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ABSTRACT With the increasing importance of data privacy protection, various privacy-preserving machine
learning methods have been proposed. In the clustering domain, various algorithms with a federated learning
framework (i.e., federated clustering) have been actively studied and showed high clustering performance
while preserving data privacy. However, most of the base clusterers (i.e., clustering algorithms) used in
existing federated clustering algorithms need to specify the number of clusters in advance. These algorithms,
therefore, are unable to deal with data whose distributions are unknown or continually changing. To tackle
this problem, this paper proposes a privacy-preserving continual federated clustering algorithm. In the
proposed algorithm, an adaptive resonance theory-based clustering algorithm capable of continual learning
is used as a base clusterer. Therefore, the proposed algorithm inherits the ability of continual learning.
Experimental results with synthetic and real-world datasets show that the proposed algorithm has superior
clustering performance to state-of-the-art federated clustering algorithms while realizing data privacy
protection and continual learning ability. The source code is available at https://github.com/Masuyama-
lab/FCAC.

INDEX TERMS Self-organizing feature maps, adaptive resonance theory, continual learning, federated
clustering, local ϵ-differential privacy.

I. INTRODUCTION
In a society with advanced information technology, privacy
protection techniques in data utilization are becoming
increasingly important. Various methods have been proposed
to protect data privacy. Secure computation and secret
sharing are widely used as cryptographic methods [1].
These methods realize the sharing of information while
preserving anonymity and confidentiality by using encryp-
tion keys. As mathematical-based methods, anonymization
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improves data privacy by converting or removing personally
identifiable information [2]. Differential privacy adds noise
to training data or outputs of a trained model. This is
to make it difficult to determine whether a particular
individual exists in the training data [3], [4]. Specifi-
cally, the approach that adds noise to the training data
is called local differential privacy, while the approach
that adds noise to the output of the trained model is
called global differential privacy. In the machine learning
domain, federated learning is known as a privacy-preserving
distributed learning method [5]. Federated learning performs
learning from distributed data across multiple clients without
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aggregating the data on a single server. The parameters of
a trained model in each client are then consolidated on
a model in a server. In addition, federated learning can
further improve data privacy by applying differential privacy
[6], [7].

In recent years, the importance of data privacy has also
increased in the clustering domain [2], [8], [9]. Among
privacy-preserving clustering algorithms, federated cluster-
ing (i.e., an clustering algorithm applies a federated learning
framework) has attracted much attention because of its use-
fulness in practical applications [10]. As a base clusterer (i.e.,
a clustering algorithm) of federated clustering, in general,
centroid-based clustering algorithms such as k-means, fuzzy
c-means, and Gaussian Mixture Model (GMM) are often
used [10], [11], [12], [13]. Although centroid-based cluster-
ing algorithms are simple and highly applicable, these algo-
rithms need to specify the number of centroids in advance.
This drawback makes it difficult to apply these algorithms
to data whose distributions are unknown and/or continually
changing.

Among clustering algorithms, Adaptive Resonance Theory
(ART)-based approaches are capable of continual learning
without catastrophic forgetting by adaptively generating
centroids (nodes) depending on the distributions of given
data [14]. In particular, ART-based clustering algorithms
with Correntropy-Induced Metric (CIM) [15] as a similarity
measure show faster and more stable self-organizing ability
than other clustering algorithms [16], [17], [18], [19],
[20], [21]. In general, ART-based clustering algorithms
generate a number of representative points (nodes) from
given data. Thus, data privacy is more or less considered
since the given data itself is not retained. However, the
ability to protect data privacy is insufficient because no data
privacy protection techniques are explicitly applied to those
algorithms.

Recent growth of Internet of Things (IoT) technology
has enabled the creation and acquisition of a wide variety
of data that are generated in a distributed and continual
manner. Such data are regarded as important economic
resources that can be used for marketing, finance, and IoT
solution development. In the rapid utilization of economic
resources, a technique that satisfies privacy-preserving,
no prior assumptions, and efficient continual learning is
highly valuable. However, clustering algorithms that simul-
taneously realize privacy-preserving and efficient continual
learning in situations where data are distributed have not been
adequately discussed.

With the motivation of the above discussions, this paper
proposes a new privacy-preserving federated clustering
algorithm, called Federated Clustering via ART-based Clus-
tering (FCAC), which applies local differential privacy to
an ART-based clustering algorithm in a federated learn-
ing framework. FCAC performs clustering for distributed
training data across multiple clients without aggregating
the data on a single server while preserving data privacy.

In FCAC, CIM-based ART with Edge (CAE) [21] after
a minor modification, which is called CAE for Federated
Clustering (CAEFC), is used as a base clusterer for a server.
Although the original CAE is a state-of-the-art parameter-
free ART-based topological clustering algorithm, CAE often
generates a large number of nodes. Therefore, we introduce
a minor modification for reducing the number of generated
nodes. A base clusterer for each client of FCAC is CAEFC
without topology (i.e., edges), called CA+, which is first
introduced in this paper. Since a trained model of a server is a
clustering result, the server is required to continually generate
well-separated clusters. In contrast, each client is required
to generate a number of nodes that can continually and
appropriately approximate the distributions of the training
data in the client. This is because the generated nodes
in each client are utilized as training data for the server.
Therefore, we introduce CA+ as the base clusterer for each
client, which only generates nodes from given data in each
client. Thanks to CAEFC and CA+, FCAC can adaptively,
efficiently, and continually generate topological networks
from the given data in each client. Note that continual
learning is generally categorized into three scenarios: domain
incremental learning, task incremental learning, and class
incremental learning [22], [23]. Since CAEFC and CA+ are
capable of class incremental learning, FCAC inherits the
ability of class incremental learning.

The contributions of this paper are summarized as follows:
(I) FCAC is proposed as a new privacy-preserving

federated clustering algorithm capable of continual
learning. FCAC explicitly considers the protection of
data privacy by applying local differential privacy
a federated learning framework. To the best of our
knowledge, FCAC is the first ART-based privacy-
preserving federated clustering algorithm.

(II) A new clustering algorithm called CA+, which is a
variant of CAEFC, is introduced. The self-organizing
ability of CA+ satisfies the demand of a client in
FCAC, i.e., generated nodes by CA+ can continually
and appropriately approximate the distributions of the
training data in each client.

(III) Empirical studies show that FCAC has superior clus-
tering performance to state-of-the-art algorithms while
protecting data privacy and maintaining continual
learning ability.

The paper is organized as follows. Section II presents
a literature review for growing self-organizing clustering
and privacy-preserving clustering algorithms. Section III
presents the preliminary knowledge for CAE. Section IV
explains the learning procedure of the proposed FCAC
algorithm in detail. Section V presents extensive simulation
experiments to evaluate its clustering performance by using
synthetic and real-world datasets. Section VIII concludes this
paper.

Table 1 summarizes the main notations used in FCAC and
related functions/algorithms.
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TABLE 1. Summary of notations.

II. LITERATURE REVIEW
A. GROWING SELF-ORGANIZING CLUSTERING
ALGORITHMS
Clustering is useful in all fields that deal with data. Many
clustering algorithms have been proposed [24], [25], [26],
[27], [28] and applied to a variety of applications [29], [30],
[31], [32], [33], [34], [35], [36]. Although many clustering
algorithms have their success, some algorithms have a well-
known drawback, namely the number of clusters/partitions
has to be pre-specified. To solve this problem, growing
self-organizing clustering algorithms such as GrowingNeural
Gas (GNG) [37] and Adjusted Self-Organizing Incremental
Neural Network (ASOINN) [38] have been proposed. GNG
and ASOINN adaptively generate topological networks (i.e.,
nodes and edges) for representing the distributions of given
data. SOINN+ [39] is an ASOINN-based algorithm that
can handle arbitrary data distributions in noisy data streams
without any pre-defined parameters. However, since these

algorithms permanently insert new nodes and edges for
learning new information, there is a possibility of forgetting
previously learned information (i.e., catastrophic forgetting).
As a GNG-based algorithm, Grow When Required (GWR)
[40] successfully avoids catastrophic forgetting by adding a
node only when the state of the current network does not
sufficiently match a new instance. One common problem
of GWR and SOINN+ is that as the number of nodes in
the topological network increases, the cost of calculating a
threshold for each node increases, and therefore the learning
efficiency decreases.

