for understanding its behavior, pre-
dicting its lifetime, and implementing measures to optimize
its lifetime [9]. Although the insulation degradation model
is affected by multiple factors other than temperature,
proposing a temperature-dependent degradation model has
been remarkably successful in understanding the principal
impacts on insulation deterioration [10].

Insulation systems’ testing and monitoring methods can be
categorized into offline and online methods.

Current offline testing methods such as those relying on
insulation capacitance and resistance measurements [11],
despite industry acceptance, disrupt operations and lack con-
tinuous monitoring capabilities. On-line monitoring emerges
as the preferred solution for uninterrupted operation and
enhanced plant safety.

There are two main approaches to obtain a degradation
model through online methods: Physical or microscopic life
models and Phenomenological, empirical, or macroscopic
life models [12]. Physics-based models, while theoretically
comprehensive, are often complex and challenging to imple-
ment due to the intricate nature of insulation materials
and degradation processes. As a result, phenomenological
models are more common because of their practicality, and
offering simplified representations that effectively capture
degradation behavior. Within phenomenological models,
distinctions are made between single stress and multi-stress
life models. The Arrhenius equation acquired from the
physics of failure acceleration model, as a single-stress
approach is widely used [13] to drive a lifetime model for
an insulation system. This equation as shown in (1), is a basis
of thermal aging model

K = A · e(
−Ea
RT ) (1)

where K is the degradation rate. A is a material’s dependent
constant, T is the hot-spot temperature for insulation and
Ea is the activation energy, R is the universal gas constant
(R = 8.314 J/(mol∗K )), and T is the absolute temperature in
Kelvin [14], [15].

As a limitation, the Arrhenius model is inherently static
which means it is designed to work with a fixed temperature,

not with temperatures that change dynamically over time.
Therefore, when it is applied to materials experiencing
fluctuating temperatures, it might not provide an accurate
representation of the degradation process.

To overcome this, the proposed model in [16] predicts
the motor insulation life through dynamic monitoring of
the winding temperature and extends the Arrhenius equation
to incorporate several winding temperatures instead of one
operating temperature.

More importantly, the basic form of Arrhenius model does
not capture the interactions between temperature and other
factors such as mechanical stresses due to thermal expansion.
To incorporate the cumulative effects of multiple stress
factors, [17] presents a multi-stress model which estimates
the lifetime of the winding insulation based on the thermal
and thermo-mechanical effects. As shown in this model,
aging due to simultaneously applied constant stresses can be
accurately modeled by the product of the aging rate due to the
single stresses, with the addition of a proper correction term.
However, one major limitation is that it relies on empirical
methods to determine the aging rates for individual stresses
and then multiplies these rates to estimate the overall aging.
In reality, the interactions between stress factors can be
highly nonlinear and may not be accurately represented by
a multiplicative model.

On the other hand, stochastic methods can take the effects
of interactions into account by describing the insulation
degradation process through considering randomness or
variability and estimate its reliability using probability
distributions [18], [19], [20], [21].

Different stochastic models of degradation processes
including the random coefficient regression models [22],
inverse Gaussian process [23], and Wiener process [24]
have been employed to assess the insulation degradation and
estimate its remaining useful lifetime (RUL).

However, integrating stochastic modeling techniques into
the deterministic models such as Arrhenius based models
takes advantage of the strengths of both to develop a more
precise, adjustable, and accurate technique for insulation
lifetime prediction [25], [26], [27], [28].While these methods
provide valuable insights, they present significant limitations.
TheWeibull model, despite its flexibility in modeling various
failure rates, relies heavily on accurate parameter estimation,
which can be sensitive to the quality and quantity of available
data. Additionally, extensive datasets are often required to
ensure the reliability and robustness of these models.

As stated earlier, a combination of different factors lead
to insulation degradation and create a highly complex and
nonlinear problem. Therefore, there are challenges and
considerations, such as difficulties in parameter estimation
and convergence issues when optimization algorithms are
adopted in nonlinear models.

