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ABSTRACT Ensuring the dependability of software before its public release is of utmost importance.
Many software issues arise due to human errors made throughout the development process, highlighting
the importance of addressing these errors early. It is crucial to incorporate testing resources at the beginning
of development to minimize potential issues. Utilizing an approach that identifies modules susceptible to
errors helps potential problems. With an understanding of the significance of precisely anticipating module
failures, multiple automated solutions are already emerging. This work presents a refined software defect
prediction model that utilizes a meta-heuristic optimization technique. The methodology integrates NASA’s
data collection procedure, which involves data cleansing, reducing the dimensionality of features, and
predicting defects. Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) are used
to decrease the feature dimensionality, while an Extreme LearningMachine (ELM) is utilized for forecasting
defects. The ELM parameters, such as weight and biases, are ideally chosen using the suggested improved
JAYA optimization (IMJAYA) method. The model’s validation involves assessing its accuracy, sensitivity,
specificity, F1 score, and MCC metrics using a 10 × 5 cross-validation. The model is verified using NASA
datasets that consist of several classes, such as CM1, KC2, KC3, MC1, PC1, and JM1. The PCA-LDA+
IMJAYA-ELM model yields defect prediction accuracies of 95.73%, 98.08%, 94.87%, 96.23%, 97.10%,
and 97.46% for the CM1, KC2, KC3, MC1, PC1, and JM1 datasets, respectively. The research outcomes
show encouraging outcomes when using a meta-heuristic optimization technique with smaller feature sets
for studies on predicting software defects.

INDEX TERMS Software defect prediction, PCA, LDA, JAYA optimization, ELM, NASA.

I. INTRODUCTION
Defect forecasting due to the constantly evolving nature of
software engineering, challenges may emerge at any point
during development, impacting the reliability and efficiency
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of the final product [1]. SDP employs predictive models and
methods to anticipate and address these issues. Researchers
use historical data and statistical analysis to forecast software
defects by identifying trends and patterns indicating potential
flaws in code segments. This proactive approach helps devel-
opers improve software quality, optimize resource usage, and
anticipate challenges. Measures like code churn, developer
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expertise, and code complexity are employed for prediction
[2]. In the ever-changing field of software development,
predicting and preventing errors is crucial for creating robust
and dependable software, ultimately enhancing software
reliability and customer satisfaction by reducing debugging
time and optimizing development processes [3].
When it comes to discovering and repairing software

defects, SDP using Machine Learning (ML) uses cutting-
edge computational approaches. In the dynamic field of
software development, vulnerabilities in code can cause
systems to fail or become insecure [4]. This emerging area
is meeting a need in the market by using ML algorithms
to analyse massive datasets in search of patterns and
possible software flaws; this is an area where traditional
methods fall short [5]. Machine learning (ML) models
can anticipate software problems by learning from past
occurrences and analyzing code complexity, bug history data,
and code modifications. This proactive method improves
the efficiency and dependability of software systems while
decreasing the costs associated with repairs. There is a
growing need for dependable software, and ML in SDP
can potentially revolutionize the development of first-rate
solutions [6].
SDP using Machine Learning (ML) is critical for software

quality assurance. SDP incorporating ML has emerged due
to the increasing sophistication of software systems and the
requirement for improved defect management throughout
the development lifecycle. ML algorithms detect patterns in
historical data to anticipate new code faults [7]. Researchers
and practitioners are refining defect prediction models by
employing deep learning. Integrating ML into software
development processes is a proactive approach to designing
more reliable and robust software systems [8].

Machine learning-driven SDP is pivotal in software
engineering and quality assurance efforts, striving to identify
and resolve defects promptly within the fast-paced software
industry. ML empowers QA teams and developers to analyze
vast datasets, identify trends, and forecast potential software
issues. The integration of ML with SDP offers several advan-
tages, enabling teams to identify and rectify development
process issues before they escalate proactively [9]. This
approach enhances software reliability and quality while
reducing the time and costs of addressing errors later in the
development cycle. SDP with ML also optimizes resource
utilization by prioritizing testing efforts on critical code
segments most likely to contain faults, thereby improving
testing efficiency. ML-driven SDP contributes to system
strengthening and stabilization by leveraging trends and
historical errors to identify security vulnerabilities, helping
developers avoid repeating past mistakes [10]. In today’s
software development environment,ML-driven SDP is essen-
tial for resource optimization, improved software quality, the
construction of more reliable and secure software systems,
and the early detection and correction of errors [11].
ML-based SDP has revolutionized software quality assur-

ance and development practices. Traditional rule-based or

manual methods for discovering and addressing software
defects are labour-intensive and prone to errors. In contrast,
ML algorithms leverage data to enhance fault detection and
prediction accuracy. ML models excel at identifying trends
and anomalies within large datasets, uncovering hidden pat-
terns that aid in fault prediction. ML-based defect prediction
systems exhibit exceptional versatility and adaptability [12].
As these models learn from data, their predictive capabilities
improve, enabling software development teams to anticipate
and address issues proactively. Each software project can
benefit from a customized ML model tailored to predict
specific software problems, enhancing the accuracy and
usefulness of defect predictions. This data-driven, intelligent,
and flexible approach to SDP using ML surpasses traditional
methods [4]. ML is poised to quickly transform software
defect prediction, repair, and prevention, resulting in more
dependable and superior software systems.

Enhancing the model’s efficiency is essential to reduce
the time and financial resources spent on bug resolution,
facilitating early bug detection before they progress to later
stages of development [13]. Additionally, proactive actions
taken during development enhance the program’s overall
security stance by mitigating potential risks. Optimizing
the performance of the SDP model, reducing costs, and
streamlining processes are critical objectives. These goals
drive the development of a new hybrid intelligent model,
striving to accomplish the subsequent goals:

• To develop a ML framework that boosts accuracy
in detecting flawed software modules and potentially
uncovers defects that were not previously identified.

• To enhance the precision of SDP through the reduction
of feature dimension complexity via PCA-LDA

• To utilize an Extreme Learning Machine (ELM),
an upgraded single hidden layer feed-forward network
(SLFN), in combination with conventional learning
methods to enhance overall generalization performance
and expedite the learning process.