One promising approach for avoiding catastrophic for-
getting is an ART-based algorithm [16], [17], [18], [41],
[42]. In particular, algorithms that use CIM as a similarity
measure have shown superior clustering performance to
other clustering algorithms [14], [19], [43], [44]. A well-
known drawback of ART-based algorithms is the specifi-
cation of significantly data-dependent parameters such as
a similarity threshold (i.e., a vigilance parameter). Several
studies have proposed to avoid and/or suppress the effect
of the above-mentioned drawback by using multiple vig-
ilance values [45], by specifying the vigilance parameter
indirectly [46], [47], and by adjusting some data-dependent
parameters during the learning process [48]. A state-of-the-
art parameter-free algorithm is CAE [21]. In CAE, a similar-
ity threshold is calculated based on pairwise similarities by
using well-diversified generated nodes. The diversified nodes
are selected by a Determinantal Point Processes (DPP)-based
criterion [49], [50] incorporating CIM.

B. PRIVACY-PRESERVING CLUSTERING ALGORITHMS
The protection of data privacy is generally realized by
cryptograph-, mathematical-, and machine learning-based
methods. Secure computation and secret sharing are widely
used as cryptograph-based methods [1], [51], [52]. Secure
computation is also known as secure multi-party computa-
tion, which allows multiple parties to compute a function
over their data while keeping those data private. Secret
sharing divides sensitive data into multiple parts to preserve
data privacy. In general, secure computation is often time-
consuming [53], while secret sharing needs to process the
creation, distribution, and combination of secret shares [54].

As mathematical-based methods, anonymization provides
a simple and efficient data privacy protection mechanism [2].
One problem with anonymization is that the original data
can be estimated by combining it with specific information.
Differential privacy provides mathematically-defined strict
privacy protection [4]. Differential privacy protects sensitive
information in training data by adding noise to the training
data or the output of a trained model. In the clustering
domain, local differential privacy is often applied thanks to its
simple mechanism and mathematical guarantees for privacy
protection [55], [56], [57], [58].

One recent successful machine learning-based method
is federated learning [5], [7]. In the clustering domain,
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an algorithm with a federated learning framework is called
federated clustering [10], [11], [59], [60]. k-FED [10] is a
communication-efficient federated clustering algorithm that
requires one-shot communication from clients to a server.
In k-FED, each client performs k-means on local data and
sends clustering results (i.e., centroids) to the server. The
server performs k-means on the centroids sent from all
clients. Federated Fuzzy c-Means (FedFCM) [12] is an
algorithm similar to k-FED that utilizes fuzzy c-means [61].
Machine Unlearning Federated Clustering (MUFC) [62]
introduced a novel sparse compressed multi-set aggregation
scheme that satisfies a new privacy criterion. In MUFC,
a server only receives the information on the centroids and
the number of data points related to each centroid from each
client. Thus, the server has no information on each data point.

Most of base clusterers used in existing federated
clustering (and also cryptograph- and mathematical-based
methods) are centroid-based algorithms such as GMM [13],
k-means [10], [62], [63], [64], [65], fuzzy c-means [11],
[12], and spectral clustering [66]. Although centroid-based
clustering algorithms are simple and highly applicable, these
algorithms require the number of clusters to be specified in
advance. In a society with rapidly growing and diverse data,
it is difficult to know the true number of clusters of the data
a priori. Moreover, there is a possibility that the distributions
of data and the number of clusters are frequently changed
dynamically. The above-mentioned difficulty in each existing
method emphasizes the significance of developing federated
clustering algorithms capable of continual learning.

III. PRELIMINARY KNOWLEDGE
This section provides preliminary knowledge related to
FCAC. First, local differential privacy is explained. Next,
a similarity measure and a kernel density estimator used in
CAE are explained. Last, the learning procedure of CAE is
explained in detail.

A. LOCAL DIFFERENTIAL PRIVACY
Local differential privacy includes two approaches: random-
ized response and adding noise to the data itself [3], [4], [67].
In general, the former is applied to discrete values, while
the latter is applied to continuous values. Since FCAC is
a clustering algorithm, the latter approach is applied, i.e.,
adding noise to the data itself.

The definition of local differential privacy is as follows.
An algorithm 9 satisfies ϵ-differential privacy (ϵ > 0) if and
only if for any data points x and x′ (x, x′ ∈ Rd ), the following
relation holds:

Pr [9(x) = y] ≤ eϵPr
[
9(x′) = y

]
, ∀y ∈ Range(9), (1)

where Pr[·] is a probability, Range(9) is every possible output
of the algorithm 9, ad ϵ is a privacy budget. In general,
ϵ = 0 means perfect privacy, while ϵ = ∞ means no privacy
guarantee.

In this paper, local ϵ-differential privacy is realized by
using a Laplacemechanism [3].More specifically, the inverse

cumulative density function of Laplace distribution [68] is
used. Suppose that a set of data points Xc = {x1, x2, . . . , xN }
is given, where xi = (xi,1, xi,2, . . . , xi,d ). A method of adding
a noise to the jth dimension of a data point xi is as follows:

x ′i,j = xi,j + L(vi,j) (j = 1, 2, . . . , d), (2)

where

L(vi,j) = µ−
1fj
ϵ

sgn(vi,j) ln(1− 2|vi,j|), (3)

here, vi,j is the random variable sampled from a uniform
distribution U (−0.5, 0.5), sgn(·) is a signum function, ln(·)
is a natural logarithm function, µ is the mean of a Laplace
distribution, and 1fj is a local sensitivity of differential
privacy for xi,j.

The local sensitivity 1fj is defined as follows:

1fj = max
n=1,2,...,N

(xn,j)− min
n=1,2,...,N

(xn,j). (4)

B. CORRENTROPY AND CORRENTROPY-INDUCED
METRIC
Correntropy [15] provides a generalized similarity measure
between two arbitrary data points x = (x1, x2, . . . , xd ) and
y = (y1, y2, . . . , yd ) as follows:

Ĉ(x, y, σ ) =
1
d

d∑
i=1

κσ (xi, yi) . (5)

where κσ (·) denotes a positive definite kernel with a
bandwidth σ . In this paper, we use the following Gaussian
kernel in the correntropy:

κσ (xi, yi) = exp

[
−

(xi − yi)2

2σ 2

]
. (6)

A nonlinear metric called CIM is derived from the
correntropy [15]. CIM quantifies the similarity between two
data points x and y as follows:

CIM (x, y, σ ) =
[
1− Ĉ(x, y, σ )

] 1
2
, (7)

here, since the Gaussian kernel in (6) does not have the
coefficient 1

√
2πσ

, the range of CIM is limited to [0, 1].