While the existing statistical life models provide valuable
insights into the insulation degradation process, they often
require extensive life data and can be limited in their ability to
model complex interactions between multiple stress factors.
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This is where GPR offers significant advantages in terms of
simplicity and computational efficiency. In particular, GPR
has been recently adopted to predict the degradation of proton
exchange membrane fuel cell (PEMFC) in [29], and bearing
systems in [30].
It is important to note that although there have been some

nonlinear accelerated degradation data modeling solutions,
the research on the evaluation of the remaining useful
lifetime with an optimization algorithm inference to consider
nonlinear accelerated degradation data with applications to
insulation degradation is still limited [26].

A. MOTIVATION AND CONTRIBUTIONS
Motivated by the aforementioned limitations, this research
contributes to the issue of lifetime estimation specifically
for winding insulation by combining data obtained from
thermal stress tests and GPR. GPR naturally incorporates
uncertainty by defining a probability distribution over all
possible functions that could model the degradation process.
This includes the possibility of capturing effects from other
factors even when only single-stress tests are conducted. The
key contributions of this study are:

• Handling non-linearities: GPR offers a probabilistic
framework that can effectively model the unavoidable
variations and non-linearities in insulation degradation.
This means it accounts for the complex interactions
between various stress factors (e.g., thermal, electri-
cal, mechanical) influencing degradation, providing a
more comprehensive understanding beyond the isolated
effects of thermal stress alone.

• Uncertainty quantification: by incorporating uncer-
tainty estimates into predictions, GPR enhances the reli-
ability and robustness of forecasts, supporting informed
decision-making in maintenance strategies.

• Data and Time efficiency: unlike existing data-driven
approaches that often require large datasets for parame-
ter estimation and validation, GPR can achieve accurate
predictions with smaller, more targeted datasets. This
capability is particularly advantageous in the context of
insulation degradation, where comprehensive datasets
may be challenging to obtain due to the long-term
nature of degradation processes and the variability in
environmental conditions.

The GPR model is trained using data collected during
the thermal stress tests and allows for the estimation
of the insulation degradation under controlled and stressed
conditions. Under working conditions, the insulation system
will be affected by other aging factors, such as electrical
stress. By defining a space of all possible functions and
establishing an uncertainty boundary using a suitable kernel,
GPR allows us to overcome the limitation of not explicitly
testing for these additional factors. This feature sets GPR as a
non-parametric regressionmethod apart from other stochastic
extrapolation methods. Subsequently, the results are carefully
extrapolated to normal operating conditions using appropriate
conversion techniques based on the physical processes

influenced by temperature. This extrapolation step requires
cautious consideration due to potential limitations of the
Arrhenius equation at significantly different temperature
ranges.

Finally, by analyzing the predicted degradation path under
normal conditions, the remaining useful lifetime (RUL) of the
insulation is estimated.

The remainder of this article is organized as follows:
Section II the background mathematics of GPR are briefly
reviewed and then a degradation model using experimental
data and GPR is proposed. In section III, a generalized
degradation model is obtained from stress level to normal
working condition through kernel definition with calculated
kernel parameter. Then, the approximated RUL distribution
is given in Section IV. To evaluate the performance of
the proposed method, discussion and simulation results are
provided in Section V. In the end, this article is concluded in
Section VI.

II. MODELING OF INSULATION DEGRADATION UNDER
THERMAL AGING
A. ACCELERATED DEGRADATION TESTS
To assess the degradation process, the insulation system
is exposed to different thermal stresses that exceed the
critical temperature to accelerate the degradation process.
Table 1 shows the accepted temperature indices of insulation
materials according to IEC 60085. Then, a sufficient
amount of degradation data is collected and employed in a
reliability assessment procedure. This procedure is so-called
accelerated degradation test (ADT) [26]. Through ADTs,
the insulation performance is observed as it degrades under
elevated thermal stresses. Failure is assumed to occur when
the insulation performance degrades below a specified value.