• To investigate the improved JAYA optimization method
(IMJAYA) is to optimize the weights and biases of the
ELM to enhance its generalization performance relative
to prior approaches, achieved through a reduction in the
number of hidden nodes.

• To assess its performance, test the proposed model using
various datasets such as CM1, KC2, KC3, MC1, PC1,
and JM1. Furthermore, its efficiency will be compared
to existing methods as part of the evaluation process.

The key innovation of this study lies in the method
employed for feature normalization and reduction. Integrat-
ing the PCA-LDA and IMJAYA-ELM algorithms, a hybrid
methodology is developed to enhance the accuracy of
software failure predictions. Here is an overview of the study:
Section II summarizes the literature review, followed by a
detailed presentation of the proposed approach in Section III.
Section IVcomprehensively explores the experimental phase,
Section V provides the overall discussion on the research
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work and Section VI concludes with details of the results and
suggestions for further research.

II. RELATED WORK
Earlier studies have shown a growing interest in using ML
algorithms for SDP model design. Researchers have applied
ML techniques to forecast issues within software modules,
and this area has been extensively researched. Understanding
this prior work is crucial for appreciating the contributions
of the current study. In their research, Kassaymeh et al.
[14] utilized the salp swarm algorithm (SSA) along with
a backpropagation neural network (BPNN) for SDP. This
approach targets the prediction of software problems, a well-
known issue in software engineering that aims to identify
issues during or after a project. Using the SSA optimizer
and BPNN, the authors improved prediction accuracy by
optimizing BPNN parameters. The proposed technique was
evaluated using software fault prediction datasets of various
sizes and complexities, with performance metrics including
AUC, Confusion Matrix, Sensitivity, Specificity, Accuracy,
and Error Rate. The combination of SSA and BPNN
outperformed other methods when applied to the Ar3 dataset,
achieving a score of 0.89. Additionally, Qiao et al. [15] intro-
duced a deep learning approach for software module defect
prediction, which outperformed several other techniques on
specific datasets. Their method significantly improved over
existing techniques, reducing mean square error and increas-
ing the squared correlation coefficient. In another study,
Matloob et al. [16] surveyed SDP, focusing on ensemble or
hybrid classification algorithms. They summarized trends in
ensemble learning methods, highlighting popular techniques
like random forest (RF), boosting, and bagging while noting
that others, such as stacking, voting, and Extra Trees, were
less commonly used. Various ensemble learning frameworks
showed promising results in improving software defect
prediction. Mehta and Patnaik [1] discovered that XGBoost
and Stacking yielded highly effective results, achieving defect
prediction accuracy exceeding 90.00% while also addressing
data imbalance and high dimensionality issues within the
defect dataset using SMOTE. Like PLS regression, SMOTE
combines two methods to mitigate the impact of erroneous
dataset dimensionality.

According to Li et al. [17], there is a rising interest in
the use of unsupervised machine learning (ML) techniques
in SDP, which offers advantages such as requiring less
labelled training data. The primary objective is to evaluate the
effectiveness of SDP using unsupervised learning methods.
The researchers assessed prediction performance across
various studies using confusion matrices and the Matthews
Correlation Coefficient (MCC). A meta-analysis revealed
unsupervised models demonstrate prediction capabilities
comparable to supervised models within and across different
software projects. The most effective unsupervised model
families identified were FSOMs (Fuzzy Self-Organizing
Maps) and Fuzzy CMeans (FCM). Furthermore, Prashanthi
and Chandra Mohan [18] emphasized the critical importance

of software quality due to the widespread use of software
across various industries. SDP’s primary objectives are to
improve software quality and address software issues. The
current state of SDP methods emphasizes dependability
and robustness. The paper introduces the Optimized NN
(Optimized Neural Network), a hybrid optimization-based
neural network for software fault detection. Feature selection
and SDP are integrated into this approach, where the relief
algorithm is used for feature selection to identify deficient
and non-deficient features. Subsequently, a neural network
classifier is fine-tuned using a hybrid optimization strategy
that combines the social spider algorithm (SSA) and the
grey wolf optimizer (GWO). Through K-fold validation, the
developed prediction model achieves an impressive accuracy
of 0.9364 based on the evaluation.

Standard automated software fault prediction methods
utilize machine learning (ML). However, current ML-based
approaches necessitate manual feature extraction by humans,
which is time-consuming and cannot often capture semantic
information from bug-reporting tools. In contrast, deep
learning (DL) methods enable automatic extraction and
learning from complex, high-dimensional data. Giray et al.
[19] developed a DL-based SDP model that automatically
recognizes, analyzes, summarizes and synthesizes SDP data.
They identified Convolutional Neural Network (CNN) as the
most utilized DL algorithm for software defect prediction.
Azzeh et al. [20] introduced a Support Vector Machine
(SVM) model for SDP, commonly employed in building
SDP models. They investigated the impact of four kernel
functions and feature selection on SVM performance for
SDP, assessing their stability. Their study examined various
experimental parameters, including feature subsets, data
granularity, and dataset imbalance ratio, and compared linear
and nonlinear kernel functions. A comprehensive study using
four kernel functions, ten feature subset selection criteria
based on information gain, thirty-eight public datasets,
and one evaluation measure demonstrated that SVM with
a Radial Basis Function (RBF) kernel enhances SDP
accuracy.

