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ABSTRACT Facial recognition technology is crucial for precise and rapid identity verification and
security. This research delves into advancements in facial recognition technology for verification purposes,
employing a combination of convolutional neural networks (CNNs), principal component analysis (PCA),
and sequential neural networks. Unlike identification, our focus is on verifying an individual’s identity,
that is a critical distinction in the context of security applications. Our goal is to enhance the efficacy and
precision of face verification using several imaging modalities, including thermal, infrared, visible light,
and a combination of visible and infrared. We use the pre-trained VGG16 model on the ImageNet dataset
to extract features. Feature extraction is performed using the pre-trained VGG16 model on the ImageNet
dataset, complemented by PCA for dimensionality reduction. We introduce a novel method, termed VGG16-
PCA-NN, aimed at improving the precision of facial authentication. This method is validated using the
Sejong Face Database, with a 70% training, 15% testing, and 15% validation split. While demonstrating a
remarkable approaching 100% accuracy rate across visual and thermal modalities and a combined visible-
infrared modality, it is crucial to note that these results are specific to our dataset and methodology.
A comparison with existing approaches highlights the innovative aspect of our work, though variations in
datasets and evaluation metrics necessitate cautious interpretation of comparative performance. Our study
makes significant contributions to the biometrics and security fields by developing a robust and efficient
facial authentication method. This method is designed to overcome challenges posed by environmental
variations and physical obstructions, thereby enhancing reliability and performance in diverse conditions.
The realised accuracy rates that the approach achieves across a variety of modalities demonstrate its promise
for applications that use multi-modal data. This opens the door for the creation of biometric identification
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systems that are more trustworthy and secure. It is intended that the technology will be used in real-time settings for
which the new modalities can be integrated in different situations.

INDEX TERMS Facial recognition (FR), convolutional neural networks (CNNs), principal component analysis
(PCA), sequential neural networks (NNs), VGG16, visible (VIS), thermal (Th), infrared (IR), visible and infrared
(VIS-IR), Sejong face database, receiver operating characteristic (ROC), accuracy, recall, precision, F1-score and
rank-level fusion.

I. INTRODUCTION
The field of digital identity and security is undergoing
tremendous changes, with facial recognition technology at
the forefront. The increasing importance of strong, safe, and
efficient identification techniques in the modern world posi-
tions this technology as a potential key solution. However, the
effectiveness of facial recognition technology faces numerous
challenges, including changes in illumination, variations in
facial expressions, and physical obstacles.

This study explores various types of face recognition
technologies, including visible, thermal, infrared, and com-
binations of visible and infrared images. Adopting a com-
prehensive approach aims to address traditional methods’
limitations in challenging conditions such as poor lighting
or atypical facial features. The focus is specifically on face
verification, which involves confirming or denying an indi-
vidual’s claimed identity, as opposed to identification, which
involves determining the identity of an unknown individual
from a set of known identities.

Furthermore, the research contributes to the critical dis-
cussion on privacy and ethical concerns associated with
facial recognition technology. It emphasizes the development
of security technologies that do not infringe upon individ-
ual rights, advocating for an ethical and efficient use of
facial recognition across different contexts. The multi-modal
approach proposed by this study offers a framework to navi-
gate these challenges with enhanced reliability and accuracy.

This study’s novelty lies in its integrated approach that
combines the strengths of Convolutional Neural Networks
(CNNs), Principal Component Analysis (PCA), and Sequen-
tial Neural Networks (NNs). While CNNs are proficient in
feature extraction, PCA aids in dimensionality reduction,
enhancing computational efficiency, and Sequential NNs
excel in classification tasks. The combination of these tech-
niques creates a robust and efficient facial recognition system
that addresses the limitations of traditional methods. This
approach leverages transfer learning from pre-trained CNNs
to extract hierarchical features, employs PCA for efficient
feature representation, and utilises Sequential NNs for accu-
rate classification. This integration has not been previously
applied to the Sejong Face Database, marking a significant
advancement in multi-modal facial recognition technology.

The CNNs are now often used to address classification
issues. In these networks, features are learned automatically
as the network progresses from lower to higher levels through
consecutive layers. The term ‘‘transfer learning’’ refers to the
re-cycling of a pre-trained machine learning model to tackle

a new related problem. This technique helps improve gener-
alisation and is especially helpful when insufficient training
data exists.

The paper is structured as follows: The literature review is
presented in Section II, the suggested approach is explained in
detail in Section III, the experiments, results, and comments
are detailed in Section IV, and the conclusion is presented in
Section V.

II. LITERATURE SURVEY
The purpose of this section is to showcase studies that per-
tain to visible and cross-spectral face identification between
visible, thermal, infrared, and combinations of visible and
infrared facial pictures, with a particular emphasis on subject
identification verification.

Because of the ubiquitous sensors found in everyday elec-
tronic devices like smartphones and laptops, face recognition
has exploded in popularity, especially in the visible spectrum.
In the visible light spectrum, current face recognition tech-
nologies are more effective than humans [1]. These systems
are considered the best tools now available.

Taigman et al. [2] introduced DeepFace to generalise face
representation across datasets. They presented a novel design
and learning approach for deep neural networks, and their
evaluation of the Faces in the Wild (LFW) dataset showed
an accuracy of 97.35 percent.

Wen et al. [3] suggested centre loss as a new loss function
to improve the neural network’s deep learning features’ dis-
criminative strength. The deep features’ intraclass distances
can be minimised using this method. When tested on an LFW
dataset, they reached a precision of 99.28%.

Several convolutional neural networks (CNNs) architec-
tures were examined by Parkhi et al. [4], who also presented
the massive dataset VGG Face. Virtual neural networks
(VGG) had a major influence. It was demonstrated that
the face recognition method’s most important components
are the training procedure and a dataset. Additionally, they
demonstrated that, with the right training procedure, 98.95%
accuracy is achievable.

To help CNNs learn angular-margin discriminative facial
features, Liu et al. [5] suggested an angular Softmax loss.
A technique for deep hypersphere embedding is presented
in their work. Using their suggested A-Softmax loss, they
learned a face representation with a 99.42% success rate.

In contrast, approaches based on the visible domain have
received more attention and research, while thermal-visible
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face recognition has lagged in terms of both popularity and
performance. Among the first studies to tackle this problem,
thermal-visible face recognition was the primary empha-
sis [6]. Histogram of Oriented Gradients and Partial Least
Squares are the foundations of the approach put out by
Hu et al. Four steps make up the suggested pre-processing
stage: geometric normalisation, median filtering of dead
pixels, difference-of-Gaussian (DOG) filtering, and contrast
enhancement. These steps are applied in the specified order.
In order to test the suggested approach, we use three datasets:
one from the Wright State Research Institute (WSRI), one
from the University of Notre Dame (UND) Collection X1,
and one from the United States Army Night Vision and
Electronic Sensors Directorate (NVESD). They evaluated
the effects of the workouts on the outcomes of thermal-to-
visible identification and conducted trials at distances ranging
from 1 to 4 m. After exercising, their Rank-1 Identification
measure improved to 0.64 (equal to 64%) from 0.7 (equiva-
lent to 70%) at a distance of 1 m.

Chen and Ross [7] showed facial identification using visual
and infrared pictures using a cascaded subspace learning
approach. Components of this plan include common dis-
criminant analysis, whitening transformation, and component
analysis. The identification factor was extracted as a topic
across distinct spectra using a factor analysis methodol-
ogy. They experimented with filtering algorithms like Self
Quotient Image (SQI) and Center-Surround Divisive Nor-
malisation (CSDN) to diminish some of the variations in
appearance across different spectrums. After picture filters
are implemented, features from visible and thermal facial
pictures are extracted using the Pyramid Scale Invariant Fea-
ture Transform (PSIFT) andHistograms of Principal Oriented
Gradients (HPOG) descriptors. In order to meet the require-
ments of Hidden Factor Analysis, which states that sample
distributions must be isotropically Gaussian, whitening treat-
ment is employed. Canonical Correlation Analysis (CCA)
and Partial Least Squares (PLS) provide the basis of the
decision function. To train their model, they combed through
the PCSO dataset, and then, using the CARL dataset, they
matched visible and thermal facial photos. The end findings
showed that when the two feature extraction approaches were
fused, the verification strategy achieved a Rank-1 Identifica-
tion rate of 75.61%, a 0.1% FAR score of 27.71%, and a 1%
FAR score of 51.24%.