TABLE 1. Thermal classification of rotating machine insulation
materials [31].

Fig. 1 depicts the non-linear relationship between thermal
stress and the measured insulation resistance in an exemplary
rectangular copper wire with Class H insulation. Addition-
ally, Fig. 1 shows why degradation data, collected under
a single thermal stress level, cannot be directly extended
to other stress levels using a deterministic physics-based
model like the Arrhenius equation. The main reason is to
focus only on thermal stress and neglect the influence of
other environmental factors like electrical stress, mechanical
stress, and ambient conditions that add uncertainty to the
degradation process.

Thus, developing an accurate predictive model for insu-
lation degradation should be able to capture the interplay
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FIGURE 1. Insulation resistance changes with respect to the aging time at
290◦C. Adapted from [38].

between deterministic factors, such as the direct and pre-
dictable impact of stress level on the degradation rate, and
stochastic influences, such as environmental fluctuations.

B. DEGRADATION ESTIMATION USING GAUSSIAN
PROCESS REGRESSION
Bayesian inference is widely used as a way of making sta-
tistical inferences in which the statistician assigns subjective
probabilities, so-called prior distribution, to the distributions
that could generate the data [34]. Within the Bayesian
regression framework, Gaussian processes (GPs) are popular
for constructing ‘‘surrogates’’ of data sources that are difficult
to query. GPR is a regression framework to predict a set
of function values using GPs, and instead of fitting a
single deterministic function to the data, GPR models the
relationship between inputs and outputs as a distribution over
functions.

An accurate GPR can often be constructed using only
a relatively small set of training samples (e.g. tens to
hundreds), which consists of pairs of input parameters and
corresponding response values. A GP is completely defined
by its mean and covariance function. The prediction f =

[f (x1), f (x2), . . . , f (xN )]T of a GP can be expressed as

p (f |X) = N (f ; µ(X ),K (X ,X )) (2)

where µ(X ) denotes mean function consisting

µ(X ) = [µ(x1), µ(x2), . . . , µ(xN )]T ,

and K (X ,X ) is the covariance kernel matrix with entries[
K
(
xi, xj

)]
1≤i,j≤N where xi and xj are different training

samples. The covariance kernel function, K
(
xi, xj

)
, must be

symmetric and positive semi-definite.
The choice of a covariance kernel can have profound

impacts on GP predictions. The covariance matrix gener-
ated by the kernel function represents the nature of the
stochastic process, the uncertainty in the predictions, and
cross-correlation between samples. As an example, the

squared exponential (SE) kernel defined by

K
(
xi, xj

)
= η2exp

−
1
2

d∑
l=1

(
x li − x lj

ρl

)2
 η,

ρ1, . . . , ρd ∈ R (3)

is the most popular kernel assuming that the underlying
function is smooth and infinitely differentiable.

In the case of insulation degradation, long-term exposure to
elevated temperatures triggers a series of chemical reactions
within the insulation material. The rate of oxidation can be
roughly described as a first-order chemical reaction with the
reaction rate following the Arrhenius rate law, Eq. (1), and
the chosen kernel should be able to mimic this exponential
decay [35]. In this case, one limitation of the SE kernel is
leading to over-smoothing in cases where the degradation
path has sharp changes or sudden drops. As a result, a kernel
so-called linear ordinary differential equation (LODE) is
defined, which incorporates the physical process governing
the system and underlies physical reality. Eq. (4) expresses
insulation degradation effectively through

K
(
xi, xj

)
= σ 2exp

(
−0.5(xi + xj)/22

)
(4)

with hyper-parameters σ 2 scaling posterior covariance which
can be set to 1whenwe are only interested in finding themean
value for the sake of simplicity, and 2 = I · θ with θi > 0 as
the length-scale parameters for each dimension i, and identity
matrix I .
To emphasize how the choice of kernel affects the model’s

behavior, Fig. 2 illustrates different samples of an exemplary
random process using different kernels.