SDP is crucial in identifying problematic classes or
modules early in software development. Mafarja et al. [21]
conducted a study comparing several machine learning
algorithms, including KNN, NB, LR, DT, SVM, and RF.
They found that RF excelled in eliminating unnecessary
or duplicated features. They utilized the Binary Whale
Optimization Algorithm (BWOA) to further enhance RF
performance and eliminate irrelevant or redundant features.
The BWOA performance was enhanced through SBEWOA,
which combines exploration techniques from the Grey Wolf
Optimizer (GWO) and Harris Hawks Optimization (HHO)
algorithms. Evaluation using PROMISE datasets consid-
ered accuracy, feature count, and fitness function metrics.
Detecting software bugs is crucial for ensuring quality and
reliability in software development. Yang et al. [22] proposed
an SDP model incorporating a hybrid fitness function that
leverages Particle Swarm Optimization (PSO) and Social
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Spider Algorithm (SSA) to expedite convergence before
SSA updates. They introduced a fitness function based on
maximum likelihood estimation of initialization parameters.
Their hybrid approach (SSA-PSO) demonstrated superior
convergence time, stability, and accuracy performance across
multiple datasets. Das et al. [23] employed the Golden Jackal
Optimization (GJO) algorithm, inspired by golden jackal
hunting behaviours, to develop a novel feature selection
(FS) method for SDP. They tested this method using
KNN, DT, NB, and QDA classifiers on SDP datasets.
Comparisons against other feature selection approaches,
including FSDE, FSPSO, FSGA, and FSACO, indicated
that FSGJO consistently improved categorization accuracy
across observations. Statistical analysis using Friedman
and Holm tests confirmed that the proposed strategy was
effective in selecting optimal features compared to previous
methods.

Soft computing and ML are critical approaches for
addressing the challenging process of SDP, which is essen-
tial for ensuring the fault-free performance of software
components. Hassouneh et al. [25] introduced a Whale
Optimization Algorithm (WOA) model utilizing a single-
point crossover approach to enhance exploration and avoid
local optima. Various selection methods were employed:
Tournament, Roulette wheel, Linear rank, Stochastic univer-
sal sampling, and random-based selection. A comprehensive
analysis of 17 PROMISE SDP datasets demonstrated that
the proposed augmentation outperformed the original WOA
and six other state-of-the-art approaches, leading to improved
performance of the ML classifier. Lee et al. [26] proposed
a cost-sensitive decision tree optimization method using
harmony search (HS-CSDT) to enhance SDP model per-
formance. In HS-CSDT, parameters such as the appropriate
feature set, regularization method, class weight, and decision
tree hyperparameters are optimized using harmony search.
They compared HS-CSDT against similar methods across
28 open-source projects, evaluating metrics such as detection
probability, false alarm rate, G-measure, and reduction in file
inspection.

Dimensionality reduction techniques are crucial for
addressing challenges posed by high-dimensional datasets
in SDP. The abundance of features in software codebases
makes it challenging to construct efficient and effective defect
prediction models, a phenomenon often referred to as the
curse of dimensionality. Dimensionality reduction methods
such as PCA, LDA, and feature selection aim to decrease the
number of features while retaining essential data. This pro-
cess enhances model interpretability, reduces computational
complexity, and mitigates overfitting. By extracting relevant
patterns and eliminating noise or redundant information,
dimensionality reduction facilitates faster identification and
resolution of software defects, ultimately enabling the
development of more effective defect prediction models.

In this study, an improved methodology of JAYA optimiza-
tion (IMJAYA) has been incorporated into software defect
prediction (SDP) to enhance the model’s efficiency and

accuracy. Swift bug identification and resolution are vital
in software development. By leveraging JAYA optimization
for feature selection, hyperparameter tuning, and training
machine learning models, defect prediction systems can be
tailored more effectively to specific datasets. The algorithm’s
capability to handle imbalanced datasets is particularly ben-
eficial when addressing issues related to defective instance
distribution. Researchers and practitioners can utilize JAYA
optimization to analyze and potentially enhance defect
prediction models, thereby advancing software development
due to its straightforwardness and adaptability.

III. MATERIALS AND METHOD
This section describes the proposed methodology for soft-
ware defect prediction and the data used to validate the
proposed model.

A. PROPOSED METHODOLOGY
The methodology employed in the proposed model is
outlined in this section. Figure 1 illustrates the general layout
of the suggested model. The model is developed using the
NASA dataset and progresses through three key steps: data
preprocessing, dimensionality reduction, and performance
evaluation. The system starts by acquiring input from the
NASA dataset, where missing values are addressed through
preprocessing. Subsequently, an appropriate dimensionality
reduction technique is applied. The final step involves
assessing the model’s performance using various evaluation
metrics and a hybrid approach that integrates IMJAYA
(Improved JAYA)with an ExtremeLearningMachine (ELM),
IMJAYA-ELM.

B. DATASETS
The PROMISE repository, which is publicly accessible,
provides access to datasets, including the NASA PROMISE
dataset [1]. This dataset collection consists of software
engineering datasets utilized in various NASA programs,
encompassing bug reports, feature requests, and other
essential metrics relevant to software engineering. Empirical
studies and software flaw prediction in software engineering
often rely on this common dataset. This study employed six
specific NASA datasets ( CM1, KC2, KC3, MC1, PC1, and
JM1) [27], [28] to predict software problems. Table 1 presents
comprehensive details regarding the datasets utilized.

The features table of all the above datasets are given below
in Table 2 where Yes indicates the feature is present in that
dataset and No indicates the feature is absent in that dataset.

C. DATA PRE-PROCESSING
The machine learning pre-processing phase aims to prepare
the raw data for training machine learning models in a
suitable format, which involves cleaning and standardizing
the data to facilitate detailed analysis [29]. Tasks in this stage
include addressing imbalanced data, partitioning, cleaning
and transforming data, and selecting relevant features [3].
In this study, missing values in the dataset were estimated
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FIGURE 1. Schematic diagram for the suggested framework.

TABLE 1. Dataset used.

during data preparation based on the dataset’s features. The
approach involved calculating the average value of a specific
property across the dataset and using this average to fill in
missing data entries.

D. FEATURE NORMALIZATION
An integral aspect of any machine learning pre-processing
pipeline is feature normalization (FN), aimed at uniformly
standardizing features across datasets [9]. This process
involves adjusting the values of independent variables to
facilitate quicker convergence of algorithms and prevent
any single feature from exerting excessive influence on the
learning process. Standard normalization techniques include
z-score normalization and Min-Max scaling, which rescale
data to fit within a specified range, typically between 0 and 1
[30]. FN enhances the model’s performance and ability to

generalize to new samples by making it less sensitive to
variations in input data. Additionally, normalization improves
the interpretability of model parameters, providing insights
into how different features contribute to the learning process
[31]. Overall, feature normalization is crucial for ensuring the
robustness and effectiveness of machine learning algorithms
across diverse scenarios [32].
Here, feature normalization is typically represented by

Ff =
F − Fmin

Fmax − Fmin
(1)

In this context, Ff denotes the normalization value, while
Fmax and Fmin signify the maximum and minimum values of
a particular feature, respectively.