C. KERNEL DENSITY ESTIMATOR
In general, the bandwidth of a kernel function can be
estimated from λ instances belonging to a certain distribu-
tion [69], which is defined as follows:

6 = U (Fν)0λ−
1

2ν+d , (8)

U (Fν) =

(
πd/22d+ν−1(ν!)2R(F)d

νκ2
ν (F)

[
(2ν)!! + (d − 1)(ν!!)2

]) 1
2ν+d

, (9)

where 0 denotes a rescale operator (d-dimensional vector)
which is defined by a standard deviation of each of the d
attributes among λ instances, ν is the order of a kernel, the
single factorial of ν is calculated by the product of integer
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numbers from 1 to ν, the double factorial notation is defined
as (2ν)!! = (2ν − 1) · 5 · 3 · 1 (commonly known as the
odd factorial), R(F) is a roughness function, and κν(F) is the
moment of a kernel. The details of the derivation of (8) and (9)
can be found in [69]. In this paper, we use the Gaussian
kernel for CIM. Therefore, ν = 2, R(F) = (2

√
π )−1, and

κ2
ν (F) = 1. Then, (9) is rewritten as follows:

H =
(

4
2+ d

) 1
4+d

0λ−
1

4+d . (10)

Equation (10) is known as the Silverman’s rule [70]. Here,
H contains the bandwidth of a kernel function in CIM.

D. CIM-BASED ART WITH EDGE: CAE
CAE is a parameter-free ART-based topological clustering
algorithm capable of continual learning [21]. In general,
ART-based algorithms have a data-dependent parameter such
as a vigilance parameter (similarity threshold). In CAE,
a similarity threshold is calculated based on a pairwise
similarities among a certain number of nodes. The sufficient
number of nodes for calculating the similarity threshold is
estimated by a Determinantal Point Processes (DPP)-based
criterion [49], [50]. In addition, an edge deletion threshold is
estimated based on the age of each edge, which is inspired
by the edge deletion mechanism of SOINN+ [39]. Empirical
studies with the synthetic and real-world datasets showed that
the clustering performance of CAE is superior to state-of-the-
art parameter-free/fixed algorithms [21].

In CAE, the value of the similarity threshold has a
significant impact on the clustering performance. In [21],
the validity of the estimated similarity threshold is exper-
imentally evaluated, and it has been confirmed that CAE
shows high clustering performance on various datasets in
both stationary and non-stationary environments by using the
estimated threshold. Please refer to Section V-D in [21] for
further information.

The following sections provide the learning processes of
CAE step by step. Algorithm 1 summarizes the entire learning
procedure of CAE.

1) ESTIMATION OF DIVERSITY OF NODES
In CAE, a similarity threshold is defined by a pairwise
similarities among nodes (i.e., Y). Therefore, the diversity of
nodes for calculating the similarity threshold is important to
obtain an appropriate threshold value, which leads to good
clustering performance.

The diversity D of the active node set A is estimated by a
DPP-based criterion [49], [50] incorporating CIM as follows:

D = det(R), (11)

where

R =
[
exp

(
1− CIM(yi, yj, σ )

)]
1≤i,j≤|A| . (12)

Here, det(R) is the determinant of the matrix R, and R
is a matrix of pairwise similarities between nodes in A.

A bandwidth σ for CIM is calculated fromH in (10) by using
the node set A. As in (10), H contains the bandwidth of a
kernel function in CIM. In this paper, the median ofH is used
as the bandwidth of the Gaussian kernel in CIM, i.e.,

σ = median (H) . (13)

In general, the diversityD = 0 means that the node setA is
not diverse while D > 0 means A is diverse. In other words,
the value of D becomes close to zero when a new node is
created around the existing nodes.

In CAE, the value of λ is set as the two times of the
number of nodes (i.e., 2|A|) when the diversity D satisfies
D < 1.0e−6. If the number of nodes becomes smaller than
λ/2 after a node deletion process, λ is calculated again.
As shown in a line 3 of Algorithm 1, the first λ/2 data

points (i.e., {x1, x2, . . . xλ/2}) directly become nodes, i.e.,
Y = {y1, y2, . . . , yλ/2} where yk = xk (k = 1, 2, . . . ,λ/2).
In addition, the bandwidth for the Gaussian kernel in CIM
is assigned to each node, i.e., S = {σ1, σ2, . . . , σλ/2} where
σ1 = σ2 = · · · = σλ/2.

The value of λ is automatically updated in the proposed
CAE algorithm. In an active node set A, λ nodes are stored.
When a new node is added to A, an old node is removed to
maintain the active node set size as λ. The addition of a new
node and the removal of an old node are explained later.

2) CALCULATION OF SIMILARITY THRESHOLD
The similarity threshold Vthreshold is calculated by the average
of the minimum pairwise CIM values in the active node set
A as follows:

Vthreshold =
1
λ

∑
yi∈A

min
yj∈A\yi

[
CIM

(
yi, yj,mean(S)

)]
, (14)

where S is a set of bandwidths of the Gaussian kernel in CIM
for A. The bandwidth of each node in A is calculated by
using (10) and (13) when a new node is created.

3) SELECTION OF WINNER NODES
During the learning process of CAE, every time a data point
x is given, two nodes that have a similar state to x are selected
from Y , namely the 1st winner node ys1 and the 2nd winner
node ys2 . The winner nodes are determined based on the value
of CIM as follows:

s1 = arg min
yi∈Y

[CIM (x, yi,mean(S))] , (15)

s2 = arg min
yi∈Y\{ys1 }

[CIM (x, yi,mean(S))] , (16)

where s1 and s2 denote the indexes of the 1st and 2nd
winner nodes, respectively. S = {σ1, σ2, . . . , σ|Y |} is a set
of bandwidths of the Gaussian kernel in CIM corresponding
to a node set Y .
Note that the 1st winner node ys1 becomes a new active

node, and the oldest node in the active node set A (i.e., λ
nodes in Y) is replaced by the new one.

139696 VOLUME 12, 2024



N. Masuyama et al.: Privacy-Preserving Continual Federated Clustering via ART

Algorithm 1 Learning Procedure of CAE
Input:
a set of data points Xc
Output:
a set of nodes Y
a set of winning countsM
a set of ages of edges E

1 while existing data points to be trained do
2 Input a data point x (x ∈ Xc).
3 if the number of active nodes λ is not defined or the number of nodes |Y| is smaller than λ/2 or a similarity threshold Vthreshold

is not calculated then
4 Create a node as y|Y|+1 = x, and update a set of nodes as Y ← Y ∪ {y|Y|+1}.
5 Define a winning count as M|Y|+1 = 1, and update a set of winning counts asM←M ∪ {M|Y|+1}.
6 Update a set of active nodes as A← A ∪ {y|Y|+1}.
7 Calculate σ|Y|+1 with a set of active nodes A, and update a set of bandwidths S ← S ∪ {σ|Y|+1}. // (10),(13)

/* Estimation of Diversity of Nodes */
8 Calculate a pairwise similarity matrix R. // (12)
9 Calculate the diversity as D = det(R). // (11)
10 if D < 1.0e−6 then
11 Calculate the number of active nodes as λ = 2|A|.

/* Calculation of Similarity Threshold */
12 Calculate a similarity threshold Vthreshold. // (14)
13 else
14 Set the number of active nodes as λ = ∞.