In an effort to establish a connection between the two
approaches, Sarfraz and Stiefelhagen [8] attempted to explic-
itly simulate the very non-linear mapping. The authors
maintained the identification data while building a model that
mapped the perceptual differences between the two modal-
ities using a feedforward deep neural network. The dataset
used for the study was the UND-X1 dataset from the Uni-
versity of Notre Dame. Rank-1 identification accuracy was
83.73% when all viewable photographs in the gallery were
utilised, and 55.36% when only one visible face image per
person was used.

The use of a deep autoencoder model for mapping
between the visual and thermal domains was demonstrated
by Kantarcıand Ekenel in [9]. They tested the suggested
system using the UND-X1, CARL, and EUROCOM cross-
spectral datasets. According to their study, Deep convolu-
tional autoencoders could learn non-linear mapping between
visual and thermal images for the cross-domain face recog-
nition problem. They employed two distinct up-sampling
techniques as decoders. One common method of interpola-
tion is bilinear up sampling. Although this method shortens
training time on a GPU dice and simplifies the number of
trainable parameters, performance suffers due to the loss of
information for the decoding stage. The second approach is a
convolution that follows theU-Net’s recommended 2 _ 2 filter
size. This network uses mean square loss as its loss function
to ensure that its output is as close as feasible to the ground
truth thermal pictures. Their top Rank-1 Identification rates
for the CARL dataset were 48%with a single viewable image
per participant and 85% with all photos available. Rerunning
the analysis using the UND-X1 dataset yielded an accuracy
of 87.2% across the board and a Rank-1 recognition rate of
58.75% for the one viewable picture in the gallery. As for the
EUROCOM dataset, these are the outcomes: The percentage
for all photographs per subject in the collection is 88.33%,
while the percentage for one image per subject is 57.91%.

The domain adaptation framework put forth by
Fondje et al. [10] includes the following steps: feature extrac-
tion for both visible and thermal face images using a truncated
deep neural network; the Residual Spectral Transform (RST)
for features that are both visible and thermal; loss for cross-
domain identification; and loss for domain invariance. The
VGG16 and ResNet-50 architectures are utilised for feature
extraction. By converting characteristics between the thermal
and visual domains, the RST residual block preserves as
much discriminability from the shortened networks as fea-
sible. The Difference of the Gaussians filter was applied to
visual and thermal facial pictures before the suggested frame-
work’s phases were executed. The CCDC Army Research
Laboratory provided three distinct datasets and methodolo-
gies that were utilised for testing. Rank-1 Identification rates
of 96% for ResNet-50 and 84% for VGG16 were attained for
frontal face pictures, correspondingly.

Much research in this area has used generative adver-
sarial networks (GAN) to convert images from one
domain to another. Additionally, GAN networks have been
used to tackle thermal-visible face identification. Building
visible-like pictures from thermal recordings and matching
them against a library of visible faces is what Mallat et al.
called ‘‘image synthesis’’ in their proposal for cross-spectrum
face identification [11]. It is possible to generate high-quality
coloured visual pictures from thermal data using cascaded
refinement networks in conjunction with contextual loss.
To put the suggested strategy to the test, they utilised their
very own EUROCOM dataset. Using OpenFace, we were
able to attain a 20% accuracy rate for neutral expressions in
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face photos. They were able to get 82% accuracy with the
LightCNN technique on neutral face pictures. The main issue
with GAN-based approaches is their lengthy processing time,
which makes them unsuitable for recognition while on the go.

Combining a detector network with a generative network
that is based on the CycleGAN, Wang et al. [12] created a
model. With the use of unpaired training photos, the GAN
network learns to translate thermal and visual images in
both directions without any supervision. In order to opti-
mise the generative network, the detection network constructs
the form loss function by extracting 68-landmarks from
visible faces. They conducted the study using their own
dataset, which included 792 thermal and visible picture pair-
ings of 33 participants that were aligned. The images were
captured with a FLIR AX5 camera. The Facenet toolkit
was used to extract features from the generated probe and
gallery photos. The next step was to calculate the ‘‘Euclidean
distance’’ between the probe’s characteristics and the gal-
leries. Predicting matching and checking its accuracy were
both accomplished by taking the shortest distance. With
their custom-generated thermal and visual photos, they were
able to attain a Rank-1 rate of 91.6% utilising the Facenet
approach.

Kezebou et al. [13] introduced TR-GAN (thermal to RGB
Generative Adversarial Network), a system that can auto-
matically create visible facial pictures from thermal domain
photos. The TR-GAN generator uses cascade residual blocks
based on the U-Net architecture. The generator accomplishes
image synthesis using consistent global and local structural
information. Following the conversion of thermal images to
visible ones, they compared faces using ResNet-50 and a
pre-trained VGG-Face recognition model. Using a TUFTS
dataset, the investigation was carried out. They were able to
attain an identification accuracy of 80.7%with the ResNet-50
model and an accuracy of 88.65% using VGG16.

Immidisetti et al. [14] proposed an Axial GAN archi-
tecture combining low-resolution thermal pictures with
high-resolution visual images. An axial-attention layer is
a defining feature of their framework. A high-efficiency
method for capturing long-range relationships is an axial
layer. An ARL-VTF dataset was used to conduct the investi-
gation. They were able to attain an AUC of 91.23% by using
cosine similarity between features collected from a VGG-
Face model.

In order to separate pictures into their style latent
code and identity latent code, Anghelone et al. [15] sug-
gested a Latent-Guided Generative Adversarial Network
(LG-GAN). It enables the acquisition of attributes that are
spectral-dependent as well as spectral-invariant. LG-GAN
is able to maintain the identity while undergoing spectral
transformation and accomplish face recognition with an AUC
rate of 96.96% in terms of visual quality. They tested using
the cosine distance between ResNet-50 features.

A method for transforming images of faces from visual to
thermal (V2T) and back again (T2T) with varying tempera-

tures is described in the paper by Cao et al. [16]. A six-layer
PatchGAN discriminator and a U-Net generator formed the
basis of their system. Both the V2T and T2T tasks made use
of databases, the Speaking Face Database for the former and
the Carl database for the latter. Temperature, perceptual loss,
and convolutional neural network loss are all used to train the
model. This study integrates two subfields of cross-spectral
recognition for synthetic and real-world pictures: thermal-to-
visible and thermal-to-thermal. The three pre-trained models
used for the facial recognition job are MobileNet, Incep-
tionV3, and Xception. All the neural networks were trained
with weights optimised for the ImageNet database. They
supplemented each model with a classification layer, two
fully connected layers with 512 units, an average pooling
layer, and the removal of the final fully-connected and clas-
sification layers. Finally, when evaluated on the Speaking
Face database, the approach produced a Rank-1 rate of around
78%, while on the Carl database, it reached <96%.
Poster et al. [17] created a database of their own that

converts thermal photos of faces to visible ones. There are
395 topics in this database. The sum of all the pictures is
549,712. There is a 2.1 m gap between the person and the
camera. An RGB Basler Scout CCD camera was used to cap-
ture visible face pictures, while a FLIR Grasshooper3 CMOS
camera was used for thermal face images. Five distinct
approaches were employed for the aim of facial recogni-
tion. The GAN framework is the basis for four methods:
Pix2Pix [18], GANVFS [19], SAGAN [20], and a naïve
baseline approach called ‘‘Raw’’. The VGG-Face model was
fed thermal pictures (probes) and visual images (gallery)
directly, with a cosine similarity threshold applied. These
are the findings for RAW, Pix2Pix, GANVFS, SAGAN, and
Fondje’s method: 2.77%, 6.95%, 6.69%, 84.88%, 91.55%,
and 96%, respectively.

First, Regarding High-Frequency Trading (HFR), Cheema
et al. [21] stand out due to their innovative method. Methods
like common subspace projection, feature extraction, and
image preparation have traditionally been foundational to
HFR. However, these approaches have been prone to per-
formance error accumulation and optimisation issues. When
dealing with problems caused by large discrepancies between
modalities, such as in visible-to-thermal identification, the
Cross-Modality Discriminator Network (CMDN) has come a
long way, largely thanks to its relational learning capabilities
and Unit-Class Loss. This paper presents an improved and
efficient framework for face recognition across many imag-
ing modalities, which is a significant addition to the field
of biometrics and security. This framework is crucial if we
want to employ facial recognition for things like access con-
trol, monitoring, and other security-related tasks. Researchers
and developers working on cross-modality face recognition
systems may be influenced by the study’s conclusions and
methods.