E. FEATURE DIMENSIONALITY REDUCTION
Feature dimensionality reduction is crucial in predictivemod-
elling and machine learning tasks [33]. As datasets become
increasingly complex and high-dimensional, challenges such
as heightened computational requirements, overfitting, and
reduced model interpretability arise due to the abundance
of features [34]. Feature dimensionality reduction techniques
aim to address these challenges by identifying and modifying
the most informative features while eliminating redundant or
irrelevant ones [10]. The primary goals include improving
prediction accuracy, reducing training time, and enhanc-
ing the model’s generalizability across different scenarios.
By reducing the number of features, these strategies simplify
data representation, filter out irrelevant information, and
highlight the most important patterns [35]. This streamlining
process reduces computational complexity and enhances the
model’s interpretability, facilitating a deeper understanding
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TABLE 2. Feature availability in each dataset.

of the relationships between features and the target vari-
able. Feature dimensionality reduction is a critical area
of research in handling high-dimensional data, which is
essential for developing efficient machine learning models
[5]. The process involves extracting relevant information
from multiple features based on predefined criteria such as
class distinguishability or classification performance. This
curated approach improves model accuracy while mitigating
overfitting issues and expediting the training process by
reducing complexity and enhancing interpretability.

In this study, a hybrid approach called PCA-LDA has
been implemented, combining PCA and LDA to reduce
dimensionality. Further details about this methodology are
discussed below:

1) PCA-LDA
Standard techniques for reducing dimensionality in machine
learning and pattern recognition include PCA and LDA.
PCA focuses on maximizing data variance, while LDA
aims to identify feature combinations that better distinguish
between different classes [36]. The intensive memory and
computational requirements arise from large featurematrices,
necessitating dimensionality reduction. PCA is commonly
used to reduce dataset dimensions while preserving diversity,
whereas LDA incorporates class information for dimen-
sionality reduction in high-dimensional data [37]. However,
traditional LDA faces challenges with high-dimensional,
small-sample-size datasets due to issues with the within-class
scatter matrix [38].

Combining PCA and LDA with specific machine learning
classifiers improves outcomes by using smaller feature sets
and enhancing accuracy. To ensure the uniqueness of the
within-class scatter matrix, the total number of features
(M ) and the number of target classes (t) must be at least
’M + t’. This study adopts a hybrid PCA and LDA
approach to address this requirement. Initially, PCA is used
to reduce the features from M dimensions to m dimensions,
followed by LDA to reduce further the ’m’ dimensions to
’c’ dimensions, where c is much less than m and m is
much less than M . The significance of the feature matrix
is enhanced by sorting the eigenvalues of the features in
descending order [33]. Next, the normalized cumulative
sum of variance (NCV) for each feature is calculated [39].
The procedure to determine the NCV of the x th feature is
as follows:

NCV (x) =

∑i
u=1 β (u)∑A
u=1 β (u)

, 1 ≤ x ≤ V (2)

In this scenario, ’V ’ denotes the dimension of the feature
vector, and β (u) represents the eigenvalue corresponding
to the uth feature. A manual threshold is set to conclude
the selection process, and features are considered suitable
if their NCV value surpasses the predetermined threshold.
The most effective feature selection is determined through
practical experimentation [40]. It is important to emphasize
that only the coefficients of the first ‘e’ eigenvectors meeting
the threshold are preserved for feature reduction during online
prediction. In this context, these chosen eigenvectors are
called ‘‘Basis Vectors’’ (Bv).
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The combined dimensionality reduction technique, PCA-
LDA, has been applied to select essential features from the
dataset. The NCV metric helped identify relevant features
from the high-dimensional dataset. NCV values for different
features were calculated individually using both PCA and
PCA-LDA methods [12]. The experiments revealed that
PCA-LDA, with 16 features, retains more information than
PCA, which requires 22 features. A manual NCV threshold
of 0.97 has been established. The findings demonstrate that
the PCA-LDA approach, especially with 16 features, achieves
higher accuracy than PCA when applied to the KC2 dataset.
Considering similar features, this methodology has been
extended to other datasets such as CM1, KC3, MC1, PC1,
and JM1 [41].

F. IMJAYA-ELM
This section briefly overviews Extreme Learning Machine
(ELM) and JAYAOptimization, then introduces the proposed
IMJAYA-ELM algorithm.

1) EXTREME LEARNING MACHINE(ELM)
The capacity of single-hidden layer feedforward neural
networks (SLFNs) to accurately imitate continuous functions
and categorize discontinuous portions has led to extensive use
over the past two decades [42]. The Levenberg-Marquardt
(LM) and the Backpropagation (BP) algorithms commonly
train SLFNs using gradients [43]. Although widely uti-
lized, traditional training algorithms suffer from several
drawbacks, such as slow learning rates from inefficient
steps, susceptibility to overfitting and getting stuck in local
minima, necessitating multiple iterations for performance
improvement. In contrast, the newly introduced ELM
addresses these challenges posed by gradient-based methods
[44]. The ELM exhibits strong capabilities in classification,
regression, and prediction tasks. It learns more quickly
and shows improved generalization performance compared
to traditional learning algorithms such as BP, SVM, and
Least Squares Support Vector Machines (LS-SVM). Unlike
SLFNs, which calculate output weights by inverting the
hidden layer output matrix [45], ELM randomly assigns
parameters to hidden nodes, including input weights and
hidden biases [46]. The mathematical intricacies of ELM are
detailed below.