FIGURE 2. The effect of choosing different kernels on the prior function
distribution of the Gaussian process. Left is SE kernel (Eq. (3)). Right is
LODE (Eq. (4)) in a one-dimensional input space. Each plot includes
10 samples of the random process meaning each line defines one sample
of the stochastic process. The distribution of these functions reflects the
GP’s belief about the underlying process before any data is observed,
with variability controlled by the kernel’s length-scale parameter.

In Fig. 2, each kernel brings distinct characteristics to
the model, impacting how well it captures the underlying
dynamics of the process. For example, SE kernel might
introduce unnecessary fluctuations or smooth the process
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in a way that deviates from the actual behavior, while
LODE kernel might better reflect the process’s true nature,
such as capturing an exponential decay. However, Matern
kernel is a generalization of the SE kernel, controlled by a
smoothness parameter (ν). It can model rougher functions by
adjusting ν to model more irregular or sudden changes. But,
this smoothness parameter requires careful tuning to match
the characteristics of degradation process.

Equation (2), determined by the covariance kernel, K , and
the mean function, µ, is referred to as a prior probability
density function (PDF) for the GP.

By introducing the actual observation vector, y =

[y(x1), y(x2), . . . , y(xN )]T , disturbed by the Gaussian noise
with covariance σ 2, the probability of observing data y, can
be expressed as

p (y|X , f ) = N
(
y; f , σ 2IN

)
σ ∈ R (5)

where IN is the the N × N identity matrix. The parameters
in the covariance kernel function of a GP are referred to as
hyper-parameters of the GP, and θSE = [η, ρ1, . . . , ρd , σ ]
is defined as the hyper-parameter vector for the squared
exponential kernel. In general, finding the best hyper-
parameters to fitting the data is an important step of GPR
known as training.

MLE offers a solution to find optimized values of the
hyper-parameters in terms of themost likely parameters given
the observed data. By assuming a GP with a zero-mean prior,
the log-likelihood function can be expressed as

log p (y|X , f ) = −
1
2
yT
(
K (X ,X ) + σ 2IN

)−1
y

−
1
2
log

∣∣∣K (X ,X ) + σ 2IN
∣∣∣− N

2
log 2π.

(6)

Then, equation (6) can be optimized to give the most likely
values of the hyper-parameters given data.

Once the hyper-parameters of the GPR have been chosen,
the posterior of the GP is given by Bayes’ rule as

p (f |X , y, θ) =
p (f |X , θ) p (y|X , f , θ)

p (y|X , θ)
. (7)

Given (2) and (5), the prediction, f̂ , of a GPR at a new point,
x∗, can be calculated as

p
(
f̂ |y,X , x∗, θ

)
= N

(
µ̂(x∗), ν̂(x∗)

)
, (8)

where

µ̂(x∗) = K (x∗,X )
(
K (X ,X ) + σ 2IN

)−1
y,

ν̂(x∗) = K (x∗, x∗)

− K (x∗, x∗)
(
K (X ,X ) + σ 2IN

)−1 [
K (x∗,X )

]T
.

(9)

It should be noted that µ̂(x∗) of this Gaussian posterior is
the expected value of the predicted function value f̂ at x∗,
and ν̂(x∗) is the estimated prediction variance of the same
quantity.

III. MODEL CONVERSION FROM ACCELERATED STRESS
LEVEL TO WORKING STRESS LEVEL
To achieve a general degradation model by taking the
estimated model using GPR and ADT data, an acceleration
factor is defined [36]. The relationship between the model
parameters and the accelerated stress level is derived by this
factor. The acceleration factor can be expressed as

A12 =
θ1

θ2
(10)

where θ1 and θ2 are hyper-parameters at stress levels 1 and 2
respectively. In the case that temperature stress is the
main stress affecting the degradation process, the Arrhenius
model is commonly adopted to describe the relationship
between temperature stress and the degradation model
parameters [26].

