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ABSTRACT Abstractive summarization models are required to generate summaries that maintain factual
consistency with the source text and exhibit high diversity to be applicable in practical applications.
Existing models, which are based on pre-trained sequence-to-sequence or text diffusion approaches,
generally struggle to balance these aspects, as emphasizing one typically compromises the other. To achieve
both factual consistency and high diversity in summarization, this paper proposes a factuality-guided
diffusion-based abstractive summarization model. This model integrates a factuality-guided module into the
diffusion-based model. As the diffusion-based summarization model generates a high-diversity summary by
denoising from random noise, the module guides the noise toward factual consistency with the source text.
The proposedmethod continually guides factuality into the intermediate noise at each denoising step, thereby
generating summaries that are not only consistent with the source text but also high in diversity. To guide
factuality during the denoising step, this study also introduces amethod for calculating the factuality based on
token-level contextual matching between the source text and the intermediate noise. The effectiveness of the
proposed factuality-guided summarization model is validated on three benchmark datasets, and experimental
results demonstrate that the summaries generated by the proposed model are more factually consistent and
diverse than those generated by baseline models.

INDEX TERMS Diffusion-based abstractive summarization, diverse text summarization, factuality-guided
summarization, factually consistency in abstractive summarization.

I. INTRODUCTION
With the advancement of language models and text gener-
ation methods, there has been a significant increase in the
amount of information produced in textual format. This is
further augmented by automated document creation by bots,
which are used in applications such as generating news arti-
cles [1], [2], shopping reviews [3], and stories [4], leading to
an accelerated rate of text generation. As a result, the demand
for text summarization is increasing more than ever. Text
summarization is the task of generating brief and coherent
summaries from the various perspectives and information
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contained in the source text [5], [6]. Given the critical role
of summaries in conveying key information from diverse
viewpoints and supporting decision-making processes, there
is an increasing need to develop summarization models that
not only maintain factual consistency with the source text but
also generate diverse summaries.

Several models have been proposed to achieve factual
consistency with the source text [7], [8], [9], [10], [11], [12]
and to generate summarieswith high diversity [13], [14], [15],
[16], [17]. While each model demonstrates high performance
in metrics tailored to its specific purpose, a trade-off between
factual consistency and diversity is often observed. Table 1
presents summaries generated by the BART summarizer [6], a
widely-used model for abstractive summarization, alongside
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TABLE 1. Summaries generated by the BART summarizer using beam search, top-k , and top-p sampling methods, alongside the autoregressive diffusion
summarizer. The underline in the generated summaries indicates factual inconsistencies with the source text.

those generated by AR-diffusion summarizer [17]. In this
table, two summaries are generated from each summarizer.
For the BART summarizer, different methods such as beam
search, top-p, and top-k samplings are adopted to control
diversity. As shown in Table 1, while summaries generated by
BART using the beam search tend to be factually consistent
with source text, they exhibit low diversity. On the other
hand, summaries generated by BART using the top-p and
top-k samplings are more diverse than those generated
with the beam search, but sometimes compromise factual
consistency. Summaries from the AR-diffusion summarizer
exhibit the highest level of diversity, yet one summary is
factually inconsistent with the source text. These results
are because models like BART do not prioritize diversity
whereas diffusion-based models like AR-diffusion, which
focus mainly on diversity, do not explicitly consider factual
consistency. Therefore, for abstractive summarizationmodels
to achieve both high factual consistency and diversity it is
crucial to consider both aspects.

This paper proposes an abstractive summarization model
that aims to generate summaries that are both diverse
and factually consistent. The proposed model is built
upon diffusion-based text summarization [16], [17], which
progressively corrupts a summary with random noise through
a forward noising process, and subsequently reconstructs
the summary from random Gaussian noise using multiple
denoising steps in a reverse process. During the reverse
process, the denoising is performed while referring to
encoded representations from the source text. At inference
time, this reverse process begins with sampling noise from a
Gaussian distribution and iteratively denoises it to generate
a summary. While the diffusion-based text summarization is
beneficial for enhancing diversity, its reverse process does
not explicitly ensure the factual consistency of the summaries
with the source text, often resulting in summaries that are
diverse yet factually inconsistent.

To address this issue, the proposed model incorporates a
factuality-guided module into the reverse process as a plug-
and-play component [18]. This module computes a factuality
by comparing an intermediate output of the denoising step
against the source text. Then, in the reverse process, the
module employs information guidance [19] to ensure that
the denoising not only reconstructs the summary but also
maintains the factuality. With the guided module performing
at each denoising step, the summarizer generates texts that
are both diverse and factually consistent. It is important
to note that the source text is represented as a sequence
of tokens, whereas the denoising output is a representation
in a continuous vector space. Thus, directly computing
the factuality between these two representations is not
straightforward. To tackle this, the proposed model leverages
the diffusion model’s embedding to embed the source text
into a continuous space. The factuality is then computed as
the inner product between tokens’ embeddings [20].
The effectiveness of the proposed model is evaluated

using three standard benchmark datasets for abstractive
summarization. Experimental results demonstrate that the
proposed model not only achieves high ROUGE scores
but also excels in various factual consistency metrics,
outperforming existing diffusion-based summarizers [16],
[17], BART summarizers [6], and LLM-based summariz-
ers [21], [22]. Furthermore, this paper adopts a large language
model to evaluate the quality of the generated summaries
and demonstrates that the proposed summarizer generates
high-quality summaries compared to the baselines.