Second, according to Alkadi et al. [22] introduce a novel
machine learning-powered biometric identification system
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TABLE 1. Summary of the literature survey. TABLE 1. (Continued.) Summary of the literature survey.
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TABLE 1. (Continued.) Summary of the literature survey.

for ATMs. The system’s objective is to precisely recognise
people, even in cases when they are wearing equipment that
modifies their facial characteristics, such as glasses or masks.
This study emphasises the need to maintain a harmonious
equilibrium between ease and security in consumer bank
transactions. Conventional ways of authenticating ATMs,
such as PINs, provide security vulnerabilities, whereas bio-
metric systems provide a more secure option by utilising
distinctive bodily attributes, such as facial features, for
authentication. The suggested method employs multi-modal
imaging, including visible light, thermal, and infrared imag-
ing, to enhance the accuracy of identification and mitigate
typical obstacles such as presentation assaults and disguises.
The system underwent training and testing using many
datasets, with particular emphasis on the Sejong multi-modal
disguised face dataset. This dataset was chosen for its wide
range of photographs showcasing different facial add-ons,
ensuring a varied and balanced collection. The study revealed
that some machine learning models, specifically ResNet-50,
accurately distinguished users with and without add-ons. The
study also examined the performance of the authentication
system when faced with various cultural and gender-specific
disguises, such as hijabs and ghutras. This demonstrated the
system’s adaptability and dependability in a wide range of
situations. This research makes a substantial contribution to
the area by showing that it is possible to create a more secure

and user-friendly ATM authentication system. This has the
potential to completely change the way banking transactions
are protected.

When dealing with challenging low-light or on-the-go sce-
narios, Kowalski et al. [23] suggested a novel method for
thermal-visible face verification. While previous work on
face recognition using visible spectrum data has achieved
impressive accuracy, it has struggled to work in low-light
conditions. Although earlier proposed solutions have shown
only moderate success, the thermal-visible approach fills this
need. The triple triplet approach is an innovative method
for handling the different optical and thermal spectra, which
uses multiple convolutional neural networks (CNNs). The
outcome is a considerable improvement in the recognition
accuracy (90.61%). This approach is particularly innovative
since it increases the identification process’s durability and
reliability by integrating data from the visible and thermal
spectra. This means that future studies in this area will have
to measure up to this mark. The summary of the literature
survey is demonstrated in Table 1.

A. KNOWLEDGE GAP
Taigman et al. [2] introduce notable progress in face ver-
ification technology by utilising 3D modelling and deep
learning. Nevertheless, it presents some areas of incomplete
understanding that require additional research. Importantly,
it fails to investigate the model’s resilience to adversarial
attacks, a critical aspect for guaranteeing the security and
dependability of face verification systems in hostile contexts.
Moreover, the research does not include an in-depth analysis
of the system’s ability to apply its knowledge to different
and more difficult datasets, except from LFW and YouTube
Faces. This raises concerns about its effectiveness in more
diversified situations. The computational efficacy and scala-
bility of implementing such a model in practical applications,
where processing resources and latency are crucial consid-
erations, are acknowledged but not extensively examined.
Moreover, the ethical and privacy concerns associated with
implementing sophisticated facial recognition technology,
such as permission, data protection, and potential misuse,
have not been acknowledged or resolved. Furthermore, the
possibility of incorporating temporal dynamics from video
sequences to improve verification accuracy and resilience is
disregarded.

In their study, Wen et al. [3] introduce a new approach to
improve the ability of deep learning features in face recog-
nition by incorporating a centre loss function. Although the
research has made important contributions, several areas still
require more exploration. Significantly, the proposed method
does not include the ability to handle massive and diverse
datasets in a scalable and computationally efficient man-
ner. This is particularly important for real-time applications
and managing the continuously growing number of digital
photographs. Furthermore, the method’s ability to withstand
adversarial attacks, a significant concern for applications
requiring high security, has not been investigated. Further

140828 VOLUME 12, 2024



M. Abdul-Al et al.: Novel Approach to Enhancing Multi-Modal Facial Recognition

work is needed to explore the possible use of the centre loss
function in various domains beyond face recognition, such
as other computer vision tasks or even non-visual domains.
In addition, the research does not thoroughly examine how
data variety and bias affect the model’s performance and
fairness. It also fails to compare the suggested method with
new and developing deep learning methodologies and archi-
tectures.

Parkhi et al. [4] present significant progress in facial recog-
nition using deep learning and a comprehensive compilation
of datasets. Although it has made significant contributions,
there are still some areas where information is lacking. The
examination of the model’s generalisability across different
and challenging real-world settings is currently restricted.
The text did not discuss the optimisation and adaptability of
implementing these models in real-time applications, namely
those that handle considerably larger datasets or continuous
data streams. Furthermore, the research fails to examine the
resilience of the proposed system against adversarial assaults,
which is a crucial factor for applications that prioritise secu-
rity. The potential for their methods to be applied to other
domains within and beyond computer vision has not been
explored. Moreover, there is a dearth of thorough analysis
regarding the potential influence of dataset variety and inher-
ent biases on model fairness and performance. Furthermore,
there is a lack of comparisons with the most recent advance-
ments in deep learning technologies that could potentially
improve the performance or efficiency of the model.

Liu et al. [5] propose a novel A-Softmax loss function
to improve face recognition using CNNs by training the
network to learn features that are discriminative in terms of
angles. Although it demonstrates notable progress in facial
recognition, there is still a lack of understanding regarding
its wider range of uses. The research does not explore the
possibility of applying the A-Softmax loss to other domains
or data types that may have similar manifold structures. Addi-
tionally, it does not discuss the method’s resilience against
adversarial attacks or its performance when dealing with
noisy data. Furthermore, the full examination of the com-
putational efficiency and scalability of the A-Softmax loss
in larger datasets or real-time applications is lacking. Addi-
tional empirical investigation on the selection and influence
of the hyperparameter m in various scenarios could offer
more profound insights for practical implementation. Fur-
thermore, the incorporation of A-Softmax loss into various
neural network designs or its amalgamation with other losses
and regularisation procedures has the potential to create new
opportunities for investigation, amplifying the adaptability
and efficacy of the method in a broader spectrum of deep
learning applications.

Hu et al. [6] conducted a comprehensive study on
cross-modal face recognition, although various aspects still
need to be explored in the future. The extent to which the
proposed strategy may be applied to real-world situations
with unforeseen factors, such as harsh environmental con-
ditions or occlusions, has not been thoroughly investigated.

Furthermore, the research fails to explore the capabili-
ties of the approach to handle large-scale or real-time
applications, which is essential for its practical imple-
mentation. The model’s performance and fairness are not
adequately addressed in relation to the impact of dataset
variety and inherent biases, which raises concerns about the
system’s inclusion across various populations. In addition,
the method’s ability to withstand sophisticated adversarial
attacks, which is becoming increasingly crucial in the imple-
mentation of secure biometric systems, is not considered.
Furthermore, the analysis does not explore the possibility of
combining this method with other biometric techniques or
utilising emerging deep learning technology to improve the
accuracy and resilience of recognition.

Chen and Ross [7] propose a novel method for recog-
nising faces from several sources, known as heterogeneous
face recognition (HFR), which leads to significant enhance-
ments in performance. Nevertheless, it provides numerous
opportunities for more investigation. The method’s ability
to withstand environmental fluctuations, such as occlusions,
facial expressions, and head postures, has not been prop-
erly assessed, which may limit its suitability for real-world
applications. The study’s emphasis on thermal and visual
spectra for face recognition might be broadened to incorpo-
rate integration with additional biometric modalities, thereby
boosting security and practicality. Furthermore, it is neces-
sary to conduct further evaluation of the suggested method’s
computing efficiency and scalability, which are essential for
real-time and large-scale applications. Furthermore, although
the research performs cross-database tests to assess the
model’s potential to generalise, a more extensive analysis of
its performance on a wider variety of datasets could offer
more thorough insights into its adaptability.

Sarfraz and Stiefelhagen [8] propose a novel method that
uses deep neural networks to minimise the difference in
characteristics between thermal and visual images to improve
face identification. Although the research has made signifi-
cant contributions, some areas still require more exploration.
The text does not thoroughly examine the model’s capacity
to generalise across various ambient circumstances, cam-
era technology, and subject groups, which is essential for
practical use. The model’s capacity to handle other cross-
domain issues, such as NIR-to-visible mapping, has not been
addressed. In addition, the research does not thoroughly anal-
yse the scalability and computing efficiency of the system,
which are crucial for large-scale or real-time surveillance
applications. Examining the most recent advancements in
deep learning architectures could offer valuable insights
regarding possible enhancements. Moreover, it is crucial to
pay attention to ethical and privacy concerns, particularly
in situations involving monitoring, to ensure responsible
utilisation.