According to the estimated degradation path through
GPR, higher stress levels result in decreasing the correla-
tion between observations as the time gap between them
increases. In other words, the degradation rate of correlation
with time increases as the stress level increases. Referring to
GPR, the length scale parameter controls how quickly the
correlation between observations degrades with time. This
causes the length scale parameter to decrease with increasing
stress levels.

In other words, the activation energy (Ea) in the Arrhenius
equation represents the energy barrier for degradation pro-
cesses in the insulationmaterial. The temperature dependence
of the length-scale parameter reflects how this energy
barrier influences the spatial correlations and smoothness
of degradation patterns observed over time. Based on these
conditions, θ1 can be defined as:

θ1 = M · exp
(
Ea
kT1

)
(11)

where T1 is the temperature accelerated stress level expressed
in Kelvin, M is a constant related to the degradation rate
in this stress level, Ea and k represent the activation energy
and the Boltzmann constant (k = 8.6171 × 10−5eV/K )
respectively. Now, the acceleration factor in (10) can be
reformulated as

A12 =
θ1

θ2
= exp

[
Ea
k

(1/T1 − 1/T2)
]

(12)

in which Ea/k needs to be estimated using ADT data sets.
Then, hyper-parameters at the normal working stress level,
θn at Tn, can be derived as

θn = θ1 · exp
[
Ea
k

(
1
Tn

−
1
T1

)]
(13)

IV. ESTIMATING REMAINING USEFUL LIFE (RUL)
Following the training phase, wherein the GPR model is
calibrated using historical data on insulation degradation,
predictions are extrapolated into the future to encompass
the extended lifetime. The critical task of determining
the temporal intersection where degradation surpasses a
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predefined threshold is accomplished through a systematic
iterative procedure.

Specifically, this involved scanning through the predicted
degradation trajectory to identify the initial instance where
the estimated degradation level exceeds the pre-established
threshold. This approach is recognized as the first hitting time
(FHT) concept and expressed as

LT = inf {t : µ(t) ≥ Threshold} ,

where Threshold denotes the predefined degradation thresh-
old value. Although in GPR the degradation increments are
normally distributed, the cumulative process of reaching the
Threshold leads to an inverse Gaussian distribution as it is
influenced by the accumulated uncertainty over time. The
probability density function (PDF) of the insulation lifetime
can be approximated using the µ̂(x∗) and ν̂(x∗) from (9) as

f (t|µ̂, ν̂) =

√
λ

2π t3
exp

(
−λ

(
t − µ̂

)2
2t ν̂2

)
, (14)

in which, λ =
µ3

ν2
defines the shape parameter in the inverse

Gaussian distribution. However, it’s crucial to consider the
limitations of extrapolating GPR predictions beyond the
training data range. Fig. 3 clearly describe the purpose and
the main idea behind the process of estimating insulation
degradation using GPR.

FIGURE 3. Flowchart for estimating insulation degradation and remaining
useful lifetime using GPR.

V. SIMULATION RESULTS
Experimental results in different literature illustrate that
insulation degradation follows an exponential trend under
thermal aging [37], [38]. This fact is the key to choose the
kernel function, which mainly defines the local and in some
cases global features of the approximated function.

We are grateful to Prof. Kai Wang for generously sharing
their dataset on the insulation degradation monitoring [33].
This data was instrumental in allowing us to validate the
simulation results through the experimental data. In these
ADTs, the outer radius of a magnet wire (see [33] for the
insulation information) is measured after each accelerating
cycle, and ten cycles of the ADTs are carried out under the
accelerated aging temperature of 210◦C, 220◦C, and 230◦C
respectively.

To validate the results, the estimated GPR model and its
corresponding measured data are drawn under three different
thermal stresses in Fig. 4, Fig. 5, and Fig. 6.

FIGURE 4. Experimental thermal aging data and corresponding GPR
approximation at 210◦C.

FIGURE 5. Experimental thermal aging data and corresponding GPR
approximation at 220◦C.