In the context provided, S represents a list of ran-
domly selected training samples (xi, ti), where xi =

[xi1, xi2, . . . , xil]T ∈ Rl and ti = [ti1, ti2, . . . , tiC ]T ∈ RC .
The SLFNs comprise nh hidden nodes, and the activation
function θ (.) is defined as follows:
nh∑
i=1

woi θ (xj) =

nh∑
i=1

woi θ(w
h
i · xj + b̂i) = oj, j = 1, 2, . . . , S

(3)

Here, the weight vector is whi =
[
whi1,w

h
i2, . . . ,w

h
il

]T
which specifies a connection in a hidden neuron (ith) and
the input neurons. Most likely, the hidden neuron’s weight

vector is interpreted as woi =
[
woi1,w

o
i2, . . . ,w

o
iC

]T . At last,
the hidden neuron of bias is ith specified by b̂i. The estimated
value of SLFNs for S has zero error, i.e., ∃ whi , w

o
i , b̂i

such that
nh∑
i=1

woi θ (w
h
i · xj + b̂i) = tj, j = 1, 2, . . . , S (4)

The vector format of Equation(4) is explained below:

Zwo = F (5)

Here,

Z (wh1,w
h
2, . . . ,w

h
nh , b̂1, b̂2, . . . , b̂nh , x1, x2, . . . , xN )

=

 θ (wh1 · x1 + b̂1) . . . θ(whnh · x1 + b̂nh )
... . . .

...

θ (wh1 · xN + b̂1) . . . θ(whnh · xN + b̂nh )


N×nh

,

wo =

 wo1
T

...

wonh
T


nh×C

and

F =

 tT1
...

tTN


N×C

where Z represent the hidden layer output matrix. Now, the
output weight wo can be calculated by finding the smallest
least norm square (LS) solution of the above linear system
equation (3) as

ŵo = Z†F (6)

Since Z† denotes the Moore-Penrose(MP) generalized
inverse of matrix Z, this technique aids ELM in improving
its generalization efficiency. The LS solution with the least
norm is the only one. ELM converges faster than conventional
learning algorithms since its answer is analytically obtained
without iteratively tuning parameters [47].

2) JAYA ALGORITHM
The JAYA algorithm, an innovative optimization technique
devised by Rao, has gained significant popularity in research
due to its simplicity and robustness. Results obtained with
the JAYA algorithm consistently surpass those achieved by
other optimization methods [48]. What sets this algorithm
apart is its reliance on basic control parameters such as
population size and generation number. The core concept
behind the JAYA algorithm is to steer the solution directly
towards the optimal outcome while avoiding less desirable
paths [7].

Let us consider the function f (s) as the objective function
to maximize or minimize. There are n potential solutions
at each iteration k , where j varies from 1 to n, and each
solution has a dimension d , where d ranges from 1 to m.
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At iteration k , the value of sj,d (k), which denotes the jth

solution in the d th dimension, can be adjusted and its altered
value is observed [49].

s′jd (k) = sjd (k) + r1d (k)(sMOd (k)

− |sjd (k)|) − r2d (k)(sLOd (k) − |sjd (k)|) (7)

where sMO(k) represents the value for the most optimal
solution in d thdimension and sLO(k) represents the value for
the less optimal solution in d th dimension during iteration
k . It is worth mentioning that the candidate’s most optimal
and least optimal are the best and worst solutions [50], with
the best and worst fitness values in the entire population
of an iteration. r1d (k) and r2d (k) indicate two random
numbers in dimension d during k th iteration which lie
in the interval [0, 1]. s′jd (k) denotes the updated value of
sjd (k). The term ‘‘r1d (k)(sMOd (k) − |sjd (k)|)’’ defines that
the solution tries to move toward the best solution and the
term ‘‘r2d (k)(sLOd (k) − |sjd (k)|)’’ indicates that the solution
tries avoid the worst solution. The modified s′jd (k) value is
accepted if the functional value generated by it is better. The
overall steps involved in the JAYA algorithm are shown in
Figure.2.

FIGURE 2. Flowchart for JAYA Algorithm.

3) PROPOSED IMPROVED METHODOLOGY FOR JAYA
BASED EXTREME LEARNING MACHINE(IMJAYA-ELM)
ELM faces two critical challenges due to its method of
arbitrarily selecting input weights and hidden biases. Firstly,
this approach necessitates more hidden neurons than tradi-
tional gradient-based methods, decreasing responsiveness to
unknown test data. Secondly, the increased number of hidden
neurons contributes to an ill-conditioned output matrix M
within the hidden layer, leading to poorer generalization
performance [50]. It’s important to highlight the condition
number as a useful qualitative measure for evaluating matrix
conditioning. This number quantifies how close a system is
to becoming ill-conditioned, with a low condition number
indicating good conditioning and a high number indicating
the opposite. The 2-norm condition number of matrixM can
be computed as follows:

κ2(M ) =

√
λmax(MTM )
λmin(MTM )

(8)

Here, λmax(MTM ) denotes the largest eigenvalue and
λmin(MTM ) specified as smallest eigenvalue of the matrix
MTM .

To address these challenges, researchers have explored the
use of evolutionary algorithms (EAs) and swarm intelligence-
based algorithms over the past decade, leveraging their capa-
bilities in global optimization [7]. Some researchers proposed
a hybrid approach known as evolutionary ELM (E-ELM),
where a modified differential evolution (DE) algorithm
optimizes hidden node parameters and a Moore-Penrose
(MP) generalized inverse is employed to find solutions [49].
They demonstrated that E-ELM offers faster learning and
improved generalization compared to traditional methods,
with a more streamlined network structure than ELM.
However, E-ELM requires tuning two additional parameters:
mutation and crossover factors. Another approach utilizes a
PSO-based evolutionary ELM (PSO-ELM) to select hidden
node parameters, necessitating only one parameter for
tuning. Researchers have integrated boundary conditions into
conventional Particle Swarm Optimization (PSO) to enhance
the performance of Extreme Learning Machine (ELM) [51].
Subsequently, an enhanced PSO-based ELM (IPSO-ELM)
was proposed to optimize Single Hidden Layer Feedforward
Networks (SLFNs). IPSO incorporates the root mean squared
error (RMSE) and the norm of output weights from a
validation set to achieve improved convergence performance.
A hybrid learning algorithm has been introduced using a
real-coded genetic algorithm and ELM (RCGA-ELM) for
no-reference image quality assessment. However, RCGA
requires two genetic parameters—crossover and mutation
[52]. Meanwhile, an input weight selection technique has
been introduced to enhance ELM’s conditioning using linear
hidden neurons. This approach achieved numerical stability
without compromising accuracy.