Kantarcıand Ekenel [9] propose a highly effective method
for thermal-to-visible face identification by utilising deep
autoencoders to overcome the differences between ther-
mal and visible modalities. Nevertheless, the model’s
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performance in terms of facial variations such as expressions,
occlusions, and head positions, which are crucial for real-
world applications, remains unexamined. The study excludes
an examination of the proposed system’s real-time processing
capabilities and scalability, which are crucial for implement-
ing it in large-scale or dynamic contexts. In addition, the
article does not investigate the model’s adaptation to different
imaging modalities, which could increase its usefulness in
surveillance and biometrics. Furthermore, the research does
not include a comparative examination with alternative deep
learning architectures, which could potentially uncover addi-
tional enhancements. Furthermore, the ethical and privacy
concerns related to the implementation of thermal imaging
for facial recognition in surveillance are not discussed, which
is becoming increasingly significant as these technologies
become more widespread.

The study conducted by Fondje et al. [10] presents a
notable breakthrough in addressing the disparity between
thermal and visual domains in face recognition. Nevertheless,
it presents numerous areas that can be further investigated in
the future. The assessment of the system in real-world sce-
narios, particularly in dynamic surroundings with fluctuating
illumination and weather conditions, is still restricted. The
framework’s capacity to handle other cross-domain issues,
such as NIR-to-visible or SWIR-to-visible recognition, is not
discussed. This limitation hinders its potential use in surveil-
lance and security fields. In addition, the paper does not
investigate the incorporation or comparison with state-of-the-
art deep learning frameworks, such as GANs or transformers,
which could potentially enhance the accuracy of recognition.
The proposed method’s scalability and computing efficiency,
which are essential for implementation in large-scale or real-
time applications, have not been properly explored. Finally,
the ethical and privacy concerns associated with implement-
ing sophisticated facial recognition technologies, especially
in surveillance, require additional dialogue and investigation
to guarantee responsible usage and mitigate any prejudices.

Mallat et al. [11] present a novel method for cre-
ating visible-like images from thermal data to improve
cross-spectrum face identification. Although the research
has made valuable contributions, some areas still require
more exploration. More precisely, the process of synthesis-
ing images sometimes fails to depict certain characteristics,
including gender and ethnicity effectively. This highlights the
necessity for enhancing the accuracy of certain features in
created images. The study’s ability to be applied to different
datasets has not been evaluated, indicating the possibility of
wider applicability and the need for evaluation of its robust-
ness. Furthermore, integrating the synthesis model directly
with deep learning-based facial recognition technologies has
the potential to improve and simplify the system’s overall
performance. The ethical and privacy aspects of implement-
ing this technology, particularly in surveillance situations,
require thorough examination and the development of ways
to resolve any concerns. Finally, the research does not explore
the suggested method’s computational efficiency or real-time

processing capabilities, which are essential for practical
implementation.

Wang et al. [12] propose a remarkable approach for con-
verting thermal face photos into visible ones by utilising
an adversarial network with a generative algorithm environ-
ment. Although the research has made progress, it fails to
adequately assess the model’s capacity to apply its knowl-
edge to multiple thermal imaging circumstances, differences
in subjects, and environments. This raises doubts about its
usefulness in diverse real-world situations. Furthermore, the
computing requirements and effectiveness for processing
in real-time, which is essential for actual implementations,
have not been investigated. The study does not include a
comparison with the most recent advancements in deep learn-
ing, which have the potential to enhance both efficacy and
performance. Moreover, the ethical and privacy concerns
associated with employing thermal imaging for facial recog-
nition in surveillance or other sensitive contexts are not being
acknowledged, a matter of growing significance in guaran-
teeing the appropriate utilisation of technology. Furthermore,
the possibility of applying this technology to other types of
images or wider applications has not been explored, which
has the potential to improve its usefulness beyond just facial
identification greatly.

Immidisetti et al. [14] present a novel method to
improve thermal-to-visible face verification, specifically for
low-resolution thermal pictures. Although the research has
made valuable contributions, there are still unknown areas
that could enhance and improve the technology even fur-
ther. The efficacy of the suggested approach in numerous
real-world circumstances remains uncertain due to the lack
of comprehensive assessment regarding its resilience under
different climatic conditions and thermal imaging technol-
ogy. Furthermore, the discussion of Axial-GAN’s scalability
and real-time processing capabilities, which are essential
for its implementation in surveillance systems or mobile
devices, is lacking. The possibility of this strategy to apply
to additional cross-domain difficulties, such as converting
NIR to visible, has not been explored. Moreover, the explo-
ration of integrating synthesised photos with sophisticated
facial recognition systems to enhance end-to-end verification
performance is lacking. Furthermore, the research fails to
address the ethical and privacy concerns arising from thermal-
to-visible face verification methods, especially in sensitive
monitoring situations.

Anghelone et al. [15] introduce a novel method for
thermal-to-visible face recognition. Although it has made
significant progress, some domains still necessitate addi-
tional investigation. The comprehensive assessment of the
suggested method’s applicability in varied climatic circum-
stances and with multiple thermal imaging technologies
has not been adequately examined, raising concerns about
its resilience in diverse scenarios. The LG-GAN’s scal-
ability and real-time processing capabilities, which are
crucial for its application in surveillance systems or on
mobile devices, are not addressed. Moreover, the potential
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of this framework to address other cross-spectral difficul-
ties, which may include NIR-to-visible or SWIR-to-visible
facial recognition, has not been investigated. The possibility
of integrating advanced facial recognition systems directly
to improve overall performance has not been explored.
Furthermore, the ethical and privacy considerations associ-
ated with utilising thermal imaging for facial recognition,
particularly in surveillance contexts, have not been acknowl-
edged, underscoring the importance of employing technology
responsibly.

Cao et al. [16] introduce a new method that utilises condi-
tional Generative Adversarial Networks (cGAN) to translate
thermal images into visible facial images. Although the work
shows promising outcomes in converting visible images into
thermal images that are visually and identifiably consistent,
it fails to investigate numerous crucial aspects. More pre-
cisely, the model does not explore how well it can adapt to
diverse climatic circumstances or thermal imaging methods,
which is crucial for its practical use in real-world situations.
The text does not address computing efficiency and appro-
priateness for real-time processing, which are crucial factors
for surveillance and security applications. Furthermore, the
report fails to discuss the possible ethical and privacy issues
that may arise from implementing this technology, especially
in the context of monitoring. Furthermore, the potential for
expanding this paradigm to encompass other spectral bands
or imaging modalities has not been explored. Furthermore,
doing a comprehensive examination of how the conversion
process impacts different facial traits or attributes could yield
significant observations regarding the model’s abilities and
constraints.

Poster et al. [17] present the ARL-VTF dataset, which
makes a substantial contribution to the field of thermal and
visual face recognition research. Although the study has
made significant progress, numerous crucial areas still have
not been investigated. A comprehensive evaluation of the
resilience of established models under diverse environmen-
tal circumstances and various thermal imaging technologies
is necessary to guarantee their extensive applicability. Fur-
thermore, the lack of discussion regarding the computing
efficiency and scalability of real-time applications, such as
surveillance, raises concerns about the actual practicality of
their deployment. The dataset’s capacity to be applied to
different spectral bands or imaging modalities, as well as the
ethical and privacy concerns associated with its utilisation in
surveillance, have not been addressed. Furthermore, doing
a thorough examination of the impact of eyewear and other
accessories on algorithm performance could yield a more
profound understanding of the obstacles and remedies in
thermal-to-visible face identification.

Zhang et al. [19] present an innovative approach for gener-
ating visible face images from thermal images using GANs.
The method achieves remarkable results in terms of produc-
ing realistic photos and preserving the identity of the indi-
viduals. Nevertheless, the research does not investigate the
model’s adaptability to different climatic conditions or other

thermal imaging technologies, which is essential for broader
applications. Furthermore, the study does not address the
computational efficiency and the practicality of real-time pro-
cessing, which are crucial for implementing the technology in
surveillance and security applications. Neglecting ethical and
privacy concerns, especially with thermal imaging’s surveil-
lance capabilities, raises doubts about responsible use. The
potential to apply this technique to additional imagingmodal-
ities or spectral bands has not been investigated. Furthermore,
conducting a comprehensive examination that examines the
model’s capacity to maintain identification despite differ-
ences such as facial expressions or obstructions will enhance
comprehension.