The main contributions of this paper are as follows:
• This is the first attempt to enhance factual consis-
tency in diffusion-based text summarization. It intro-
duces a method designed to balance the trade-off
between diversity and factual consistency. While exist-
ing diffusion-based summarizers primarily focus on
enhancing diversity and fluency, the proposed method
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aims to improve factuality by incorporating an explicit
factuality guide. As a result, the proposed method
generates summaries that are both diverse and factually
consistent.

• This paper introduces the guidance of factuality in
a plug-and-play manner. As retraining diffusion-based
summarization models for factuality consistency is
computationally expensive, the plug-and-play approach
facilitates the generation of factually improved sum-
maries at a reduced cost.

• This paper examines the performance of the proposed
model on three standard benchmark summarization
datasets. Experimental results across these datasets
indicate that the proposed model not only promotes
high diversity but also ensures factual consistency in the
generated summaries.

The rest of this paper is organized as follows. Section II
reviews studies related to enhancing factuality consistency in
abstractive summarization, diverse text generation, and the
text diffusion model. Section III introduces the essential pre-
liminary to the proposed model. and Section IV presents the
proposed factuality guided diffusion-based summarization.
The experimental settings and results are given in Section V.
Finally, Section VI draws some conclusions.

II. RELATED WORK
A. ENHANCING FACTUALITY OF ABSTRACTIVE
SUMMARIZATION
Recent years have seen active research in enhancing the
factuality of abstractive summarization. This has led to the
proposal of various approaches, including the use of external
knowledge, post-editing of summarizations, and decoding
stage adjustments. The first approach involves incorporating
external knowledge, derived from information extractors and
parsers, into abstractive summarization models. For example,
Cao et al. [9] utilized an open information extractor and a
dependency parser to extract triples from the source text,
which are then integrated into the summarization model
to generate the final summary. Similarly, Zhu et al. [11]
employed a graph extracted from the source text, utilizing
graph information in the summary generation process via
graph attention. Li et al. [23] introduced a Transformer-based
Entity Augmented Method that includes two novel modules:
a sparse entity matrix following the encoder and an addi-
tional entity cross-attention layer in the decoder, aimed at
seamlessly integrating entity boundary information into the
summarization model. However, a primary limitation of this
approach is its model-specific nature, meaning the methods
are only effective in conjunction with specific summarization
models.

The second approach is the post-editing correction that
takes a model-generated summary and the source text and
corrects the summary to ensure factual consistency with
the source text. This method is model-agnostic, because it
can receive any generated summary as its input. Several

studies have explored this approach, such as the rewriting
method [24] and span correction [25], [26], which vary in
their degrees of correction. The rewriting method regenerates
a new summary through an autoregressive sequence-to-
sequence model, which potentially leads to significant
differences from the original summary. In contrast, the
span correction method makes partial modifications to the
inconsistent spans of the generated summary, resulting in less
variation. However, this approach often resembles extractive
summarization due to its limited scope of modification.
It is noteworthy that these approaches primarily focus on
improving factuality, with little emphasis on enhancing
diversity. The primary objective of this paper, however,
is to improve both factuality and diversity in summarization
generation, rather than to correct an already generated
summary.

The last approach focuses on the decoding stage to select
factually consistent summaries. This approach chooses the
most coherent summary during decoding, independent of
model specifics. Wan et al. [8] posited that beam search could
explore various candidates, among which a more faithful
summary might exist, even if it is not the highest-scoring
according to the model. They suggested re-ranking these
candidates using a faithfulness metric. Pernes et al. [7]
introduced an energy-based model for re-ranking summaries
based on factuality metrics. Additionally, Dixit et al. [27]
developed a method that employs a ranking technique
post-summary generation for comparative summary training,
enhancing both the factuality and quality of the abstract
summary. While decoding methods have improved factual
consistency, they often reduce the diversity among the
candidate summaries.

B. DIVERSE TEXT GENERATION MODELS
The generation of highly diverse texts has received significant
interest across various text generation applications, including
paraphrase generation [28] and response generation [29].
Research for the diverse text generation explores a range
of methods: employing different decoding strategies into the
decoder, incorporating randomness on the encoder [14], and
utilizing reinforcement learning for decoder training [28],
[30]. Specifically, decoder-side approaches have led to the
development of various decoding algorithms to enhance
diversity such as diverse beam search [31], top-k sam-
pling [32], and top-p sampling [33]. While the primary goal
of these studies focuses on generating diverse texts, the aspect
of factual consistency is not explicitly addressed.