15 else
16 Select the 1st and 2nd nearest nodes from x (i.e., ys1 and ys2 ) based on CIM. // (15),(16)
17 Calculate similarities between x and ys1 , ys2 (i.e., Vs1 and Vs2 ). // (17),(18)

/* Vigilance Test and Creation/Update of Nodes and Edges */
18 if Vthreshold < Vs1 then

/* Case I */
19 Create a node as y|Y|+1 = x, and update a set of nodes as Y ← Y ∪ {y|Y|+1}.
20 Define a winning count as M|Y|+1 = 1, and update a set of winning counts asM←M ∪ {M|Y|+1}.
21 Update a set of active nodes as A← A ∪ {y|Y|+1}.
22 Calculate σ|Y|+1 with a set of active nodes A, and update a set of bandwidths S ← S ∪ {σ|Y|+1}. // (10),(13)
23 else

/* Case II */
24 Update a winning count of the s1 node as Ms1 ← Ms1 + 1. // (22)
25 Update a node as ys1 ← ys1 +

1
Ms1

(x− ys1 ). // (23)

26 Update a set of active nodes as A← A ∪ {y|Y|+1}.
27 for yk ∈ Ns1 do
28 Update an age of an edge as a(ys1 , yk )← a(ys1 , yk )+ 1. // (24)

29 if Vs2 ≤ Vthreshold then
/* Case III */

30 Reset an age of an edge as a(ys1 , ys2 )← 1. // (25)
31 for yk ∈ Ns1 do
32 Update a node as yk ← yk + 1

10Mk
(x− yk ). // (26)

/* Estimation of Edge Deletion Threshold */
33 Update α← a set of ages of edges which connect to ys1 .
34 Update α0.75 ← the 75th percentile of elements in α.
35 Calculate a coefficient as athr = α0.75 + IQR(α). // (28)

36 Calculate an edge deletion threshold as amax = ᾱdel
|αdel|
|αdel|+|α|

+ athr
(
1− |αdel|
|αdel|+|α|

)
. // (27)

/* Deletion of Edges */
37 for yk ∈ Ns1 do
38 if a(ys1 , yk ) > amax then
39 Update a set of ages of deleted edges as αdel ← αdel ∪ {a(ys1 , yk )}.
40 Delete the edge between ys1 and yk .

41 if the number of presented data points is a multiple of λ then
42 Delete isolated nodes.
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4) VIGILANCE TEST
Similarities between the data point x and each of the 1st and
2nd winner nodes are defined in lines 13-14 of Algorithm 1
as follows:

Vs1 = CIM
(
x, ys1 ,mean(S)

)
, (17)

Vs2 = CIM
(
x, ys2 ,mean(S)

)
. (18)

The vigilance test classifies the relationship between the
data point x and the two winner nodes into three cases by
using the similarity threshold Vthreshold, i.e.,
• Case I

The similarity between x and the 1st winner node ys1 is
larger (i.e., less similar) than Vthreshold, namely:

Vthreshold < Vs1 ≤ Vs2 . (19)

• Case II
The similarity between x and the 1st winner node ys1 is

smaller (i.e., more similar) than Vthreshold, and the similarity
between x and the 2nd winner node ys2 is larger (i.e., less
similar) than Vthreshold, namely:

Vs1 ≤ Vthreshold < Vs2 . (20)

• Case III
The similarities between x and the 1st and 2nd winner

nodes (i.e., ys1 and ys2 ) are both smaller (i.e., more similar)
than Vthreshold, namely:

Vs1 ≤ Vs2 ≤ Vthreshold. (21)

5) CREATION/UPDATE OF NODES AND EDGES
Depending on the result of the vigilance test, a different
operation is performed.

If the data point x is classified as Case I by the vigilance test
(i.e., (19) is satisfied), a new node is created as y|Y |+1 = x,
and updated a node set as Y ← Y ∪ {y|Y |+1}. Here, the node
y|Y |+1 becomes a new active node, and the oldest node in the
active node set A (i.e., λ nodes in Y) is replaced by the new
one. In addition, a bandwidth σ|Y |+1 for y|Y |+1 is calculated
by (10) and (13) with the active node set A, and the winning
count of y|Y |+1 is initialized asM|Y |+1 = 1.
If the data point x is classified as Case II by the vigilance

test (i.e., (20) is satisfied), first, the winning count of ys1 is
updated as follows:

Ms1 ← Ms1 + 1. (22)

Then, ys1 is updated as follows:

ys1 ← ys1 +
1
Ms1

(
x− ys1

)
, (23)

here, the node ys1 becomes a new active node, and the oldest
node in the active node set A (i.e., λ nodes in Y) is replaced
by the new one.

When updating the node, the difference between x and ys1
is divided by Ms1 . Thus, the change of the node position is
smaller when Ms1 is larger. This is because the information

around the node, where data points are frequently given,
is important and should be held by the node.

The age of each edge connected to the 1st winner node ys1
is also updated as follows:

a(ys1 , yk )← a(ys1 , yk )+ 1 (yk ∈ Ns1 ), (24)

where Ns1 is a set of all neighbor nodes of the node ys1 .
If the data point x is classified as Case III by the vigilance

test (i.e., (21) is satisfied), the same operations as Case II
(i.e., (22)-(24)) are performed. In addition, if there is an edge
between ys1 and ys2 , an age of the edge is reset as follows:

a(ys1 , ys2 )← 1. (25)

In the case that there is no edge between ys1 and ys2 , a new
edge is defined with an age of the edge by (25).

After updated the edge information, the neighbor nodes of
ys1 are updated as follows:

yk ← yk +
1

10Mk
(x− yk)

(
yk ∈ Ns1

)
. (26)

Apart from the above operations in Cases I-III, the nodes
with no edges are deleted (and removed from the active node
set A) every λ data points for the noise reduction purpose
(i.e., the node deletion interval is the presentation of λ data
points), which is performed in lines 38-39 of Algorithm 1.

With respect to the active node set A, its update rules are
summarized as follows. In Case I, a new node is directly
created by the data point x and added toA. In Case II andCase
III, the updated winner node in (23) is added toA. In all cases,
the oldest active node is removed fromA. Then, in lines 38-39
of Algorithm 1, all active nodes with no edges are removed.
After this removal procedure, the number of active nodes can
be smaller than λ.

6) ESTIMATION OF EDGE DELETION THRESHOLD
CAE estimates an edge deletion threshold based on the ages
of the current edges and the deleted edges, which is inspired
by the edge deletion mechanism of SOINN+ [39].

The edge deletion threshold amax is defined as follows:

amax = ᾱdel
|αdel|

|αdel| + |α|
+ athr

(
1−

|αdel|

|αdel| + |α|

)
, (27)

where αdel is the set of ages of all the deleted edges during
the learning process, |αdel| is the number of elements in αdel,
ᾱdel is the arithmetric mean of αdel, α is the set of ages of
edges which connect to ys1 (α ⊂ E), and |α| is the number of
elements in α. The coefficient athr is defined as follows:

athr = α0.75 + IQR(α), (28)

where α0.75 is the 75th percentile of elements in α, and
IQR(α) is the interquartile range.

The edge deletion threshold amax is updated each time the
age of an edge increases, which is performed in a line 33 of
Algorithm 1.
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7) DELETION OF EDGES
If there is an edge whose age is greater than the edge deletion
threshold amax, the edge is deleted and the set of ages of
deleted edges αdel is updated, which are performed in lines
36-37 of Algorithm 1.

IV. PROPOSED ALGORITHMS
This section explains the proposed algorithms in detail: CAE
with a minor modification (i.e., CAEFC), CA+, and FCAC.

A. CAEFC
Although CAE [21] is a state-of-the-art parameter-free
ART-based topological clustering algorithm, CAE tends to
generate a large number of nodes. The main reason for this
phenomenon is that the diversity D of the node setA defined
in (11) is unlikely to be D < 1.0e−6. In other words, the
pairwise similarity matrixR defined in (12) is not appropriate
in the case where a large number of nodes is not preferable.
In CAEFC, a correntropy-based pairwise similarity matrix R
is used, which is defined as follows:

R =
[
exp

(
Ĉ(yi, yj, σ )

)]
1≤i,j≤|A|

, (29)

where Ĉ(·) is correntropy which is defined in (5).
In comparison to the definition in (12), the definition in

equation (29) tends to have a larger difference in the values
of the elements of R. As a result, the value of D is close to
zero (i.e., D < 1.0e−6) when the diversity of the node set A
is small.