Di et al. [20] provide a novel method for thermal-to-visible
face identification, which makes notable progress in image
synthesis and verification. Nevertheless, there are other areas
that necessitate additional investigation. The method’s appli-
cation in multiple real-world scenarios has not been evaluated
for the generalisation of the model across a broader range
of environmental conditions, thermal imaging technologies,
and diverse subject demographics. This testing is vital for
judging the method’s effectiveness. The text does not address
the important aspects of computational efficiency and the
potential for real-time processing, which are crucial for prac-
tical surveillance and security applications. The ethical and
privacy concerns regarding the creation of visible faces from
thermal images, especially in surveillance settings, have not
been discussed, raising concerns about responsible usage
and potential privacy violations. Furthermore, the method’s
potential to be applied to other imaging modalities apart
from polarimetric thermal pictures has not been investigated,
which may restrict its usefulness in many applications. Fur-
thermore, the strategy does not consider the longitudinal
robustness, encompassing elements like ageing, that could
affect its effectiveness as time progresses.

Kowalski et al. [23] present a new method for address-
ing the disparity between thermal and visual modalities.
Although the study has made valuable contributions, some
areas have not been thoroughly investigated. The method’s
robustness across varying climatic conditions, subject demo-
graphics, or alternative thermal imaging technologies is not
thoroughly assessed, which is essential for its implemen-
tation in various real-world circumstances. The computing
efficiency and the feasibility of real-time implementa-
tion are uncertain, raising doubts about its applicability
to identity verification systems used while in motion.
In addition, the research does not explore the possibil-
ity of applying the strategy to additional cross-domain
difficulties outside of thermal-to-visible recognition. The
ethical and privacy concerns associated with implement-
ing biometric technologies in surveillance settings are not
acknowledged, disregarding the importance of responsible
technology usage and privacy protections. Furthermore, the
discussion does not address the method’s long-term depend-
ability considering potential alterations in people’s looks
over time.

VOLUME 12, 2024 140831



M. Abdul-Al et al.: Novel Approach to Enhancing Multi-Modal Facial Recognition

III. METHODOLOGY
The article aims to improve the accuracy and precision of
facial verification by utilising multiple imaging modalities
such as visible, thermal, infrared, and a combination of visible
and infrared. The study presents a method named VGG16-
PCA-NN to enhance classification accuracy using the Sejong
Face Database for both training and testing as illustrated in
Figure 1. This technology excels in several areas, enhancing
biometrics and security industries with a strong and effective
facial verification system that overcomes hurdles from envi-
ronmental changes and physical obstacles.

Identifying faces in photos has three key steps: pre-
processing photos, extraction of features, and classification.
Normalising lighting and removing noise and background
noise are both done during pre-processing. Using tech-
niques like CNNs and PCAs, features are collected from
pre-processed facial photos. Classifiers, like NNs, are used to
carry out the classification process. To train input face photos,
we employ the structure of VGG16 in the proposed research.
This design has already been pre-trained on a huge ImageNet
database with over 1 million images from 1000 distinct
categories. A fully connected layer with Softmax activation is
used for classification. In order to increase photo accuracy in
classification compared to utilising VGG16 features alone or
PCA alone, this paper contributes by merging two models
with NNs using the Sejong Face database, which is our
innovation in using this data since nobody has used our
method before.

The suggested method uses a pre-trained VGG16 CNN
for feature extraction, PCA for dimensionality reduction,
and a sequential neural network for classification. The
ImageNet-trained VGG16 model extracts hierarchical fea-
tures from input photos. The extracted characteristics are
reduced in dimensionality via PCA, improving computing
efficiency. To learn sophisticated patterns in the restricted
feature space, a sequential neural network with dense layers
is built. A rank-level fusion technique combines neural net-
work and cosine similarity index predictions to classify and
recognise images accurately once the model is trained on the
dataset. Accuracy, precision, recall, and ROC curves evaluate
themodel’s performance. The suggestedmethod uses transfer
learning, dimensionality reduction, and neural networks for
robust and efficient picture recognition.

FIGURE 1. A flowchart for our proposed approach.

A. FACE DETECTION
The approach used to find the face in the image largely
determines the efficacy of biometric systems based on face

authentication. To that end, we employ the Viola-Jones
algorithm, which effectively detects a wide range of facial
features, including those of the mouth, eyes, nose, eye-
brows, lips, ears, and so on [24]. The vision Cascade Object
Detector function in MATLAB has been used to create this
approach. When it comes to face feature recognition, Viola-
Jones employs three key methods:

i One way to obtain an Integral picture is to employ rect-
angular Haar-like features for feature extraction [25].

ii The Ada Boost algorithm uses machine learning and
artificial intelligence to recognise faces. A notion that
unites several algorithms that depend on sets of binary
classifiers is defined by the word ‘‘boosted’’ [26].

iii Third, a Cascade classifier, which can effectivelymerge
many characteristics, is the last phase. A classifier’s
‘‘cascade’’ feature specifies the many filters used for
the final product.

After the pre-trained Viola-Jones face, we manually selected
the participants who had faulty face identification findings
in order to guarantee that every participant would have the
opportunity to provide feedback on the subsequent evaluation
of the methodology that was recommended. The pictures of
the face were scaled to (128×128) pixels to reduce the noises
of the images like background, hair, and so on. In Figure 2,
we can see a Viola-Jones approach in action.

FIGURE 2. Face and facial components detection using the Viola-Jones
technique.

B. THE USE OF TRANSFER LEARNING AND
CONVOLUTIONAL NEURAL NETWORKS (CNNs)
Among the many subfields of machine learning, ‘‘deep learn-
ing’’ is known for its emphasis on building progressively
meaningful representations from the ground up through sev-
eral layers of training data. One measure of a model’s depth is
the total number of layers that make up its data. Each neural
network has an input layer, a number of hidden layers, and
an output layer. ‘‘Depth of the model’’ refers to the total
number of data-contributing layers. Contrast convolutional
neural networks (CNNs) with traditional neural networks that
use matrix multiplication in their convolutional layers. For
further information about transfer learning and CNN, the
reader is referred to [25], [26], [27], [28], and [29].
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In our research, we adopted the VGG-16 model, a complex
deep convolutional neural network that has been trained on
the ImageNet dataset. We employed this model to extract
characteristics from various forms of imaging, such as visible,
thermal, infrared, and a combination of visible and infrared.
TheVGG-16model was selected due to its exceptional ability
to capture intricate details that are crucial for facial recog-
nition tasks. By utilising the pre-existing weights, we were
able to extract superior features from a small amount of
training data. This is particularly advantageous for datasets
with specific limitations, such as the Sejong Face Database.

The proposed method uses a pre-trained VGG16 CNN for
feature extraction, PCA for dimensionality reduction, and a
Sequential NN for classification. This combination is novel
because it integrates deep learning with classical machine
learning techniques in a way that enhances the overall per-
formance and efficiency of FR systems. By combining these
methods, we are able to address the challenges posed by
different imaging modalities and environmental variations.
This integration is validated using the Sejong Face Database,
demonstrating its effectiveness in improving FR accuracy
across multiple modalities, including VIS, Th, IR, and a
combination of VIS-IR spectra.

Furthermore, we improved our method by combining
VGG-16 with PCA to reduce the number of dimensions and
then using a sequential neural network for classification.
This approach utilised the advantages of deep learning for
extracting features and classical machine learning for effec-
tively managing data and accurately classifying it. This blend
exhibited remarkable versatility and effectiveness in handling
a wide range of data presentations from different imaging
technologies, establishing a new standard in multi-modal
facial recognition, and making a substantial contribution to
the progress of biometrics and security domains.

The innovative VGG16-PCA-NN framework is a major
step forward in our study. It enhances the accuracy of
classifying by prioritising important characteristics and
reducing unnecessary repetition of data, effectively tack-
ling the difficulties posed by variations in the environment
and physical aspects of facial recognition tasks. This com-
prehensive approach not only enhances the precision of
facial recognition in many settings but also advances the
fields of biometrics and security by proposing a method
that skillfully overcomes the main challenges faced in
these areas.

In this work, we employ the VGG-16 architecture as our
deep learning model. VGG-16 comprises a total of 19 layers,
consisting of 13 convolutional layers followed by three fully
connected layers, and culminating in a Softmax output layer.
All hidden layers utilise the Rectified Linear Unit (ReLU)
activation function, providing non-linearity to the model [27].
The convolutional layers employ 3 × 3 convolution kernels,
expanding the number of channels to capture complex and
expressive features. Zero-padding is applied to maintain the
size of the output data. Between the layers, Maxpooling
with a 2 × 2 window size and a stride of 2 is utilised to

extract detailed information. The convolutional layer depths
progressively increase as follows: 64 -> 128 -> 256 -> 512
-> 512 as represented in Figure 3.