C. TEXT DIFFUSION MODEL
Diffusion models [34] have shown remarkable efficacy in
image generation, which has led to recent investigations
into the extension of diffusion models to text domains [35].
Diffusion-LM [19] is the first to adapt diffusion models for
handling text in a continuous space, achieving direct inte-
gration of continuous noise into word embeddings through
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embedding and rounding procedures. Subsequent efforts have
concentrated on utilizing continuous text diffusionmodels for
sequence-to-sequence tasks. One such approach, DiffuSeq
[36], divides the input into two segments, using one as
a conditioning element while introducing noise to perturb
the other. Moreover, SeqDiffuSeq [37] and DINOISER
[38] have incorporated an encoder-decoder architecture into
diffusion models via cross-attention mechanisms. GENIE
[16] has demonstrated significant performance improvements
by leveraging pre-training methodologies on extensive text
corpora, a common practice in natural language process-
ing. Furthermore, auto-regressive diffusion [17] employs a
multi-level diffusion strategy that addresses sequential depen-
dencies in text generation by involving both sentence-level
and token-level diffusion. Latent Diffusion model [39], [40]
utilize the fundamental architecture of language models,
known as the encoder-decoder, to implement a diffu-
sion process on the hidden representation generated by
the encoder before it is fed into the decoder. However,
despite these advancements, the summaries generated by
text diffusion models still exhibit factual inconsistencies.
Abstract summarizers based on diffusion models have not
yet been developed with the objective of addressing this
issue of inconsistency with sources. This paper introduces
a factuality-guided module designed to reduce factual
inconsistencies in diffusion-based summarizers. This module
does not require retraining of the diffusion summarizer and
integrates seamlessly with the diffusion process, with the
aim of increasing factual consistency while maintaining the
diversity of the generated summaries.

III. PRELIMINARIES
A. DIFFUSION MODEL
The diffusion model [41] is a probabilistic model which
models data using two processes: a forward noising process
and a reverse denoising process. Given data sampled from
a distribution, the data is encoded as a latent representation
z0 ∈ Rd . Then, the forward process gradually corrupts
z0 until it becomes a Gaussian distribution zT ∼ N (0, I ) at
diffusion step T . Each step of the forward process is defined
as:

q(zt |zt−1) = N (zt ;
√
1 − βtzt−1, βtI), (1)

where βt represents the level of noise introduced at timestep
t , and zt denotes the latent representation at timestep t .
The reverse process starts from the standardGaussian noise

zT ∼ N (0, I ) and then progressively denoises the noise
to reconstruct z0. At each denoising step, denoising model
pθ (zt−1|zt ), a transition from zt to zt−1, is parameterized:

pθ (zt−1|zt ) = N (zt−1; µθ (zt , t), 6θ (zt , t)),

where µθ and 6θ represent the mean and variance that those
are learned from a neural network, respectively. Following
Li et al. [19], it is possible to predefine the variance without
the learning.

The learning objective for the diffusion model is
derived from the variational lower bound of the negative
log-likelihood of z0. Ho et al. [41] simplifies the objective
to:

L(z0 =

T∑
t=1

Eq(zt |z0)||µθ (zt , t) − µ̃(zt , z0)||2,

where µ̃t (zt , z0) denotes the mean of forward process
posteriors q(zt−1|zt , z0). That is, the diffusion model is
trained to predict the forward process posteriors mean.

B. DIFFUSION MODEL FOR ABSTRACTIVE
SUMMARIZATION
Given a source text x = (x1, . . . , xm) consisting of m
tokens, the goal of abstractive summarization is to generate
a concise summary text y = (y1, . . . , yn), such that n ≤

m. Here, the summary should capture essential information
from the source text. Diffusion-based abstractive summarizer
models [16], [17], denoted as pθ (y|x), aims to generate
the summary y conditioned on the source x through two
processes. In the forward noising process, the diffusion-
based summarizer gradually corrupts the summary in a
continuous space by adding random noise. In the reverse
process, it reconstructs the summary from random Gaussian
noise using multiple denoising steps, each conditioned on the
source text. During inference, this reverse process begins with
sampling noise from a Gaussian distribution and iteratively
denoises it with reference to the source text to generate the
final summary.

As the diffusion process generally proceeds in the con-
tinuous space, it is necessary to map the discrete token
sequence into this space. To this end, the diffusion-based
summarization adopts an embedding function, which maps
discrete y into a latent representation z0. This is represented
as:

qθ (z0|y) = N (z0;EMB(y), βI).

Here, EMB(·) denotes the embedding function for the text
sequence which is defined as

EMB(y) = [Emb(y1), . . . ,Emb(yn)] ∈ Rn×d .

Each token in the summary text is embedded using the
token embedding function Emb, and the resulting embedded
tokens are then concatenated. Then, the forward process
incrementally adds Gaussian noise to z0 until it becomes a
standard Gaussian noise as outlined in Equation (1).
In the reverse process, the summary text y is reconstructed

through denoising from sampled Gaussian noise, referring to
the source text x. For this, the encoder-decoder Transformer
architecture [42] is adopted as the denoising model. At each
denoising step, the decoder denoises zt ∈ Rn×d based on the
cross-attention with the encoded representations of x using
the encoder. It is parameterized as:

pθ (zt−1|zt , x) = N (zt−1; µθ (zt , t, x), 6θ (zt , t, x)),
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FIGURE 1. Overview of factuality guided diffusion-based abstractive summarization.