The rest of the learning procedure of CAEFC is completely
the same as CAE (see Algorithm 1).

For qualitative comparison between CAE and CAEFC,
we perform a clustering task by using a simple dataset in
Fig. 1. The dataset consists of 16,000 data points generated
from a 2D Gaussian distribution (µ = (0, 0), 6 =

[1, 0; 0, 1]) and scaled to [0, 1]. Each data point is given to
CAE and CAEFC only once. Figs. 1b and 1c show the results
of the clustering task by CAE and CAEFC, respectively. Note
that in Fig. 1b, three isolated nodes are shown by different
colors. Obviously, CAE generates a large number of nodes,
while CAEFC generates a small number of nodes.

If the objective of the clustering task is efficient informa-
tion extraction, it is required to approximate a given data set
with fewer nodes. From this perspective, CAEFC is preferable
to CAE. Note that the desired number of nodes depends on
the purpose of the application and therefore CAE may be
preferable in some other cases.

B. CA+

CA+ is a variant of CAEFC, i.e., CAEFC without topology.
Thus, the majority of the learning procedure is the same
as CAEFC. The differences between CA+ and CAEFC are
summarized as follows:
• For CA+, the learning processes related to the edge
information are removed from Algorithm 1, namely lines

FIGURE 1. Clustering results for qualitative comparison of CAE, CAEFC,
and CA+. (a) The dataset consists of 16,000 data points generated from a
2D Gaussian distribution (µ = (0, 0), 6 = [1, 0; 0, 1]) and scaled to [0, 1].
(b) Clustering result of CAE. (c) Clustering result of CAEFC. (d) Clustering
result of CA+.

24-25, a line 27, and lines 30-37. As a result, the output of
CA+ is only a node set Y .

• Since all the nodes of CA+ are isolated (i.e., no node has
edges), a process for deleting isolated nodes (lines 38-39
in Algorithm 1) is removed.

• In CAEFC, the weight updating rule in (26) uses the edge
information for defining the neighbor nodes Ns1 (see also
lines 28-29 in Algorithm 1). Since CA+ has no edges,
CA+ updates only the 2nd winner node ys2 as follows:

ys2 ← ys2 +
1

100Ms2

(
x− ys2

)
, (30)

whereMs2 is the winning count of ys2 .
In CA+, ys2 does not need to be moved significantly
because more nodes are generated than CAEFC. Therefore,
the coefficient in (30) is set to 1/100 in CA+ whereas it is
1/10 in CAEFC.
Similar to the qualitative comparison between CAE and

CAEFC, CA+ and CAEFC are also compared by the same
clustering task with the dataset in Fig. 1a. Each data point
in Fig. 1a is given to CA+ and CAEFC only once. Figs. 1c
and 1d show the results of the clustering task by CAEFC
and CA+, respectively. CAEFC does not generate any nodes
on the outer edges of the Gaussian distribution, while CA+
generates some nodes to cover the entire distribution. As a
result, more nodes are generated by CA+ (75 nodes) than
CAEFC (55 nodes) for the task in Fig. 1a. This property of
CA+ is preferable for a client in federated clustering because
the generated nodes in each client are utilized as training data
for the server.
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FIGURE 2. Overview of FCAC. FCAC performs clustering for distributed training data across multiple clients without aggregating the data on a
single server while preserving data privacy. In the client-side processing, local ϵ-differential privacy is applied to each data point, and then CA+ is
performed in parallel. In the server-side processing, the nodes generated by CA+ are fed to CAEFC to obtain an aggregated clustering result.

C. FCAC
1) OVERVIEW
Fig. 2 shows the outline of FCAC. Similar to k-FED [10]
and MUFC [62], FCAC is a one-shot federated clustering
algorithm that does not require multiple communication
rounds between the server and clients. In addition, since
FCAC uses ART-based clustering algorithms, FCAC can
perform continual learning while avoiding catastrophic
forgetting. Furthermore, FCAC does not require any iterative
learning process for convergence unlike k-FED and MUFC
with k-means as a base clusterer.

As a unique learning process of FCAC, the training
data of the server (i.e., generated nodes in each client) are
re-ordered according to the importance of each node (i.e.,
a winning countM), and then nodes with higher importance
are fed to CAEFC first one by one in the order of their
importance (see Sorting Nodes by Winning Counts in CA+
in Fig. 2). Since the similarity threshold Vthreshold, which
is an important parameter for achieving high clustering
performance, is calculated based on a certain number of initial
training data points, this process can be expected to improve
the stability of network creation for CAEFC in the early stage
of learning.

2) LEARNING PROCEDURE
Algorithm 2 summarizes the learning procedure of FCAC.
In the client-side processing, local ϵ-differential privacy is
applied to each data point, and then CA+ is performed in
parallel for obtaining Yc andMc (c = 1, 2, . . . ,C).
In the server-side processing, as a first step, the nodes

from each client are re-ordered based on a winning count of

Algorithm 2 Learning Procedure of FCAC
Input:
a privacy budget ϵ
the number of clients C
a set of data points for each client Xc
(c = 1, 2, . . . ,C)
Output:
a set of nodes YCAEFC

/* Client-side Processing */
1 for c = {1, . . . ,C} do in parallel
2 Generate a set of privacy-preserving data points

X ′c by local ϵ-differentical privacy.
// (2),(3),(4)

3 Create nodes in each client as
Yc← perform CA+ by using X ′c.

/* Server-side Processing */
4 Update YCA+

← sorting nodes by winning counts in
CA+. // Algorithm 3

5 Update YCAEFC ← perform CAEFC by using YCA+.

each node. Algorithm 3 summarizes the sorting mechanism
of Fig. 2 in detail. First, the nodes in a client Yc split into
two ordered groups based on the winning countsMc, namely
Y≥75thc and Y<75th

c (lines 2-6). Here, Y≥75thc consists of the
nodes above the 75th percentile of elements in Mc, i.e.,
a group of nodes with high winning countsMc, whileY<75th

c
consists of the nodes below the 75th percentile of elements
inMc, i.e., a group of nodes with low winning countsMc.
Then, the order of the nodes is randomly shuffled in each
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Algorithm 3 Sorting Nodes by Winning Counts in
CA+
Input:
node sets {Y1,Y2, . . . ,YC }
winning count sets {M1,M2, . . . ,MC }

Output:
sorted nodes YCA+

1 Initialize Y≥75th← null, and Y<75th
← null.

2 for c = 1, . . . ,C do
3 Extract indices I≥75thc and I<75th

c which are above
and below the 75th percentile of elements in
Mc, respectively.

4 Extract Y≥75thc and Y<75th
c from Yc corresponding

to I≥75thc and I<75th
c , respectively.

5 Update Y≥75th← Y≥75th.append(Y≥75thc ).
6 Update Y<75th

← Y<75th.append(Y<75th
c ).

7 Update Y≥75th← Shuffle(Y≥75th).
8 Update Y<75th

← Shuffle(Y<75th).
9 Update YCA+

← [Y≥75th;Y<75th].

group (lines 7-8). Last, the shuffled node groups Y≥75thc and
Y<75th
c are marged into YCA+ while preserving their ordering

(a line 9).
After preparing sorted nodes YCA+, the elements of YCA+

is fed to CAEFC according to their order in YCA+ (a line 5 in
Algorithm 2).