Various researchers have employed optimization algo-
rithms such as Genetic Algorithms (GA) and its variants,
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Particle Swarm Optimization (PSO) and its derivatives,
Differential Evolution (DE), and others to discover optimal
hidden node parameters. While these methods offer distinct
advantages, they require careful tuning of algorithm-specific
parameters, significantly impacting their performance [53].
To tackle the issues related to parameter tuning mentioned
above, this research utilizes a parameter-free method known
as the JAYA algorithm. A new approach named IMJAYA-
ELM is introduced by integrating the Improved JAYA
(IMJAYA) algorithm with ELM. IMJAYA-ELM mitigates
issues identified in recent literature by leveraging IMJAYA
to optimize hidden node parameters and using the Moore-
Penrose (MP) generalized inverse for analytical solutions
[35].

The improved JAYA algorithm targets global optima by
considering both the root mean squared error (RMSE)
and the norm of output weights in Single Hidden Layer
Feedforward Networks (SLFNs), which enhances generaliza-
tion performance and SLFN conditioning. IMJAYA aims to
minimize the norm of output weights and restrict hidden node
parameters within specific ranges to improve the convergence
performance of ELM. The proposed IMJAYA-ELM approach
is outlined as follows:

(1)Initially, all candidate solutions within the population
will be randomly initialized, and each candidate solution will
include a set of input weights and hidden biases.

sj =

[
wh11,w

h
12, . . . ,w

h
1l,w

h
21,w

h
22,

. . . ,wh2l,w
h
nh1,w

h
nh2, . . . ,w

h
nhl, b̂1, b̂2, . . . , b̂nh

]
(9)

It’s important to note that all input weights and hidden biases
are initialized randomly within a range of [−1, 1].

(2) For each solution, assess the output weights and fitness.
In this context, fitness is defined as the root-mean-squared
error (RMSE) calculated on the validation set rather than
the entire training set to mitigate overfitting. The fitness is
determined by:

fy() =

√√√√√√
Nv∑
j=1

||

nh∑
i=1

woi θ (w
h
i · xj + b̂i) − tj||22

Nv
(10)

Here, Nv is specified as the list of validation samples.
(3) Identify the best (sMO) and worst (sLO) solutions from

all the solutions in the population and then adjust the solutions
using equation (7).
(4) Update the solutions based on the fitness value and the

norm of the output weights, then generate a new population
using the following procedure:

sj (k + 1) =



s′j(k)if
(
sj (k)

)
− f

(s′j(k)) > ϵf (sj(k))or(|f (sj(k))
−f (s′j(k))| < ϵf (sj(k))and ||ωo

s′j
||

< ||ωo
sj ||

sj(k)otherwise

(11)

(5) According to the literature, all input weights and
biases are recommended to fall within the range of [−1, 1].
Therefore, the IMJAYA-ELM uses the following equation to
address the issue of solutions going out of this range.

sjd (k + 1) =

{
−1 if sjd (k + 1) < −1
1 if sjd (k + 1) > 1,

1 ≤ j ≤ Np, 1 ≤ d ≤ D (12)

(6) Continuously perform steps (3) to (5) until the
maximum number of iterations is reached. Eventually, the
best input weights and hidden biases are determined and used
with the testing data to evaluate the system’s performance.

The suggested approach described in equation(11) is
utilized to determine the optimal input weights and hidden
biases, aiming to achieve smaller norm values for the output
weights of SLFNs. Consequently, this results in a reduced
condition value for the output hidden matrix. The proposed
IMJAYA-ELM offers several advantages: it operates without
algorithm-specific parameters, enhances conditioning, and
demonstrates improved generalization performance with
a more compact network structure. In contrast to other
gradient-based techniques and traditional ELM methods,
this approach does not require activation functions to be
differentiable. The algorithm for the implementation of
the proposed model for both offline learning and online
prediction is given in algorithm 1 and algorithm 2.

Algorithm 1 Steps for Implementing the Suggested PCA-
LDA+IMJAYA-ELM Method for Offline Learning

0: for each data sample do
0: Prepare the data by eliminating null values and applying

min-max normalization to scale the features within
the range of [0,1].

0: Acquire the normalized set of feature vectors with
dimension V .

0: end for
0: Use PCA-LDA approach to reduce the dimension of

feature vector from V to l, where l is calculated
from NCVmeasure. Retain the corresponding l basis
vector coefficients.

0: Conduct k-fold cross-validation on the entire dataset to
create training, validation, and testing data sets.

0: Train the ELM algorithm using the IMJAYA algorithm
to determine the optimized input weights and hidden
biases. In the IMJAYA process, assess the fitness
RMSE on the validation set.

0: Determine the output weights using the optimized input
weights and hidden biases.

0: Assess the prediction performance on the test set.=0

IV. EXPERIMENTAL SETUP AND PERFORMANCE
METRICS USED
The IMJAYA-ELM model has been evaluated on a Windows
11 operating system with a core-i7 CPU clocked at 3.4GHz
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Algorithm 2 Steps for Implementing the Suggested PCA-
LDA+IMJAYA-ELM Method for Online Prediction
0: Input the unknown data into the proposed system.
0: Normalize the features to preprocess the query data.
0: Acquire the normalized feature and store it in a feature

vector.
0: Determine the reduced set of features by multiplying

the feature vector with the retained basis vector
coefficients.

0: Input the reduced feature set into the SLFN classifier
trained using IMJAYA-ELM and forecast the output
label as either defective or non-defective.=0

and 16GB of RAM, usingMATLAB version R2017B and the
required tools. Various NASA datasets, including CM1, KC2,
KC3, MC1, PC1, and JM1 were utilized for SDP. Details of
the parameter list are provided below:

• True Positive Rate (Sensitivity): The sensitivity of a
model refers to the proportion of true positive cases it
correctly identifies.

Sensitivity =
X

X + Y
(13)

• True Negative Rate (Specificity): Model specificity
refers to correctly identifying negative cases among all
potential negative instances.

Specificity =
Z

Z + T
(14)

• Accuracy(Acc): The accuracy of a model is defined as
the percentage of correctly classified cases out of all
the instances evaluated, encompassing both positive and
negative classifications.