where the mean µθ and variance 6θ are predicted by a
encoder-decoder Transformer network parameterized by θ .
The reverse process is performed to generate a summary
up to z0. Specifically, this involves generating a summary
by iteratively denoising Gaussian noise zt through T steps.
Following this, to map vectors in the embedding space back
to words, a discrete token is generated through a trainable
rounding step, detailed as follows:

pθ (y|z0) = 5n
i=1pθ (yi|zi0), (2)

where zi0 ∈ Rd is i-th vector of z0. That is, z0 = ⊕
n
i=1z

i
0,

where ⊕ is a concatenate operator. pθ (yi|zi0) is a softmax
distribution with the linear layer mapping to d-dimension to
a vocabulary dimension. zi0 is mapped by a rounding step to
the most corresponding word yi in the vocabulary.
Several variants of diffusion models have been developed

by modifying the forward and reverse processes. One such
variant, auto-regressive diffusion [17], employs a multi-level
diffusion strategy that accounts for sequential dependencies
in text generation. Specifically, the forward process of
auto-regressive diffusion introduces noise more rapidly to the
tokens on the right side of a sentence, transitioning from token
embedding to Gaussian noise, while the tokens on the left
side experience a slower noise addition. On the other hand,
during the reverse process, the Gaussian noise at the positions
on the left side is removed more quickly. This asymmetry
has the advantage of enabling the right-side tokens to more
effectively utilize the contextual information of the left-side
tokens.

IV. FACTUALITY GUIDED DIFFUSION-BASED
ABSTRACTIVE SUMMARIZATION
A. GUIDING THE SUMMARIZATION PROCESS
The goal of factuality-guided text summarization is to
generate y from a conditional distribution p(y|x, c), given
the source text x and a factuality condition c. According
to the study of [19], generating y with a condition c can
be formulated as a conditional diffusion model, which is

FIGURE 2. Token matching-based factuality guided module.

equivalent to decoding from the posterior p(y|x, c) =

pθ (y|z0)
∏T

t=1 p(zt−1|zt , x, c). At each denoising step, the
term p(zt−1|zt , x, c) is decomposed into a sequence of
conditional problems using Bayes’ formulation as follows:

p(zt−1|zt , x, c) ∝ pθ (zt−1|zt , x)p(c|zt−1, zt , x). (3)

In this equation, pθ (zt−1|zt , x) is estimated using a
diffusion-based abstractive summarization model and
p(c|zt−1, zt , x) is estimated by the factuality-guided module
which will be described in the next section. Based
on the decomposition, this paper adopts plug-and-play
approaches [18] that keep the pre-trained diffusion model
frozen and introduce a factuality-guided module to update
the generated latent representation zt during the reverse
process.

Figure 1 shows how the proposed factuality-guidedmodule
works with the trained diffusion-based summarizer. At each
step t , the decoder first samples the denoised representation
zt−1 as described in Section III-B. Then, the proposed
factuality-guided module calculates the factuality between
the source text x and zt−1 and perform the guided correction
to get representation z̃t−1. The updated z̃t−1 is used as
input for the subsequent denoising step. As a result of the
factuality guided module, the intermediate latent represen-
tation continually considers the factual consistency with the
source text which results in a final summary that is factually
consistent.
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B. THE FACTUALITY GUIDED MODULE
The factuality-guided module estimates p(c|zt−1, zt , x) in
Equation (3) and applies it to update the representation zt−1
sampled from pθ (zt−1|zt , x) by the trained diffusion model.
By the conditional independence assumption, p(c|zt−1, zt , x)
is simplified to p(c|zt−1, x) and this paper defines it as
follows:

p(c|zt−1, x) =
1
Z
(c −M (x, zt−1)), (4)

where Z is a normalizing factor and M quantifies the factu-
ality between the source text x and the latent representation
zt−1. If c is set to the positive constant, the value of M
increases as zt−1 becomes more factually consistent with x.
Therefore, the fact-based module updates zt−1 at each reverse
step to increase the value ofM .
Since M function in Equation (4) takes zt−1 as input,

it is computed in continuous space. To do this, this paper
designs the function M as a token-level contextual matching
between the source text and the latent representation. Figure 2
shows the process of token-level contextual matching of
the proposed factuality guided module. Note that during
inference, the reverse process begins with the sampling
noise zT ∈ Rn̂×d from a Gaussian distribution, where
n̂ represents the length of the summary to be generated.
This noise is then progressively denoised to reconstruct z0.
Each latent representation z∗ is represented as a sequence of
d-dimensional vectors zi∗ because each vector z

i
∗ corresponds

to the i-th token of the final summary as determined
through the rounding step in Equation (2). This implies
that the similarity between the source text and the latent
representation can be quantified at the token-level. Moreover,
this token-level similarity has a strong correlationwith human
judgment of factuality in document summarization [43], [44].
Formally, each token in the source text x is matched with

a token in the latent representation zt−1 to calculate the
similarity. Then, a greedy matching is executed to maximize
the similarity, where each token ismatched to themost similar
token in other representation. That is, the M function is thus
defined as:

R(x, zt−1) =
1
m

∑
xi∈x

w(xi) max
zjt−1∈zt−1

Emb(xi)Tz
j
t−1,

P(x, zt−1) =
1
n̂

∑
zjt−1∈zt−1

max
xi∈x

Emb(xi)Tz
j
t−1,

M (x, zt−1) = R(x, zt−1) · P(x, zt−1).