V. SIMULATION EXPERIMENTS
In this section, first, the effects of local ϵ-differential privacy
is qualitatively analyzed. Next, the continual learning ability
of FCAC is demonstrated by using a synthetic dataset. Then,
the clustering performance of FCAC is quantitatively evalu-
ated by using real-world datasets and compared with state-of-
the-art federated clustering algorithms. Last, we analyze the
computational complexity of FCAC.

Note that all experiments are carried out on Matlab 2023b
and Python 3.10 with the Apple M1 Ultra processor and
128GB RAM.

A. EFFECTS OF LOCAL ϵ-DIFFERENTIAL PRIVACY ON DATA
DISTRIBUTIONS
Apart from the abilities of FCAC, an intuitive understanding
of the effects of local ϵ-differential privacy on a dataset is
necessary to discuss the clustering performance of FCAC.
In general, the value of ϵ controls the degree of data
privacy protection, i.e., ϵ = 0 means perfect privacy,
while ϵ = ∞ means no privacy guarantee. However, the
relationship between the value of ϵ and the degree of data
privacy protection is difficult to define quantitatively because
it depends on the data sensitivity, the purpose of data analysis,
and applications [67]. In this paper, therefore, we do not focus
on the theoretical analysis of privacy protection.

Here, we qualitatively and quantitatively investigate the
effects of local ϵ-difference privacy (i.e., noise) on data

FIGURE 3. Effects of local ϵ-differential privacy on data distributions.
(a) The dataset consists of two Gaussian distributions (i.e., two clusters)
which have 1,000 data points each. (b)-(f) The results after adding some
noise generated by the local ϵ-differential privacy.

distributions using a synthetic data set which is shown in
Fig. 3. The dataset consists of twoGaussian distributions (i.e.,
two clusters) with 1,000 data points each. In Fig. 3, a red
data point is darker if it is closer to (-0.35, -0.35), while a
blue data point is darker if it is closer to (0.35, 0.35). The
noise as local ϵ-differential privacy for each data point is
generated by using (3) with µ = 0. The value of ϵ is set
as {10, 15, 25, 50, 75}. These ϵ values were selected after
investigating the case of generating large noise (ϵ = 10)
and the case of generating small noise (ϵ = 75) from
prior preliminary experiments. To quantitatively measure
the changes in the distribution from the original dataset
to the noised one, we apply the 1-Wasserstein Distance
(DWS) which arises from the idea of optimal transport [71].
Note that DWS represents the amount of change in the
data distribution, not represents the degree of data privacy
protection. In addition, we apply k-means (k = 2) to each
dataset in Fig. 3, and then calculate the Adjusted Rand
Index (ARI) [72] to qualitatively measure the effects of local
ϵ-differential privacy on clustering performance.

Figs. 3b-3f show the effects of local ϵ-differential privacy
on a 2D Gaussian distribution corresponding to each ϵ value.
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The corresponding DWS and ARI values for each distribution
are shown next to the ϵ value. In Figs. 3b-3f, the color of each
data point corresponds to the color of the data point before
adding noise (i.e., the data point in Fig. 3a).
In Fig. 3b (ϵ = 10), the noised dataset shows a

significantly different distribution from the one in Fig. 3a.
This indicates that the data utility is too low although the
data privacy protection would be high. In fact, DWS shows a
larger value and ARI shows a lower value than others (i.e.,
ϵ = 15, 25, 50, 75). Comparing to Fig. 3b (ϵ = 10), the
disturbance of the distribution is observed in Fig. 3c (ϵ = 15)
is small. In fact, DWS is relatively smaller, and ARI is much
higher than Fig. 3b (ϵ = 10). A similar trend is observed in
Fig. 3d (ϵ = 25). In Figs. 3e and 3f (ϵ = 50, 75), the effects
of local ϵ-difference privacy is quite limited because DWS is
small and ARI is nearly 1.0. In summary, the results in Fig. 3
show that the clustering performance deteriorates when the
value of ϵ is small because the data points move significantly,
and the data distributions tend to overlap.

From the above-mentioned observations, we only consider
ϵ = 15, 25, 50, 75 for local ϵ-differential privacy in the
subsequent sections.

B. CONTINUAL LEARNING ABILITY
This section demonstrates the continual learning ability of
FCAC. Here, we consider that FCAC has two clients (i.e.,
client #1, client #2) and a server. The entire dataset used in
this experiment is shown in Fig. 4. Each distribution in the
entire dataset consists of 15,000 data points generated from
the 2D Gaussian distribution and 150 data points (i.e., 1 %
noise) sampled from a uniform distribution.

FIGURE 4. Entire dataset for the continual learning. Each distribution in
the entire dataset consists of 15,000 data points generated from the 2D
Gaussian distribution and 150 data points (i.e., 1 % noise) sampled from
a uniform distribution.

FIGURE 5. Visualization of the synthetic dataset for the client #1 in
sequential order (i.e., (a) to (c)).

In order to perform continual learning in the practical
environment, the entire dataset is divided into eight subsets

FIGURE 6. Visualization of the synthetic dataset for the client #2 in
sequential order (i.e., (a) to (c)).

FIGURE 7. Clustering results of the client #1, the client #2, and the server
in the round #1. In the client-side processing, some nodes are generated
from noise data points because CA+ does not have noise reduction
ability. In contrast on the server-side processing, CAEFC generates a
well-organized cluster by reducing the effect of noise data points thanks
to its functionality.

FIGURE 8. Clustering results of the client #1, the client #2, and the server
in the round #2. Since each client and the server perform continual
learning, the result of each client in the round #1 remains to the round
#2.

FIGURE 9. Clustering results in the round #3. The generated clusters in
the round #3 are well-organized by updating the results in the round #2.

without duplication as shown in Figs. 5 and 6 (i.e., A1, A2,
A3, A4, B1, B2, C1, C2). The subsets A1, A2, A3, and A4
consist of 3,750 data points each, while the subsets B1, B2,
C1, and C2 consist of 7,500 data points each. Each data point
in each subset is given to FCAC only once. Throughout the
round #1 to #3, CA+ in each client and CAEFC in the server
are continually updated without being initialized.

Fig. 7 shows the clustering results of the client #1, the
client #2, and the server in the round #1. In the client-side
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processing, some nodes are generated from noise data
points because CA+ does not have noise reduction ability.
In contrast on the server-side processing, CAEFC generates a
well-organized cluster by reducing the effects of noise data
points thanks to its functionality.

Fig. 8 shows the results in the round #2. Since each client
and the server perform continual learning, the result of each
client in the round #1 remains to the round #2 (see Figs. 8a
and 8b). In Fig. 8c, therefore, the cluster with red-colored
nodes in the server is organized by updating the small clusters
of the server in the round #1 (i.e., Fig. 7c).

Fig. 9 shows the results in the round #3. It can be seen
that the generated clusters in the round #3 are well-organized
by updating the results in the round #2. It is noteworthy that
there is no significant change in the respective distributions
of nodes between rounds #2 and #3 (i.e., Figs. 8 and 9).
This indicates that the distribution of the training data points
is well-approximated with only a single learning epoch in
rounds #1 and #2.

In the server-side processing, CAEFC generates some
isolated nodes (see Figs. 7c, 8c, and 9c). This is because the
number of presented data points is, in general, not a multiple
of the deletion cycle (i.e., because the deletion process in
line 42 of Algorithm 1 is, in general, not applied just before
the termination of the algorithm for performance evaluation).
A simple solution for avoiding this phenomenon is to delete
isolated nodes after the learning procedure. However, since
FCAC aims for continual learning, FCAC prepares for future
learning without removing isolated nodes after the current
learning procedure. Therefore, we consider that this is not a
drawback of FCAC.