Accuracy =
X + Z

X + Y + Z + T
(15)

• Precision: One way to measure a classification model’s
effectiveness is by accurately predicting positive cases.
The ratio of accurate optimistic predictions to total
positive cases projected measures precision.

Precision =
X

X + T
(16)

• F1 Score: The F1 Score assesses the effectiveness of
a binary classification model by blending precision
and recall. It achieves this balance by calculating the
harmonic mean of precision and recall metrics.

F1Score =
2X

2X + T + Y
(17)

• Matthews Correlation Coefficients(MCC): MCC is
employed to assess the performance of binary classifi-
cation models by considering both correct and incorrect
predictions. Its value ranges from -1 to 1, where 1 sig-
nifies perfect prediction, 0 indicates no improvement

over random prediction, and -1 indicates complete
disagreement between prediction and observation.

MCC =
(X ∗ Z − T ∗ Y )

√
((X + T ) ∗ (X + Y ) ∗ (Z + T ) ∗ (Z + Y ))

(18)

X, Y, Z, and T represent true positive, false negative, true
negative, and false positive, respectively.

In machine learning, the evaluation of the gap between
the anticipated outcomes of a model and the actual values
in the training data is performed using the cost function,
also known as a loss function or objective function. This
component is crucial in machine learning activities. The main
objective during training is to reduce this cost function to
improve the accuracy of the forecasts generated by the model.
The choice of cost functions for regression, classification,
or prediction tasks is contingent upon the particular goals of
themachine learning activity.Mean Squared Error (MSE) and
Mean Absolute Error (MAE) are often used for regression
tasks. Subsequently, optimization methods such as gradient
descent are employed to fine-tune the model’s parameters,
minimizing the cost function and enhancing the model’s
overall performance.

The designated cost functions are MSE and MAD. When
evaluating the efficacy of a prediction model, these measures
are commonly used in regression analysis and time series pre-
diction. They provide a numerical assessment of predictive
accuracy by quantifying the average discrepancies between
observed and expected values. The MSE is calculated by
averaging the squared differences between predicted and
actual values. The equation is as follows:

MSE =
1
X

X∑
j=0

(
ej − ej

)2 (19)

MAD is computed by averaging the absolute differences
between predicted and actual values, assigning equal impor-
tance to errors regardless of magnitude. The MAD formula is
described as follows:

MAD = Median
(
|ej − ej|

)
(20)

In the equation referenced as (19) and (20), X represents the
overall count of samples within the dataset. Here, ej denotes
the actual label assigned to the jth sample, while ej stands for
the predicted output associated with the jth sample.
The model PCA-LDA+IMJAYA-ELM has been evaluated

using multiple datasets, including CM1, KC2, KC3, MC1,
PC1, and JM1. Cross-validation (CV) was employed for
statistical analysis to enhance the classifier’s generalization
across different datasets and prevent overfitting. CV ensured
consistency in class distributions by dividing the data into
testing, validation, and training folds within a 5-fold config-
uration. The validation fold determined when training should
stop and assisted in parameter tuning for IMJAYA-ELM.
Performance assessment included sensitivity, specificity,
accuracy, F1 score, MCC, and precision. Model performance
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FIGURE 3. Five fold cross-validation for KC2 dataset.

was evaluated using loss functions MAD and MSE. Initially,
the complete feature set has been utilized, followed by testing
after applying two well-known feature reduction methods:
PCA and PCA-LDA. The entire experiment was repeated
ten times across five datasets to ensure result reliability and
reduce randomness.

The methods have been examined using data obtained
from NASA datasets. Figure 1 showcases the considerable
endeavour dedicated to this paper via a block diagram.
To address the potential overfitting issue, a commonly
utilized technique in experimental studies is five-fold cross-
validation (CV), as illustrated in Figure 3.
This study utilizes NASA datasets to assess the suggested

methodology described in Table 1. The paper comprehen-
sively explains the techniques graphically depicted in a
block diagram in Figure 1. Within this particular framework,
the model has been subjected to two experiments: one
in which feature reduction has not been employed and
another in which feature reduction has been employed. Cross-
validation (CV) has been utilized to limit the possibility of
overfitting and improve the model’s accuracy by randomly
dividing the data samples into training and testing sets.
Model performance evaluation involves using many metrics,
such as sensitivity, specificity, precision, F1 score, Matthews
correlation coefficient (MCC), and accuracy. A range of
conventional ML techniques, such as MLP, AB, J48, RF,
NB, DT, and ELM, are evaluated using the NASA dataset.
The studies utilize a hybrid classifier known as Improved
JAYA Optimization with an Extreme Learning Machine
(IMJAYA-ELM). Both algorithms have been set up with
an initial population size of 20 and a maximum iteration
limit of 200.

Figure 4 shows the learning curve by comparing
the loss function of ELM, PCA+IMJAYA-ELM, and
PCA-LDA+IMJAYA-ELM. The figure shows that

FIGURE 4. Learning curve outcomes comparison of suggested models.

PCA-LDA+IMJAYA-ELMminimizes the loss functionmore
than ELM and PCA+IMJAYA-ELM alone.

This study includes three phases: without feature reduc-
tion, feature reduction with PCA, and feature reduction
with PCA-LDA. These phases involve using seven different
machine learning classifiers and five distinct datasets from
NASA. In the initial phase, performance analysis has
been conducted without feature reduction. When ELM was
combined with IMJAYA, an accuracy of 96.15%was attained
for the KC2 dataset without the use of any features shown
in Table 3. The second phase evaluated the performance
using PCA with 22 features (detailed in Table 4). For the
KC2 dataset, PCA combined with IMJAYA-ELM resulted
in an accuracy of 97.12%. The above procedure has been
repeated in the third phase using PCA-LDA, which reduced
the number of features to 16 (as shown in Table 5). The
optimal accuracy of 98.08% for this problem was achieved
by combining PCA-LDA with IMJAYA-ELM.

The outcomes of performing 10 × 5 fold CV using
PCA-LDA+IMJAYA-ELM on the CM1, KC2, KC3,
MC1, PC1, and JM1 datasets are presented in Table 6,
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TABLE 3. Defect prediction accuracy without feature reduction.