Here, Emb(·) is the embedding function from the diffusion-
based summarizer, zjt−1 is j-th vector of zt−1 and R and
P functions can be interpreted as recall and precision,
respectively. w(·) in R denotes importance weighting of
token to consider the significance of tokens with infrequent
occurrences when computing the similarity. According to the
previous studies on similarity calculation [20], [45], [46], rare
tokens can bemore representative for similarity than common
words. This paper adopts a normalized inverse document

TABLE 2. A simple statistics on the datasets used for the experiments.

frequency computed from the training corpus as importance
weights [20].

Once the factuality score p(c|zt−1, zt , x) is estimated, the
factuality-guided denoising process is performed according
to the score-based diffusion model [47]. Using Equation (3),
the score function ∇zt−1 log p(zt−1|zt , x, c) for the t-th
denoising step can be decomposed into two terms, such as

∇zt−1 log p(zt−1|zt , x, c) = ∇zt−1 log pθ (zt−1|zt , x)

+ ∇zt−1 log p(c|zt−1, x). (5)

In this equation, the first term is estimated using a
diffusion-based abstractive summarization model. The sec-
ond term acts as a correction gradient [47], [48] that directs
zt−1 toward a hyperplane in the latent space, where all latent
representations align with the given condition c and the
source text x.

Based on the decomposition, we first sample pθ (zt−1|zt , x)
in Equation (3) using a denoising step:

zt−1 = (1 +
1
2
βt )zt + βt∇zt log p(zt , x) +

√
βtϵ

where ϵ ∼ N (0, I ) is randomly sampled Gaussian noise
and ∇zt log p(zt , x) is the score function estimated by the
decoder in the diffusion summarization model. Then, the
factuality-guided correction is performed by the sampling
formula:

z̃t−1 = (1 +
1
2
βt )zt−1 + βt∇zt−1 log p(c|zt−1, x) +

√
βtϵ

where the new z̃t−1 then serves as the input for the next
time step. This process is repeated until t = 0, ensuring the
factuality between x and z∗ is maintained. The final summary
is generated from given z̃0 via the rounding step described in
Equation (2).

V. EXPERIMENTS
A. EXPERIMENTAL SETTINGS
The proposed summarizer is evaluatedwith threewidely-used
benchmark datasets: CNN/DM [49], XSUM [50], and
Gigaword [51]. These datasets have primarily been employed
in recent summary research, including diffusion-based
summarizations [16], [17], [52]. For example, in the
case of CNN/DM, the reference summaries, authored by
humans, are used to assess the generated summaries. The
CNN/DM dataset consists of over 300,000 news articles,
written by journalists from CNN and the Daily Mail. The
XSUM dataset includes a diverse range of BBC articles
from 2010 to 2017, covering domains such as news, politics,
and sports. The Gigaword dataset, designed for predicting
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relationships between articles and their headlines, is adapted
for summarization by considering articles as original texts
and their headlines as summary references. Table 2 presents
the statistics of these datasets. This paper follows the official
data splits for evaluating abstractive summarization models,
given their standard usage in the field.

The proposed method is first compared against two
baselines in Section V-B1: an autoregressive (AR) based
summarizer and a diffusion-based summarizer. The AR-
based summarizer, a pre-trained transformer-based seq2seq
model, is fine-tuned for each dataset. The diffusion-based
summarizer generates summaries by denoising the random
sample using a non-autoregressive transformer. Specifically,
the BART [6] model is used as the AR-based summarizer
and the AR-diffusion [17] and GENIE [16] are adopted as
diffusion-based models. Next, in Section V-B2, we compared
the proposedmethodwith large languagemodels (LLMs) that
have recently demonstrated remarkable performance. Specif-
ically, we conducted comparisons using a zero-shot setup
and LoRA fine-tuning for two LLM models: Llama2 7b and
Mistral 7b. Finally, in Section V-B3, a qualitative evaluation
was performed using LLMs, which are increasingly popular
for assessing the quality of machine-generated texts.

This paper follows the generation protocol proposed
by [17]. That is, for each source text, diffusion-based
summarizers randomly sample 50 Gaussian noises and
generate 50 summaries from the sampled noises. For AR-
based summarizer and LLMs, decoding methods such as
beam search, top-k sampling, and top-p sampling are used to
generate 50 summaries from the same source text. To select
the best summary from the generated summaries, this paper
adopts Minimum Bayes Risk [53] decoding. That is, given
the generated summaries Y , it selects the summary ŷ that
achieves the minimum expected risk under a loss function L
such that

ŷ = argmax
y∈Y

∑
y′∈Y

1
|Y|
L(y, y′).

Here, L is used as the ROUGE-1 score. Given that a higher
ROUGE-1 score indicates better performance, the formula is
modified to argmax.