From the above-mentioned observations, we regard that
FCAC can continually perform federated clustering without
catastrophic forgetting.

C. CLUSTERING PERFORMANCE ON REAL-WORLD
DATASETS
In this section, we evaluate the clustering performance
of FCAC compared to state-of-the-art federated clustering
algorithms by using real-world datasets.

1) COMPARED ALGORITHMS
As federated clustering algorithms, k-FED [10], Fed-
FCM [12], and MUFC [62] are selected as compared
algorithms. Note that although MUFC is originally proposed
in the machine unlearning domain, MUFC is treated as a
compared algorithm because it has a federated clustering
mechanism [62]. In addition, we include k-means [24] as
a reference although k-means is not a federated clustering
algorithm.

Since a base clusterer of all the compared algorithms
is a centroid-based algorithm, the number of clusters and
the number of iterations for convergence are required.
Throughout our experiments in this section, both in clients
and a server, we set the number of clusters as equal to
the number of classes in each dataset, and the number of

iterations for convergence is 100. Moreover, the initialization
of centroids in k-means is performed 10 times in the same
way as in k-means++. In contrast, FCAC has no parameters
to be specified in advance, the number of iterations for
convergence is 1, and no centroid initialization process
is need. Note that, therefore, FCAC has much higher
applicability than the other compared algorithms.

The source code of k-FED,1 FedFCM,2 and MUFC3 are
obtained from the publicly available implementations. The
source code of FCAC is available at GitHub.4

2) DATASET
We use 10 real-world datasets from public repositories [73].
Table 2 summarizes statistics of the 10 real-world datasets.

TABLE 2. Statistics of real-world datasets.

To perform federated clustering, each dataset is split into
an arbitrary number of clients by using codes from the
personalized federated learning platform repository.5 In our
experiments, each algorithm is evaluated by two conditions,
namely an Independent and Identically Distributed (IID)
scenario and a non-IID scenario. In the IID scenario, the
number of data points in each client is the same, and the
data distribution for each client is consistent with the entire
dataset. In the non-IID scenario, on the other hand, the
number of data points in each client is different. Moreover,
the data distribution for each client is not consistent with
the entire dataset (as a result, each client has a different
data distribution). In the case of the non-IID scenario, each
of the 10 datasets in Table 2 is divided into the same
number of subsets as the number of clients by using Dirich-
let distribution-based splitting approach with a parameter
α = 0.5 [74].

After splitting each of the 10 datasets, local ϵ-differential
privacy is applied to each data point in each client. In our
experiments, we first examine ϵ = ∞ to evaluate the general
clustering performance of each algorithm although ϵ = ∞

means no privacy guarantee (i.e., a data point has no noise).

1https://github.com/metastableB/kfed/
2https://github.com/stallmo/federated_clustering
3https://github.com/thupchnsky/mufc
4https://github.com/Masuyama-lab/FCAC
5https://github.com/TsingZ0/PFL-Non-IID
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Then, we examine four values of ϵ (i.e., 15, 25, 50, 75) which
are determined based on the observations in Section V-A.
During experiments, all data points in each dataset are

presented to each algorithm in random order. Since all
algorithms are clustering algorithms, we use the same data
points for training and testing, i.e., an algorithm is trained by
all data points in each dataset and tested by the same data
points as the training data.

Note that since k-means is not a federated clustering
algorithm, the datasets split into each client are merged,
and then k-means performs clustering on the merged
dataset.

3) RESULTS OF GENERAL CLUSTERING PERFORMANCE
Tables 3 and 4 show the results of clustering performance on
the 10 real-world datasets in the IID and non-IID scenarios
with ϵ = ∞, respectively. The clustering performance of
each algorithm is measured by the ARI [72], the Adjusted
Mutual Information (AMI) [75], and the Normalized Mutual
Information (NMI) [76]. With respect to FCAC, the number
of nodes and clusters in the server (i.e., CAEFC) are also
shown. We repeat the evaluation 20 times with different
random seeds for obtaining consistent averaging results. The
best value in each metric is indicated in bold, and the values
in parentheses indicate the standard deviation. A number to
the right of each evaluation metric is the rank of an algorithm
corresponding to the metric value. The smaller the rank, the
better the metric score. In addition, a darker tone in a cell
corresponds to a smaller rank (i.e., better evaluation).

As general trends, FCAC shows better clustering perfor-
mance than the other algorithms in both scenarios, andMUFC
and k-means show better clustering performance than k-FED
and FedFCM. In particular, FCAC shows high clustering
performance in the Magic and Skin datasets. Moreover,
although FCAC shows a low rank in the Phoneme, Optdigits,
and FMNIST datasets, the values of ARI, AMI, and NMI
are not extremely low compared to the other algorithms.
As mentioned in Section V-C1, FCAC has no parameters
to be specified in advance, the number of iterations for
convergence is 1, and no centroid initialization process is
needed. In contrast, all the compared algorithms have a
parameter to be specified in advance, and require a number
of iterative processes for good clustering performance. This
clearly highlights the advantages of FCAC for situations
where the distribution of a dataset is unknown and/or
the size of a dataset is large.the number of iterations for
convergence is 1, and no centroid initialization process is
needed. In contrast, all the compared algorithms have a
parameter to be specified in advance, and require a number
of iterative processes for good clustering performance. This
clearly highlights the advantages of FCAC for situations
where the distribution of a dataset is unknown and/or the size
of a dataset is large.

With respect to the number of clusters of FCAC, FCAC
tends to generate a large number of clusters compared to
the true number of classes in each dataset as shown in

Tables 3 and 4. This property has positive impacts on
clustering performance in many cases. Compared to k-FED,
FedFCM, and MUFC, since a large number of nodes are
generated near the boundary regions between clusters, the
boundaries of clusters become clearer. As a result, it is
considered that the decrease in the value of the clustering
evaluation metric is suppressed. Note that, in general, it is
difficult to discuss the relation between the number of clusters
and clustering performance in the case of self-organizing
algorithms that adaptively generate nodes corresponding to
data points sampled from an unknown data distribution, such
as GNG-, and ART-based clustering algorithms.

To assess the statistical differences between the results
shown in Tables 3 and 4, we employ the Friedman test and
the Nemenyi post-hoc analysis [77]. The Friedman test is
utilized for testing a null hypothesis that the performance
of all algorithms is equal. Upon rejection of the null
hypothesis, the Nemenyi post-hoc analysis is conducted. The
Nemenyi post-hoc analysis involves comparing every pair
of algorithms, considering their performance ranks across
all datasets for each evaluation metric. In this case, both
the Friedman test and Nemenyi post-hoc analysis identify
significant differences at a significance level of 0.05.

Fig. 10 shows critical difference diagrams based on the
results of ARI, AMI, and NMI by each algorithm, which are
defined by the Nemenyi post-hoc analysis. A better result has
a lower average rank, i.e., on the right side of each diagram.
In theory, algorithms within a critical distance (i.e., a red
line) do not have a statistically significance difference [77].
Fig. 10a shows a critical difference diagram based on the
overall results (i.e., all the results of ARI, AMI, and NMI
in the IID and non-IID scenarios). FCAC is the lowest rank
(i.e., best) algorithm with a statistically significant difference
from k-FED and FedFCM. Figs. 10b and 10c are critical
difference diagrams correspond to the results in Tables 3
and 4, respectively. The ranks of MUFC and FedFCM differ
depending on the scenario (i.e., IID or non-IID), which
implies the instability of their learning.

The above-mentioned observations suggest that FCAC has
superior clustering performance to state-of-the-art algorithms
on various datasets with ϵ = ∞.