To find the optimal value for kernel hyper-parameter, MLE
is employed to find θ in (4) using ADT data, and then (13) is
adopted to calculate θ at working condition. Fig. 7 shows the
results based on the fact that below a threshold (e.g. 180◦C
for tested insulation in these experiments), no thermal aging
will occur [39].
Physically, the decrease in the length-scale parameter

with increasing temperature indicates that the degradation
processes in the insulation material become more active
or accelerated at higher temperatures. This could be due
to various factors, such as increased molecular mobility,
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FIGURE 6. Experimental thermal aging data and corresponding GPR
approximation at 230◦C.

FIGURE 7. LODE hyper-parameter, θ , estimation with respect to different
temperature to derive it at working stress level.

enhanced chemical reactions, or higher rates of diffusion of
reactive species within the material. To prove this, if a θ is
chosen from Fig. 7 at a higher temperature (e.g. 250◦C),
a more severe degradation is expected during the aging time,
and Fig. 8 shows how the insulation thickness changes when
it is exposed to 250◦C .

FIGURE 8. Comparing insulation thickness estimation using calculated
hyper-parameter at 250◦C to other thermal stress levels.

Additionally, to assess the estimation accuracy at each
thermal stress, ADT data is divided into training sets to
train the GPR model, and validation sets to evaluate how

well the model generalizes to new, unseen data. To do so,
ADT data for each thermal stress is divided into 80% for
training and 20% for validation, ensuring that the model
has sufficient data to learn from while providing a robust
and representative validation set for performance evaluation.
Based on the k-fold cross-validation concept, each data set is
divided into 5 subsets, and the model is trained 5 times, each
time using 5-1 folds for training and the remaining fold for
validation. we can choose any 2 cycles for validation and the
remaining 8 cycles for training. There are 45 possible ways
to select 2 cycles out of 10 for validation. Each combination
gives a different training and validation set. Here, we combine
cycles 1 and 2 as the first subset, numbers 3 and 4 as the
second subset, numbers 5 and 6 as the third subset, numbers 7
and 8 as the fourth subset, and 9 and 10 as the fifth subset.
Then, by defining the relative estimation error (Er ) by

Er =
|deges − degex |

|degex |
, (15)

where deges and degex are the GPR estimated mean and
measured degradation respectively, the accuracy is evaluated
as shown in Fig. 9. Furthermore, Fig. 10 depicts the relative
error of degradation estimation, in one of the chosen cases
where the fifth subset is chosen for validation. Also, this
plot depicts consistent statistical properties in estimation
error throughout the different stress levels meaning that the
temperature-dependent model to derive hyper-parameter, θ ,
is sufficient and other factors likely have minimal influence
since there’s no clear trend in the error signal beyond
temperature’s effect.

Now, to illustrate the usefulness of the proposed method,
the results of adopting GPR in degradation estimation in
insulation systems are compared to the Wiener-process-
based model since it is commonly used to model degrada-
tion processes. Mathematically, a nonlinear Wiener-process
degradation model can be described by

D(t) = D(0) + λ(t) + σBB(t), (16)

where D(·) denotes the degradation path, D(0) is the initial
value of the degradation status, λ(t) is a nonlinear function
providing the drift coefficients representing the average rate
of degradation over time, σB is the diffusion coefficient
representing the volatility or uncertainty in the degradation
process, and B(t) is a standard Brownian motion term
defining the random fluctuations. This study uses power
function λ(t) = αtβ , which is widely used when the
degradation process exhibits a nonlinear trend over time.
Here,MLE is employed to find the optimal values of α, and β.
As can be seen in Fig. 9, when the third subset is chosen

for GPR training, the estimation error is higher than other
cases (the worst case scenario). Then, Table 2 reports the
degradation estimation error at given thermal stresses using
GPR (at the worst case scenario according to Eq. (15)),
the results of nonlinear Wiener process (NWP) model, and
exponential curve fitting (ECF). In case of NWP and ECF,
the error is calculated as the difference between the predicted
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FIGURE 9. Relative error distribution across different validation subsets
under 210◦C, 220◦C, 230◦C.