This paper evaluates the proposed model and its baselines
across three dimensions: lexical overlap, factual consistency,
and diversity. Lexical overlap is measured by comparing the
generated summaries with reference summaries using the
ROUGE [54]. Factual consistency is evaluated using two
automatic metrics: BERTScore [20] and QFE [55]. Lastly, for
diversity, the models generate multiple summary sentences,
and the variety among these sentences is quantified using
the SELF-BLEU [56]. SELF-BLEU is based on the BLEU
score, which assesses the similarity between two sentences.
It can also evaluate how closely one generated summary
resembles the rest among multiple summary sentences.
By treating one sentence as the hypothesis and the others
as references, we can calculate the BLEU score for each
generated summary and define the average BLEU score as

the SELF-BLEU of the multiple summary sentences. The
lower the SELF-BLEU score, the more diverse the generated
summaries are. It is important to note that optimizing for
factual consistency does not necessarily guarantee diversity.
For instance, some models might generate diverse summaries
by making minor alterations to a summary that already has
high factual consistency. Ideally, both factual consistency and
diversity should be maximized, while acknowledging any
trade-offs between them. Therefore, this paper introduces
F1BS, the harmonic mean of factual consistency and diversity,
analogous to how recall and precision are combined in F1.
It is defined as follows:

F1BS = 2 ×
BERTScore × (100 − SELF-BLEU)
(BERTScore + (100 − SELF-BLEU))

.

The reason for subtracting SELF-BLEU from 100 is because
the range of the SELF-BLEU score is from 0 to 100 and the
lower is preferable.

The proposed method utilizes the AR-diffusion sum-
marizer, a diffusion-based summarizer that is pretrained
on each abstractive summarization dataset. The underlying
architecture is an encoder-decoder transformer model, which
includes a 6-layer encoder and a 6-layer cross-attention
decoder as the denoising architecture. Each layer contains
8 attention heads and a hidden dimension of 1,024. The
diffusion process is configured with an embedding dimen-
sion of 128, a square root noise schedule βt , and 2,000
diffusion steps (T ). This number of steps are matched in
the AR-diffusion model. For evaluation, all diffusion-based
summarizers utilize the tokenizer and vocabulary from bert-
base-uncased. In Equation (4), the factuality condition c
is set to 1 to ensure the most faithful representation of
the source text. All experiments are conducted using four
GTX-3090 GPUs.

B. EXPERIMENTAL RESULTS
1) PERFORMANCE OF SUMMARIZATION
Table 3 presents performances of the proposed summarizer
and baselines across the CNN/DM, XSum, and Gigaword
datasets. First, the proposed summarizer outperforms other
baselines in terms of factual consistency. Themost significant
margins are observed on the XSUM and Gigaword datasets.
The proposed summarizer achieves a BERTScore of 63.08 on
the XSUM dataset, which is 3.26 points higher than that
of the BART model using beam search. Similarly, on the
Gigaword dataset, it achieves a score of 72.85, outperforming
the BART model by 1.4 points. The summaries from the
XSUM and Gigaword datasets are highly abstract and are
written in a form that differs significantly from the source
text. The proposed summarizer, equipped with a factuality-
guided module, consistently refines intermediate summaries
to enhance factual consistent with the source text. As a
result, it generates a final summary that is both coherent and
factually consistent.

Moreover, the proposed summarizer achieves higher
ROUGE scores compared to the baselines across XSum, and
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TABLE 3. Performance measured with BERTScore, QFE and ROUGE on CNN/DM, XSUM, and Gigaword datasets.

TABLE 4. Performances of LLM-based summarization on CNN/DM and and XSUM datasets.

Gigaword datasets. It records the highest ROUGE-1 scores
of 32.18, and 31.39 for the XSum, and Gigaword datasets,
respectively. The proposed summarizer has 0.16 points lower
ROUGE-1 than the BART model using beam search in
CNN/DM data. This is a very small difference, and rather,
it shows a small but superiority in ROUGE-L. It is noteworthy

that the proposed model achieves higher ROUGE scores than
the AR-diffusion model, which indicates that the proposed
model generates summaries that are similar to the reference
summaries.

In terms of diversity, the proposed summarizer shows
superior SELF-BLEU performance compared to the BART
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FIGURE 3. Performance of LLMs in terms of diversity and factuality at different temperatures.

TABLE 5. Qualitative evaluation using large language model on XSUM dataset.

TABLE 6. Performance of LLMs based on the number of parameters.

summarizer. However, it shows slightly lower SELF-BLEU
scores than the diffusion-based baselines (GENINE and AR-
diffusion). This disparity is not significant and might be
attributable to the increased factual consistency. In terms of
F1BS, the proposed model achieves the best performance
across all three datasets. From these results, this paper val-
idates that the proposed summarizer is capable of generating
summaries that are both diverse and factually consistent.

2) A COMPARISON BETWEEN THE PROPOSED METHOD
AND LLMS
Table 4 presents the performance of both the proposed
models and the LLM-based summarizers on the CNN/DM
and XSUM datasets. Similar to the AR based summarizer, all
the LLMs have high factual evaluation scores, BERTScore
and QFE, in the beam-search sampling. Using top-k and top-
p sampling as a way to increase diversity produces more
diverse summaries, which improves the SELF-BLUE score,
but at the expense of factual consistency. This phenomenon
is observed in both zero-shot and fine-tuned models. In the
fine-tuned models, factual scores are higher than in the

TABLE 7. The prompt used for Qualitative evaluation.

zero-shot models, but diversity is reduced due to the
specialization for the dataset.