Figure 4 shows that the revised network, VGG16-PCA -
NN (Neural Network), uses an input image size of 128×128×
3 and produces feature dimensions of 4×4×512. In order to
extract detailed characteristics from pictures, we use VGG-16
and the VGG16-PCA-NN architecture. Also, dimensionality
is reduced using Principal Component Analysis (PCA), and
then a neural network is trained to learn and identify the
features that have been reduced. In comparison to using
VGG-16 features alone or PCA alone, the performance of
picture classification is better when these two methods are
combined. The VGG-16 model has a total of 14,714,688
parameters, and all parameters in the convolutional layers
are non-trainable since they are initialised with pre-trained
weights from ImageNet. The model size is approximately
56.13 MB. In addition, by using NN then the VGG-16
model has a total of 225,339 parameters and all parameters
in the convolutional layers are trainable after we modified
the VGG-16.

FIGURE 3. An overview of the VGG16 convolutional neural network
design.

FIGURE 4. Enhanced recurrent neural network.

In the improved architecture that we have developed,
which is called VGG16-PCA-NN, we have used ReLU as the
activation function in the network, and dropout is strategically
applied in order to remedy the problem of overfitting. We use
the Softmax classifier [28], [29] as the final output layer for
the classification job. This allows us to estimate the likelihood
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of each class label in X different classes. The improvements
that we have made are in line with our overarching objective,
which is to not only solve the problems associated with
overfitting but also to improve the classification accuracy of
the network.

C. PRINCIPAL COMPONENT ANALYSIS (PCA)
Applying Principal Component Analysis (PCA) to the face
dataset is crucial for improving the accuracy and efficiency
of facial recognition technologies in various imaging modal-
ities. By utilising a pre-trained VGG16 Convolutional Neural
Network (CNN) to extract initial features from facial pho-
tographs captured using different imaging techniques. This
approach leverages the strong capabilities of the VGG16
model to detect complex features accurately. PCA is critical
for lowering the dimensionality of facial features, eliminating
redundancies, and improving computing efficiency without
compromising the fundamental properties for accurate facial
recognition. The reduced characteristics are subsequently
employed to train a specialised sequential neural network,
which is specifically designed to identify and categorise the
subtle patterns in the data. The integration method, known
as the VGG16-PCA-NN method, is highly advanced and
complex. PCA is crucial in this context as it not only sim-
plifies the feature space but also preserves the integrity of
the data, which is essential for achieving high accuracy rates.
Consequently, it greatly enhances the performance of facial
recognition in biometric and security technologies.

PCA is applied to the VGG16-extracted features to reduce
their dimensionality while retaining essential information.
For example, the modified VGG16 model, optimised by
integrating PCA for dimensionality reduction, showed a
considerable decrease in the number of parameters from
14,714,688 to 225,339. This reduction not only decreases the
computational load but also addresses the overfitting issue
by reducing the complexity of the model. The model size
was approximately reduced to 56.13 MB, highlighting the
impact of PCA in making the model more efficient without
compromising its facial recognition accuracy.

Moreover, the application of PCA contributed to an
enhancement in the cosine similarity indices across different
modalities, indicating a closer match between the test and
training data features. This improvement suggests that PCA
effectively retains the most significant features necessary for
accurate facial recognition, thereby reducing the computa-
tional complexity and noise in the data.

D. NEURAL NETWORKS
Utilising a pre-trained VGG16 model’s features and prin-
cipal component analysis (PCA) to reduce dimensionality,
our study implements a neural network model for image
categorisation.

In the NN, there is an input layer whose form is dictated
by the ‘n_PCA_components’, a hidden dense layer that uses
ReLU activation and has 256 neurons. The output layer,
which uses softmax activation, completes the network. With

the characteristics acquired by PCA fed into the input layer,
the output layer generates class-specific probabilities.

Consider the following: I is the input with shape
(n_PCA_components,), A1 and B1 are the hidden layer’s
weights and biases, and A2 and B2 are the output layer’s
weights and biases. Here are the formulas (1) and (2) for
the hidden layer’s output (H) and the final output (O),
respectively:

H = ReLU (A1×I) + B1 (1)

O = Softmax (A2×H) + B2 (2)

In order to classify images, the NN makes use of features
retrieved from the VGG16 model and dimensionality reduc-
tion via PCA. The NN’s role as a classifier is critical for the
end classification since it maps the retrieved characteristics to
class probabilities. The goal of this study is to categorise pho-
tos using characteristics extracted from a pre-trained VGG16
model; this neural network offers a flexible and efficient
method for solving image identification problems.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
Sejong Face datasets were utilised for training, assessment,
and testing in this work. All databases must contain pictures
of faces captured in the visible plus infrared (VIS-IR), visible
(VIS), thermal (Th), and infrared (IR) domains, which are
utilised separately in our approach, VGG16-PCA-NN. This
part provides a concise overview of all the datasets used in
the study.

A. DATABASE
All of the face data was sourced from the Sejong Face
Database (SFD) [30]. Both Group-A (subset-A) and Group-B
(subset-B) are classified parts of the database. A year before
the collection of Group B, Group A was compiled. Among
the 30 people whose faces makeup Group A, 16 are male
and 14 are female. We used frontal faces for all photographs
and caught each person’s face in both an add-on and neutral
condition. In contrast, there are 70 people represented by the
faces in Group B; of these, 44 are men and 26 are women.
Each modality in Group B received 15 neutral face shots,
whereas the other add-ons each received 5 images. Plus, five
pictures of males with real beards and five women sporting
makeup were shot [30].

Two cycles, separated by 14 days, were used to gather indi-
vidual pictures [30]. The initial batch of photos included men
with a variety of accessories, including clean-shaven faces
and neutral expressions. The second batch of photographs
was taken of the identical subjects 14 days later, but this time
they had facial hair that had developed over that time. For the
female contestants, the first roundwas all about taking images
without makeup or with accessories, while the second round
was all about getting photos with cosmetics. Thirteen distinct
disguise accessories were available for males and twelve for
females [30].

Figure 5 shows the results of our investigation using the
SFD, which consists of 60 persons without any additional
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features and each of them has pictures in the VIS, IR, Th,
and combined VIS-IR spectrums [30]. Every face photo is
captured using a combination of four different spectra. The
VIS, VIS-IR, IR, and Th spectra are all included in this set,
with dimensions of 4032 × 3024, 1680 × 1050, and 768 ×

756 respectively.

FIGURE 5. The database we present contains four types of images that
can be classified into several categories. The first type is infrared (IR)
images, denoted by category A, followed by visible images with IR,
denoted by category B. The third type is thermal images, represented by
category C. Categories D-H include makeup images, while categories I-L
are similar to categories A-D. Finally, categories M-P comprise images
that do not have any makeup.

B. EXPERIMENTAL SETTING AND MODEL DESIGN
This article’s testing setup included a desktop and a laptop
computer with 11th Gen Intel(R) Iris(R) Xe Graphics, Core
(TM) i7-1165G7@2.80GHz and 16.0GBofRAM.The Ten-
sorFlow framework, built on top of the Python 3.11 language,
is utilised for the development of our network architecture
and code. Each network’s optimizer was set to rmsprop dur-
ing training; Keras uses the optimizer’s default learning rate.
The model.fit() and epochs parameters were each set to 200,
with a maximum limit of 1000 for dataset combinations such
as VIS, Th, IR, or VIS-IR. The proposed code makes use
of a hybrid neural network, consisting of both a pre-trained
VGG16 model and an individualised dense neural network.
Before PCA uses the VGG16 model to extract features,
it loads it with weights that have already been trained on the
ImageNet dataset. The VGG16 model is enhanced for further
processing by adding the custom dense neural network on top
of it.

The VGG16model was selected due to its well-established
performance in image classification tasks. It comprises
19 layers, including 13 convolutional layers and 3 fully
connected layers, culminating in a Softmax output layer.
This architecture allows for the extraction of complex fea-
tures from the input images, making it suitable for facial
recognition tasks. The Rectified Linear Unit (ReLU) acti-

vation function was used in all hidden layers to introduce
non-linearity and improve the model’s ability to learn com-
plex patterns. The final layer uses the Softmax activation
function to output class probabilities. The model was ini-
tialised with pre-trained weights from the ImageNet dataset,
leveraging the knowledge gained from a large dataset to
improve feature extraction capabilities even with limited
training data.