4) RESULTS OF CLUSTERING PERFORMANCE ON DATASETS
WITH LOCAL ϵ-DIFFERENTIAL PRIVACY
For the comparisons of clustering performance on the
10 datasets with local ϵ-differential privacy, we set ϵ =

15, 25, 50, 75 and then conduct the same experiments as
Section V-C3 for obtaining ARI, AMI, and NMI. As men-
tioned in Section III-A, the value of ϵ controls the degree
of data privacy protection, i.e., the smaller ϵ value provides
higher data privacy, while the larger ϵ value provides lower
data privacy.

Similar to Section V-C3, the Friedman test and Nemenyi
post-hoc analysis are used. The Friedman test is used to test
the null hypothesis that all algorithms perform equally. If the
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TABLE 3. Results of quantitative comparisons on 10 real-world datasets in the IID scenario with ϵ = ∞. As general trends, FCAC shows better clustering
performance than the other algorithms, and MUFC and k-means show better clustering performance than k-FED and FedFCM.
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TABLE 4. Results of quantitative comparisons on 10 real-world datasets in the non-IID scenario with ϵ = ∞. As general trends, FCAC shows better
clustering performance than the other algorithms, and MUFC and k-means show better clustering performance than k-FED and FedFCM.

139706 VOLUME 12, 2024



N. Masuyama et al.: Privacy-Preserving Continual Federated Clustering via ART

FIGURE 10. Critical difference diagram based on the results of ARI, AMI,
and NMI with ϵ = ∞. FCAC shows the lowest rank (i.e., best) algorithm
with a statistically significant difference from k-FED and FedFCM. The
ranks of MUFC and FedFCM differ depending on the scenario (i.e., IID or
non-IID), which implies the instability of their learning.

null hypothesis is rejected, the Nemenyi post-hoc analysis is
then conducted. Here, the null hypothesis is rejected at the
significance level of 0.05 both in the Friedman test and the
Nemenyi post-hoc analysis.

In this section, due to page limitations, we only show the
critical difference diagrams based on the overall results of
ARI, AMI, and NMI. Fig. 11 shows the critical difference
diagram corresponding to ϵ = 15, 25, 50, 75. Except for
ϵ = 15, FCAC is the lowest rank (i.e., best) algorithm with a
statistically significant difference from k-FED and FedFCM.
This indicates that FCAC can maintain higher clustering
performance for various privacy-preserving datasets than the
other state-of-the-art algorithms.

VI. LIMITATIONS OF FCAC
In this section, we discuss the limitations of FCAC. First,
we focus on the robustness against noise data. In general,
the clustering/classification performance of ART-based algo-
rithms is largely affected by noisy data, but FCAC shows a
certain noise reduction ability as shown in Figs. 7-9. Although
CAEFC does not perfectly avoid the effect of noise data
points, this is a positive observation. However, the datasets
contains only 1 % noise data points. Therefore, We need
to consider the further improvement of the noise reduction
ability of FCAC to handle more practical data (e.g., EEG and
sensory data).

Next, we discuss why the clustering performance of FCAC
is inferior to the compared algorithms in Phoneme, Optdigits,
and FMNIST datasets which are shown in Tables 3 and 4.
In FCAC, the similarity threshold, which has a significant
impact on the clustering performance, is calculated based on
the diversity of the nodes using the DPP-based criterion. (see
Section III-D1). With respect to the Optdigits and FMNIST
datasets, their features consist of pixel values in images
and are largely dominated by the black-colored background.
Since the Phoneme dataset consists of features extracted
from the speech signal, there is a large overlap between the
features. It is difficult to calculate an appropriate similarity
threshold when there is a large number of data with similar
features in the dataset. Note that while this may be one of the
limitations of FCAC, we believe that this can be addressed by
using appropriate dimensionality reduction methods and/or
features of the data extracted by an auto-encoder.

Last, we focus on the increase in the complexity of the
clustering results in FCAC. Because FCAC is a centroid-
based (i.e., a node-based) algorithm such as k-means, FCAC
may not extract information effectively if the distribution
of newly given data overlaps with a region where nodes
already exist. In such a case, it is necessary to generate
enough nodes to aggregate and maintain new and learned
information, which may increase the complexity of the
model. A simple solution is to merge and delete nodes while
avoiding catastrophic forgetting. Alternatively, a selective
forgetting mechanism (e.g., machine unlearning [62]) could
be employed. By incorporating the above-mentioned mecha-
nisms, we can expect further improvements in the continual
learning ability of FCAC.

VII. COMPUTATIONAL COMPLEXITY
This section presents the computational complexity of FCAC.
In this section, we use the notations in Table 1, namely d is the
dimensionality of a data point, n is the number of data points,
K is the number of nodes,M is a set of winning counts, λ is
the number of active nodes, and |E | is the number of elements
in the ages of edges set E .
In FCAC, the computations on client-side can be per-

formed in parallel, and therefore computational complexity
is defined by the learning procedure of CA+, the re-ordering
of training data points for CAEFC, and the learning procedure
of CAEFC. Furthermore, since CA+ is a variant of CAEFC,
i.e., CAEFC without topology, we only consider the compu-
tational complexity of the re-ordering of training data points
for CAEFC and the learning procedure of CAEFC.

The computational complexity of the re-ordering of
training data points for CAEFC is as follows: for finding the
75th percentile of elements inM isO(K ) (a line 3 in Alg. 3),
for splitting a node set is O(K ) (a line 4 in Alg. 3), and
for shuffling the splitted nodes is O(K≥75th) and O(K<75th)
(lines 7-8 in Alg. 3).

The computational complexity of the learning procedure of
CAEFC is as follows: for computing a bandwidth of a kernel
function in CIM isO(d), for calculating a pairwise similarity
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FIGURE 11. Critical difference diagram based on the overall results of ARI, AMI, and NMI with ϵ = 15, 25, 50, 75. As general trends, FCAC shows
the lowest rank (i.e., best) with a statistically significant difference from k-FED and FedFCM (except for ϵ = 15). This indicates that FCAC can
maintain higher clustering performance for various privacy-preserving datasets than the other state-of-the-art algorithms.

matrix by using CIM is O((λ2 )
2dK ) (a line 8 in Alg. 1), for

calculating determinant of the pairwise similarity matrix is
O((λ2 )

3) (a line 9 in Alg. 1), for computing CIM is O(ndK )
(a line 16 in Alg. 1), for finding nodes which have the 1st and
2nd smallest CIM value isO(K ) (a line 17 in Alg. 1), and for
estimating the edge deletion threshold isO(|E | log |E |) (lines
33-36 in Alg. 1).

In general, n < λ3, K ≪ n, and λ < K . As a result, the
computational complexity of FCAC is O(λ3dK ).

VIII. CONCLUDING REMARKS
In this paper, we introduced FCAC, a novel privacy-
preserving federated clustering algorithm that leverages
an ART-based clustering algorithm capable of continual
learning. FCAC addresses the limitations of conventional
federated clustering algorithms, thus making it highly
effective for data with unknown or continually changing
distributions. Empirical studies with synthetic and real-world
datasets showed that the clustering performance of FCAC
is superior to state-of-the-art federated clustering algorithms
while maintaining data privacy protection and continual
learning ability.

As a practical clustering algorithm, FCAC provides strong
data privacy protection and facilitates rapid adaptation to new
data. FCAC also enables effective data integration, making it
a potentially useful tool in data-driven industries.

A future research topic will focus on integrating deep
learning techniques with FCAC to further enhance its
clustering performance and applicability to more complex
and high-dimensional datasets. Additionally, exploring the
potential of FCAC in various industry-specific contexts, such
as healthcare and finance, could provide valuable insights.
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