On CNN/DM data, summaries from the proposed models
demonstrate similar or higher factual consistency compared
to those from the LLM models. Specifically, the proposed
method has a BERTScore of 0.71 higher and a QFE of
about 0.14 lower than Mistral 7b (fine-tuned) with beam
sampling, which has the highest factual consistency score
among the LLM models. Additionally, the proposed method
significantly outperforms in diversity, with a SELF-BLEU
score difference of 51.67 and a harmonic mean score F1BS
difference of 54.34.

In the XSum dataset, unlike the CNN/DM dataset, the
BERTScore of the proposed method is lower than that of
the LLM models. This is because the LLM models have
high BERTScore due to their tendency to copy the source.
However, the proposed method achieves the highest QFE
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TABLE 8. Examples of generated summaries in XSUM dataset. The underline in the summaries implies an inconsistent token span.

score of 0.9214, indicating superior factual consistency
compared to the LLM models. As evidenced by the SELF-
BLEU scores, LLM models generally exhibit low diversity
across all sampling methods, whereas the proposed method
achieves a high diversity score. Consequently, the proposed
method scores 5.76 points higher than Llama2 7b (zero-
shot), which is the highest among LLMs in terms of F1BS
score. These results across the two datasets suggest that
the proposed method demonstrates superior performance in
both diversity and factuality compared to the LLM-based
models.

The LLM model can increase diversity by adjusting
both the temperature and the sampling method. Therefore,
we empirically demonstrate performance changes in response
to temperature variations. Figure 3 presents a compara-
tive experiment with the proposed model, exploring the
relationship between factual consistency and diversity in
LLM-generated summaries when altering the temperature.
For LLM-generated summaries, factual consistency remains
relatively stable when the temperature is between 0 and 1 but
tends to decrease when it exceeds 1. However, it is observed
that the diversity score does not improve significantly.
Notably, there is a marked difference in diversity generation
between the proposed method and the LLM-based method.
Although the summary generated using zero-shot top-p and

top-k sampling with the LLM model achieves the highest
F1BS score, it still does not surpass the score of the proposed
method.

We also compared the performance of the proposedmethod
to that of LLMs as the number of parameters increased.
Table 6 presents a comparative experiment examining factual
consistency and diversity relative to the parameter size of
the LLMs. Although increasing the size of the LLMs results
in a slight improvement in BERTScore, the enhancement in
diversity is not substantial. Consequently, the improvement in
F1BS is not significant and remains lower than that achieved
by the proposed method. This experiment suggests that
merely increasing the number of parameters in LLMs does
not necessarily result in better performance in terms of both
factual consistency and diversity.

3) QUALITATIVE EVALUATION USING LARGE LANGUAGE
MODEL
Abstractive summarization models may not be sufficiently
evaluated using only automatic metrics [57] and often
require qualitative evaluation as complements. Recently,
large language models (LLMs) have gained popularity for
evaluating the quality of machine-generated texts [58],
[59], because human evaluation, though precise, requires
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TABLE 9. Examples of generated summaries in XSUM dataset. The underline in the summaries implies an inconsistent token span.

specialized expertise and is both costly and challenging
to reproduce consistently. Following on studies [60], [61]
that demonstrate a close alignment of LLM-based evalu-
ations with human assessments, this paper adopts a large
language model to evaluate the quality of the generated
summaries.

Considering our aim to generate summaries that are
both diverse and factually consistent, directly comparing
generated summaries to a single reference may not fully
capture the quality of the summarization models. Therefore,
instead of making direct comparisons between the summaries
and a reference, this paper employs a LLM to provide
summarization scores as a zero-shot setting. Specifically, for
each source text and its corresponding generated summary,
the LLM predict a score that represents the summary’s
quality. To facilitate this, this paper utilizes a specific
prompt outlined in Table 7 with the text-davinci-003
model. Note that each summary is assigned a score ranging
from 1 to 3.

This paper follows the LLM-based evaluation framework
proposed by [16], with the following specifics. Initially,
it randomly samples 10% of the source text from the XSUM
test data. For each source text, 10 summaries are generated
for both the proposed model and the baselines. Subsequently,
the LLM predicts the score for each summary. Performances
are evaluated using two metrics: Average Summary Score
and Average High-Quality Summary. The average summary
score represents the mean score of all summaries, while the

average high-quality summary refers to the average number
of summaries receiving a score of 3.

Table 5 shows the scores of the proposed model and
its baselines. The proposed summarizer shows high per-
formance in both average summary score and average
high-quality summary compared to other baselines. Results
from average summary score demonstrate that the proposed
summarizer consistently generates a significant number
of high-quality summaries. Furthermore, scores from the
average high-quality summary indicate that the majority of
summaries generated from the proposed model are of good
quality. These results imply that the proposed model is
effective in generating summaries that are not only diverse
but also of high quality.