To further enhance the model, Principal Component Anal-
ysis (PCA) was applied to reduce the dimensionality of the
feature space while retaining essential information. This step
helps in reducing computational complexity and addressing
the overfitting issue by limiting the number of parameters.
The number of PCA components was chosen based on the
cumulative explained variance, with a total of 820 com-
ponents selected to balance the trade-off between retaining
significant variance and reducing dimensionality.

The neural network consists of an input layer matching
the number of PCA components, a hidden dense layer with
256 neurons using ReLU activation, and an output layer with
59 neurons (corresponding to the number of classes) using
Softmax activation. Dropout regularisation was strategically
applied to mitigate overfitting, ensuring the model gener-
alises well to unseen data.

The rmsprop optimizer was chosen for its effectiveness
in training deep neural networks by adjusting the learning
rate dynamically, achieving faster convergence and better
performance. A batch size of 32 was used, balancing the
trade-off between computational efficiency and the stability
of gradient updates. The model was trained for 500 epochs,
a number selected based on preliminary experiments to
ensure sufficient training without overfitting. Early stopping
or validation-based adjustments were employed to monitor
the training process and prevent overfitting.

The categorical cross-entropy loss function was used for
multi-class classification, effectively measuring the perfor-
mance of the model in predicting the correct class probabili-
ties. The primary metric used for evaluation was categorical
accuracy, which measures the proportion of correct predic-
tions out of all predictions made. Additionally, precision,
recall, and F1-score were used to provide a comprehen-
sive evaluation of the model’s performance across different
classes.

By carefully selecting these parameters and hyperparame-
ters, the model aims to achieve high accuracy and robustness
in multi-modal facial recognition tasks.

C. RESULTS
The datasets specified in Section IV-A were divided into
three parts: 70% for training, 15% for validation (develop-
ment set), and 15% for testing. The training photos, stored
in subdirectories representing various classes, are imported
and categorised. The validation and testing photos are pro-
cessed with matching labels. All datasets are normalised and
a VGG16 model with pre-trained weights is used for feature
extraction, followed by Principal Component Analysis (PCA)
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for reducing dimensionality. The neural network model is
built and trained using dense layers on the reduced PCA
features from the training set. The validation set is utilised
to tune the model’s hyperparameters and prevent overfitting.
The algorithm assesses the model’s performance by utilis-
ing criteria including accuracy, precision, recall, F1-score,
confusion matrix, and ROC curves. Cosine similarity is cal-
culated between the characteristics of the test and training
sets. The code ends with a rank-level fusion method that
merges predictions from the neural network with cosine sim-
ilarity for a comprehensive assessment. The outcomes are
displayed via graphs, providing insights into the model’s
accuracy over epochs, confusion matrix, ROC curves, and
rank-level fusion curves. The algorithm offers a thorough
strategy for picture categorisation by combining neural net-
work and similarity-based techniques to enhance accuracy.

1) ACCURACY
Having reliable assessment indicators that represent our
model’s problem-solving capability is crucial for assessing
the model’s quality. When dealing with face authentication,
we often classify the instance as either beneficial or detrimen-
tal because it is a binary problem. True positives (TP), false
negatives (FN), true negatives (TN), and false positives (FP)
are the four frequent instances represented by the confusion
matrix in real classification. TP is one of them; it is the
model’s accurate prediction of a positive category sample.
The model accurately predicts that samples will be negative
categories when TN is present. FP occurs when the model
makes the mistake of classifying a sample from a negative
category as positive. FN occurs when a sample that should be
a positive category is predicted to be a negative category by
the model.

Standard statistical test assessment metrics, such as accu-
racy, precision, recall, and F1_score, were used to analyse the
performance of all experiments. Accuracy was determined by
the proportion of correct predicted labels in Eq. (3):

Accuracy (A) =
TP + TN

TP + TN + FN + FP
(3)

The performance of a system’s algorithm with different
modalities was evaluated using accuracy. Table 2 provides a
summary of the accuracy results obtained from various algo-
rithms or models across different modalities, including VIS,
Th, IR, and a combination of VIS-IR. The algorithms demon-
strated highly impressive accuracy levels, achieving 100%
accuracy on both VIS and Th modalities, which shows their
ability to verify sampleswithin these categories correctly. The
IR modality had a slightly lower accuracy of 95%, indicating
that the algorithm could still classify the majority of samples
accurately. Furthermore, the algorithm maintained perfect
accuracy when dealing with a combined dataset of VIS-IR
information. These results highlight the algorithm’s effec-
tiveness and versatility across diverse modalities, making it
a compelling choice for applications involving multi-modal
data. It is essential to consider various evaluation metrics

when assessing a dataset’s accuracy. While accuracy is a
crucial metric, other factors such as potential challenges and
variations in the dataset should be taken into account. For
instance, lighting can have an impact on accuracy, particu-
larly when dealing with infrared images that feature different
lighting conditions, as illustrated in Figure 6.

TABLE 2. The performance of the VGG16-PCA-NN algorithm in different
modalities.

FIGURE 6. An example of different lighting conditions.

2) RECALL
Focuses on the ability of the model to identify all rele-
vant instances correctly. Recall is particularly important in
scenarios where missing a positive detection has serious
implications. Themodel’s recall performance across different
image types is outlined, showing perfection in VIS, Th, and
VIS-IR images as illustrated in Figure 7.

The recall is the ratio of TP cases to the sum of TP and FN
as represented in Eq. (4):

Recall (R) =
TP

TP + TN
(4)

The data presented in Figure 7 shows the recall percentages
for an algorithm tested on different image types, includ-
ing VIS, Th, IR, and a combined set of VIS-IR images.
The algorithm performs exceptionally well on VIS and Th
images, achieving a high recall score, approaching 100%,
in both cases, which indicates its ability to capture all relevant
instances of the target class effectively. Although the recall
percentage on IR images is slightly lower at 95%, it still
reflects strong performance in identifying relevant instances
within this specific dataset. Notably, the algorithm maintains
its high performance on the joint dataset of VIS-IR images,
achieving a near-perfect recall score of 100%. Overall, the
algorithm shows robust capabilities across diverse image
types, particularly excelling in the VIS and Th domains.

3) PRECISION
Examines the proportion of true positive predictions in the
total positive predictions made. Precision is crucial when
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FIGURE 7. Algorithm recall performance across different image
modalities.

false positives are costly. Figure 8 details precision scores for
various datasets, indicating the model’s precision efficiency.

The proportion of genuine positives relative to the total
number of positives was called precision. Precision was char-
acterised in Eq. (5) as:

Precision (P) =
TP

TP + FP
(5)

In Figure 8, we can see the precision analysis of different
algorithms applied to various datasets. The results show that
the algorithms performed exceptionally well. They achieved
a perfect precision score of nearly 100% for both the VIS
and Th datasets, which indicates that all positive predictions
for these datasets were correct. For the IR dataset, the pre-
cision score was still high at 97.5%, suggesting that there
were mostly accurate positive predictions, but with a small
percentage ofmisclassification (2.5%). It is worthmentioning
that when the algorithms were tested on a combination of
VIS-IR data, they maintained a perfect precision score, which
implies that the positive predictions were accurate. Over-
all, the algorithms demonstrated robust performance across
diverse datasets with minor variations in precision, which
proves their effectiveness in handling various types of data.

FIGURE 8. Precision analysis across multiple modalities for algorithm
performance.

4) F1-SCORE
Combines precision and recall into a single metric that pro-
vides a balanced view of the model’s performance. The

F1-Score is particularly useful when dealing with imbal-
anced datasets. Themodel’s F1-score across different spectral
datasets demonstrates its balanced capability in classification.

The F1 Score is a metric that combines accuracy and recall.
The F1 Score was characterised in Eq. (6) as:

F1_Score =
P × R
P + R

(6)

After analysing the F1-Score percentages shown in Figure 9,
it can be concluded that the algorithm performs well on dif-
ferent spectral datasets. The algorithm obtained a near-perfect
F1-Score of 100% on both the VIS and Th datasets, indicat-
ing an accurate and reliable classification in those spectral
domains. Additionally, the algorithm demonstrated strong
performance on the IR dataset, achieving a high F1-Score of
95.57%. This suggests that the model is effective in classify-
ing images from the IR spectrum. Moreover, when dealing
with a combined dataset of VIS-IR images, the algorithm
maintained a near-perfect F1-Score of nearly 100%, show-
casing its capability to distinguish and classify accurately
across diverse image types. In conclusion, the algorithm is
versatile and effective in handling images from different
spectral domains, making it suitable for multi-spectral image
classification tasks.