FIGURE 10. Relative error with the last two cycles as validation under
210◦C, 220◦C, 230◦C.

insulation thickness and the observed thickness and then the
reported error in Table 2 is the average of all the errors
calculated at each sample time within that stress level.

TABLE 2. Degradation estimation errors: GPR vs. Nonlinear wiener
Process and exponential curve fitting as a deterministic model.

As demonstrated in the table, GPR consistently results
in lower prediction errors compared to ECF and NWP.
An important distinction is that GPR provides not only a
mean prediction but also confidence intervals, reflecting the
uncertainty in the estimated thickness. Table 2, however,
focuses on the mean values for simplicity, but the uncertainty
provided by GPR gives more information about the reliability
of each prediction.

Additionally, the GPR estimation (at the worst case
scenario) compared to the results reported in [33] obtained
from a commercial solver tool is roughly 71 times more
accurate.

As stated in Section IV, the RUL is defined as the hitting
time when the insulation thickness crosses a pre-defined

threshold as shown in Fig. 11 in which the RUL is defined
when estimated degradation path at working condition,
e.g. 26◦C, exceeds the threshold. Here, 95% confidence
interval means that the expected lifetime with 95% likelihood
should fall within tA and tB and can be modeled using an
inverse Gaussian distribution. It is worth mentioning that the
decrement in degradation process is not deterministic and the
GPR estimated mean values vary, especially in response to
external factors such as increasing thermal stress. Then, since
the degradation path is probabilistic, the rate of degradation
might fluctuate within the uncertainty bounds, even though
the mean path might appear smooth.

FIGURE 11. Degradation estimation at working stress level with 95%
confidence interval.

According to Equation (14), Fig. 12 shows the distribution
of estimated lifetime as an inverse Gaussian distribution
meaning that the estimated lifetime is distributed within ta
and tb, with the spread determined by the standard deviation
derived fromGPR. It dynamically portrays how the estimated
RUL evolves over time under working conditions.

FIGURE 12. The estimated RUL and the corresponding PDF over time for
the insulation system.

Fig. 12 displays at lower monitored times, the PDF has
a wider range of possible RUL values, indicating greater
uncertainty. As the monitored time increases, the distribution
narrows which means that the estimated RUL converges
towards the mean value and it reflects reduced uncertainty
in the RUL estimation.
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VI. CONCLUSION
This paper presented a novel approach for estimating the
RUL of insulation using GPR and the first-hitting time
concept. We employed GPR to model the degradation path
of the insulation based on accelerated degradation data
under various thermal stresses. The maximum likelihood
estimation technique facilitated the identification of optimal
hyper-parameters for GPR. Then, incorporating theArrhenius
behavior of the length-scale parameter into the GPR model
provided the estimation of hyper-parameters under normal
working stress conditions. This approach resulted in the cre-
ation of a reliable data-driven RUL model for the insulation.

A significant advantage of this method lies in its utilization
of GPR. GPR excels at handling uncertainties inherent in
degradation processes without requiring extensive compu-
tational effort. Unlike traditional regression techniques that
provide only a single point estimate, GPR offers probabilistic
predictions. It generates a prediction along with a confidence
interval, indicating the range within which the true value
is likely to lie. This provides valuable information about
the inherent variability and uncertainty associated with the
degradation process. GPR’s flexibility extends to situations
where the noise distribution is unknown which is a common
challenge in real-world degradation data with complex noise
characteristics.

Our results demonstrate a substantial improvement in
estimation accuracy, exceeding previously reported methods
by a factor of four at the worst case scenario compared to
the Wiener-process-based model. This enhanced accuracy
translates to significant benefits for various stakeholders.
By enabling more precise predictions of insulation failure,
this approach empowers proactive maintenance strategies,
minimizing downtime and associated costs. Additionally,
it fosters improved safety measures by preventing
catastrophic failures.
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