4) CASE STUDY
Table 8 presents two sample summaries generated by the
proposed summarizer alongside those from baseline models.
Summaries generated using the BART model with beam
search often demonstrate a lack of diversity, as evidenced by
the repetition of similar words across different summaries.
Efforts to enhance diversity in BART via top-k and top-p
sampling methods have led to increased diversity. Nonethe-
less, these summaries sometimes include inconsistent tokens
and exhibit diversity primarily in the form of minor word
variations within a single topic. For instance, the first top-
k summary mentions ‘‘an al-Qaeda leader may have hit a
family’’, which is not present in the source text. A similar

139312 VOLUME 12, 2024



J. Shin et al.: Factuality Guided Diffusion-Based Abstractive Summarization

TABLE 10. An example of failures and limitations.

issue is observed in the second summary from the top-
p model, where ‘‘south-west London’’ are generated, also
factually inconsistent with the source.

In contrast, summaries from diffusion-based summarizers
show considerable diversity and employ different expressions
for similar meanings, such as ‘‘the us army’’ and ‘‘pentagon’’.
However, the AR-diffusion model often generates sentences
with inconsistencies, like ‘‘head of al-qaeda’’ or ‘‘a man died
stabbed to fall’’, neither of which align with the source text.
On the other hand, the proposed summarizer consistently
generates factually consistent summaries, such as ‘‘two
brothers’’ and ‘‘a man died suffered a head injury’’. Since
the proposed summarizer guides the reverse process toward
increased factual alignment with the source, it generates
summaries that are not only consistent with the source text
but also high in diversity.

Table 9 provides a comparative overview of summaries
generated by the LLM-based summarizer and our sum-
marizer. For instance, the Llama2 7b model with beam
sampling produced summaries with high factual consistency
but limited diversity, often changing only a few words within
the same topic. Although top-k and top-p sampling methods
aimed for a wider variety of summaries, they inaccurately
generated numbers such as ‘‘90’’ or ‘‘139’’. Mistral tended
to generate longer texts than Llama2 but with lower diversity,
focusing on similar topics. Despite top-p and top-k samplings
offering higher factual consistency than Llama models,
they sometimes resulted in incorrect summaries such as
‘‘Over 5,000 people have been injured.’’ On the other
hand, the proposed model can generate summaries that not
only covered a diverse range of topics and vocabulary,
like ‘‘Many people are still missing’’ and ‘‘104 bodies had
been recovered,’’ but also maintained high levels of factual
accuracy.

5) FAILURE CASES AND LIMITATIONS
The diffusion-based summarizer introduced in this study
incorporates a non-autoregressive decoder, a choice that
inherently retains the token repetition and syntactical
errors commonly associated with non-autoregressive models.
Table 10 shows some examples of these failure cases. For
instance, in the first example provided, there is a repetition of
the tokens ‘‘this’’, and in the second example, the phrase ‘‘at
the top of Barclays Premier League’’ lacks the grammatical
correctness due to missing prepositions and articles. These
issues stem from the inherent structure of token generation,
where each token’s creation is heavily influenced by its
adjacent tokens. An analysis of 100 randomly chosen sum-
mary samples identified three instances of token repetition

and five grammatical inaccuracies. Although these issues do
not significantly impact the summaries semantic integrity or
factual accuracy, addressing them is crucial for the enhancing
the reliability of the summarization model.

VI. CONCLUSION
This paper introduces a factuality-guided module combined
with a diffusion-based abstractive summarizer to generate
summaries that are both diverse and factually consistent.
The factuality module guides factuality at each denoising
step, ensuring the diffusion-based summarizer reconstructs
summaries that are both diverse and factually consistent.
As the factuality-guided module integrates seamlessly in a
plug-and-play fashion with the diffusion-based summarizer,
it facilitates the generation of factually consistent sum-
maries without the need for retraining the diffusion-based
summarizer.

Experimental results from three benchmark datasets
indicate that the proposed summarizer outperforms both pre-
trained auto-regressive summarizers and contemporary state-
of-the-art diffusion-based models. Moreover, the proposed
summarizer has also demonstrated superior performance
compared to summarizations generated by large language
models. Additionally, qualitative evaluation using a large
languagemodel has confirmed the superiority of the proposed
method. The experiments demonstrate that the factuality-
guided diffusion-based abstractive summarizer is capable
of generating summaries with high diversity and factual
consistency.

The future work of this paper focuses on three main
areas. First, we aim to measure the proposed factuality score
not only at the token level but also at the sentence level.
Measuring the factuality score at the sentence level will
enhance the generation of summaries with high factuality by
allowing comparisons between tokens within the context of
their source sentences. Second, we plan to apply the proposed
method to a consistency model [62] that increases generation
speed by reducing the steps in the reverse process to one or
a few steps. As there are currently few studies utilizing the
consistency model in text generation, we will develop and
propose a method that applies it to text generation to achieve
high factuality. Finally, we intend to expand the proposed
method to accommodate long source documents.

ETHICAL CONSIDERATIONS
The authors aim to generate diverse summaries while
improving the factuality of the summarization model with
respect to hallucinations, which is the main concern of the
summary model. They find that summarization models tend
to lack factuality when generating text with high diversity.
Inaccurate summaries can be misleading to the user in terms
of misinformation.
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