141570 VOLUME 12, 2024



D. Pradhan et al.: Refined SDP Using Enhanced JAYA Optimization and ELM

TABLE 4. Defect prediction accuracy with PCA.

Table 7, Table 8, Table 9, Table 10, and Table 11 respectively
where fd represents folds and avg stands for average. Notably,

the KC2 dataset demonstrated the highest average accuracy,
reaching 98.08%.
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TABLE 5. Defect prediction accuracy with PCA-LDA.
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FIGURE 5. The performance graph during training of the proposed model across multiple iterations using the KC2 dataset.

FIGURE 6. Defect prediction accuracy for CM1 dataset without feature
reduction.

FIGURE 7. Defect prediction accuracy for CM1 dataset with feature
reduction.

Figure 5 illustrates the training performance graph of
the proposed model across multiple iterations for the KC2
dataset.

Graphs illustrating the performance of multiple ML
classifiers, bothwith andwithout feature reduction, have been

FIGURE 8. Defect prediction accuracy for KC2 dataset without feature
reduction.

FIGURE 9. Defect prediction accuracy for KC2 dataset with feature
reduction.

generated for each of the six datasets analyzed in this study.
Specifically, the accuracy of ML classifiers without feature
reduction for the datasets CM1, KC2, KC3, MC1, PC1, and
JM1 is depicted in Figure 6, Figure 8, Figure 10, Figure 12,
Figure 14, and Figure 16 respectively. Conversely, Figure 7,
Figure 9, Figure 11, Figure 13, Figure 15, and Figure 17
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TABLE 6. Average accuracy(%) of employed framework for CM1 dataset
using 5-fold 10 times.

TABLE 7. Average accuracy(%) of employed framework for KC2 dataset
using 5-fold 10 times.

TABLE 8. Average accuracy(%) of employed framework for KC3 dataset
using 5-fold 10 times.

show the accuracy with reduced features for these datasets.
Figure 18 presents a comparative analysis of accuracy across
the different datasets examined in this study.

TABLE 9. Average accuracy(%) of employed framework for MC1 dataset
using 5-fold 10 times.

TABLE 10. Average accuracy(%) of employed framework for PC1 dataset
using 5-fold 10 times.

TABLE 11. Average accuracy(%) of employed framework for JM1 dataset
using 5-fold 10 times.

The Figure 19, Figure 20, Figure 21, Figure 22, Figure 23,
and Figure 24 illustrates the confusion matrices for CM1,
KC2, KC3, MC1, PC1, and JM1 respectively.
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FIGURE 10. Defect prediction accuracy for KC3 dataset without feature
reduction.

FIGURE 11. Defect prediction accuracy for KC3 dataset with feature
reduction.

FIGURE 12. Defect prediction accuracy for MC1 dataset without feature
reduction.

FIGURE 13. Defect prediction accuracy for MC1 dataset with feature
reduction.

Figure 25 presents a chart showing the relationship
between the number of features and accuracy using PCA and
PCA-LDA.

FIGURE 14. Defect prediction accuracy for PC1 dataset without feature
reduction.

FIGURE 15. Defect prediction accuracy for PC1 dataset with feature
reduction.

FIGURE 16. Defect prediction accuracy for JM1 dataset without feature
reduction.

FIGURE 17. Defect prediction accuracy for JM1 dataset with feature
reduction.

Table 12 represents the comparison of accuracy for previ-
ously existingmethodologies with the proposedmethodology
in which the proposed methodology outperformed with an
accuracy of 98.08% for PCA-LDA+IMJAYA-ELM.
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FIGURE 18. Comparision of accuracy for datasets with feature reduction.

FIGURE 19. Confusion matrices for CM1 dataset with PCA-LDA.

FIGURE 20. Confusion matrices for KC2 dataset with PCA-LDA.

FIGURE 21. Confusion matrices for KC3 dataset with PCA-LDA.

V. DISCUSSION
This work presents and assesses the enhanced Jaya method
for software defect prediction alongside an Extreme Learning

FIGURE 22. Confusion matrices for MC1 dataset with PCA-LDA.

FIGURE 23. Confusion matrices for PC1 dataset with PCA-LDA.

FIGURE 24. Confusion matrices for JM1 dataset with PCA-LDA.

FIGURE 25. No of Features Vs Accuracy.

Machine (ELM) using the CM1, KC2, KC3, MC1, PC1, and
JM1 datasets. The approach, incorporating PCA-LDA for
feature dimensionality reduction, significantly improved pre-
diction accuracy, reaching the highest accuracy of 98.08% on
the KC2 dataset. Notably, the PCA-LDA reduced the feature
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TABLE 12. Comparison of the utilized model with alternative models.

set from 22 to 16, highlighting its effectiveness in minimizing
data dimensionality while preserving predictive performance.
This approach’s primary advantage is its ability to achieve
high accuracy with a reduced feature set, resulting in more
efficient models with lower computational costs. However,
a potential disadvantage is the dependency on specific
datasets, which may limit the generalizability of the model to
other datasets not included in this study. Future work could
explore the application of the improved Jaya algorithm with
other feature reduction techniques and datasets to further val-
idate its robustness and adaptability across diverse software
defect prediction scenarios. Additionally, integrating ensem-
ble methods could enhance predictive performance further.

VI. CONCLUSION
To make software systems more accurate and efficient,
researchers are always looking for ways to improve defect
prediction algorithms. This research will help software
projects save time and money by identifying potential
problems before formal testing begins. Feature normal-
ization, dimensional reduction, and classification are all
part of the strategy used in this study. Dimensionality
reduction of features is achieved through PCA-LDA in
this model. For optimizing the parameters of the ELM,
which include the input weights and biases, an improved
JAYA optimization (IMJAYA) strategy is utilized during
the forecasting phase. This hybrid approach is utilized to
optimize these parameters. The comprehensive model PCA-
LDA+IMJAYA-ELM demonstrates superior performance
compared to earlier models using NASA’s KC2 dataset,
particularly with fewer features and achieves higher accuracy
levels. Future studies could investigate other hybrid models
to enhance the performance and eliminate software system
defect prediction errors. Developing ensemble approaches
that use deep-learning techniques to improve the model’s
prediction accuracy is another potential area of focus.
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