After evaluating the performance of the algorithms across
different spectral datasets, it was found that they are highly
effective in multi-spectral image verification. The models
were able to achieve perfect accuracy, recall, precision, and
an F1-Score of nearly 100% for the VIS and Th datasets,
which highlights their robustness in accurately classifying
images within these spectral domains. Similarly, the com-
bined VIS-IR dataset also showed flawless scores, indicating
the algorithms’ adaptability to diverse spectral information.
Although the IR dataset had a slightly lower accuracy of 95%
and F1-Score of 95.57%, it still maintained high precision
and recall, which signifies a balanced trade-off between false
positives and false negatives. Overall, the consistently high
scores in accuracy, recall, precision, and F1-Score emphasize
the algorithms’ proficiency in multi-spectral image classi-
fication, showcasing their suitability for a broad range of
applications across various spectral domains.

5) ERROR RATE
Measures the rate at which the model makes incorrect pre-
dictions. A lower error rate signifies a more accurate model.
Figure 10 represents the model’s low error rates across differ-
ent imaging modalities, highlighting its robustness.

Error rate measures inaccuracies or losses in a system.
Reducing errors simplifies the system. Eq. (7) quantifies the
error rate.

ErrorRate (ER) =
AE − EE

EE
×100 (7)

The error rate of the system is indicated by ER, the actual
error rate of the system is represented by AE, and the esti-
mated error value is designated by EE.
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FIGURE 9. Analysis of F1-Score performance for multi-spectral image
classification across four different modalities.

In Figure 10, the performance of algorithms is demon-
strated across a variety of imaging modalities, such as VIS,
IR, and Th imaging, as well as a combination of VIS-IR. The
algorithms exhibit accuracy, with error rates of 0% in both
the VIS, Th and a combination of VIS-IR modalities, show-
ing that they work flawlessly in these domains concerning
performance. It has been noted that the IR modality has a low
error rate of 5%, which indicates that it has a high level of
accuracy but only a tiny percentage of misclassifications.

FIGURE 10. Analysis of error rates for algorithm performance across
different imaging modalities.

6) COSINE SIMILARITY INDEX
PCA transforms the original feature space into a new space
defined by the principal components (PCs). Each PC is a
linear combination of the original features, with coefficients
(or loadings) that indicate the weight of each original feature
in that component. The inner product between the PCs and
the original features can be understood through these coef-
ficients. For a given PC, its inner product with the original
feature set essentially reproduces the PC itself, because the
PC is defined as a linear combination (inner product) of the
features with its coefficients.

CS (Cosine Similarity) is a measure of similarity between
two vectors that calculates the cosine of the angle between
them. It is widely used in high-dimensional space to com-
pare the orientation (but not the magnitude) of vectors. After

applying PCA, the features of both the test and training sets
are transformed into a reduced-dimensional space where each
dimension corresponds to a principal component. This trans-
formation retains the most significant variance directions of
the data. Given ‘test_PCA‘ and ‘train_PCA‘, which are the
PCA-reduced representations of your test and training data
respectively:

i Standardise Data: Ensure both test and training sets are
standardised (mean = 0, variance = 1) before PCA
application, as PCA is sensitive to the scale of the data.

ii Apply PCA: Apply PCA to both the training and
test datasets to reduce dimensionality. This process
involves calculating the eigenvectors (PCs) and eigen-
values from the covariance matrix of the data.

iii Calculate Cosine Similarity:
a. Use the ‘cosine_similarity‘ function from libraries such

as ‘sklearn.metrics.pairwise‘ in Python.
b. The input to this function will be ‘test_PCA‘ and

‘train_PCA‘.
c. The output is a matrix where the element at (i, j) rep-

resents the cosine similarity between the ith test PCA
feature vector and the jth training PCA feature vector.

Once the matrix of CSI has been generated, it is utilised
for a variety of reasons, including the determination of the
indices that are most similar, the computation of the mean
CSI, and the utilisation of the matrix for additional study or
evaluation. According to our methodology, the angle between
feature vectors is more important than their size when it
comes to determining the degree of similarity between them
as represented in Figure 11. The CSI is particularly valuable
in this regard. The results of the CSI tests performed on the
algorithms in each of the four modalities are presented in
Table 3.

TABLE 3. Face and facial components detection using the Viola-Jones
technique.

Algorithms used to VIS, Th, IR, and VIS-IR are pre-
sented in Table 3 with their respective cosine similarity
indices (%). The method demonstrated outstanding perfor-
mance in the VIS spectrum, with a maximum CS of 89.4%,
indicating a high degree of similarity between the training
and test data. At 87.03%, the Th modality was somewhat
more comparable to the IR modality, which was 82.9%
weaker. The VIS-IR modalities showed a strong cosine sim-
ilarity of 89.39%, indicating that the two spectra may work
together and complement each other. These results suggest
that visual information spectrum pattern recognition is suc-
cessful and that combining visual and infrared information is
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FIGURE 11. Flowchart of cosine similarity indices.

useful for obtaining strong similarity within the framework
of the provided techniques and modalities. Understanding
domain-specific needs and interpreting similarity measures
according to data properties and application goals are of
utmost importance.

7) CONFUSION MATRIX
When evaluating the effectiveness of a classification system,
the confusionmatrix (CM) is an essential assessment tool that
should not be overlooked. It offers a tabular representation
of the predictions made by the model, including particular
information on the quantity of TP, TN, FP, and FN. Within
the parameters of our discussion, each row of the matrix
refers to examples that belong to a real class, but each column
is associated with instances that belong to a class that is
anticipated. These elements can be expressed mathematically
in the Eq. (8):

CM =

[
TN FP
FN TP

]
(8)

where:
TN is the total number of negative predictions that were

accurate.
FP stands for the number of positive predictions that were

erroneous.
FN represents the total number of negative predictions that

were made with an error.
TP stands for the number of positive cases that were accu-

rately anticipated.
To produce the CM by utilising the code that has been

supplied, it is necessary to utilise the CM function that is
available in the scikit-learn package. After using the model
to make predictions about the labels on the test dataset, the
function constructs the matrix. The matrix may then be visu-
alised through the use of a heatmap by utilising the Seaborn
library.

The components of the CM that are diagonal indicate that
the predictions are accurate, whereas the off-diagonal ele-
ments suggest that the forecasts are inaccurate. The intensity
of the colour or the values of the cells in the heatmap transmits
the number of forecasts or the percentage of predictions in
each category. Figure 12 represents the CM for four different
modalities, such as VIS, Th, IR, and VIS-IR.

In this confusion matrix, we can see the outcomes of four
modalities’ classifications over several classes. The repre-
sentation of Figures 12a, b, and d is a 20 × 20 matrix.
If the values on the diagonal are non-zero, then the matrix
is diagonal-dominant. All three examples in each class were
correctly predicted by the model, as shown by the diagonal.
The symmetrical nature of the matrix indicates that class
performance is fairly even. This evaluation’s visual picture
classifications are perfectly accurate, as seen by this symmet-
ric pattern, which means the model is doing well. Every class
has been accurately predicted by the model, demonstrating
its outstanding performance. If the model’s predictions are
accurate and dependable across all classes, it indicates that
it has learned and applied patterns from the VIS, Th, and
VIS-IR pictures successfully.

FIGURE 12. Confusion matrix for four different modalities a) VIS, b) Th, c)
IR, and d) VIS-IR.

Figure 12c presents a matrix with dimensions of 21 × 21.
With three TPs in the first class and zeros for every other
element in the row, there were no misclassifications for this
class, as seen in the top-left quadrant of the matrix. A high
degree of precision is demonstrated by the pattern’s repetition
across the diagonal. A small number of off-diagonal items
show signs of misclassification. Take the fourth row and first
column as an example. There is one case of misclassification,
which indicates a FN for the fourth row (Class 4). This sug-
gests that the real person is 4, but the algorithm is forecasting
them as 1. The ninth column and sixth row both show similar
instances. In one case, the algorithm incorrectly predicted that
a person in the sixth row (Class 6) would be a 9, when in
fact, it was a 6. This pattern repeats itself in the thirteenth
column and thirteenth row as well. In one case, the algorithm
incorrectly predicted a person’s age as 14, whereas the real
identified person is 13. This occurred in the thirteenth row
(Class 13). Beyond these three incorrect classifications in row
9 and column 9, the algorithm was unable to determine the
individual’s identity. This might be due to factors such as
the lighting conditions, background noise, hair, or the various
positions of the head at different angles.
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Based on the results, it can be concluded that all four con-
fusion matrices work admirably. Predictions for the majority
of classes are accurate, as indicated by the strong diagonal
lines in each matrix. It is notable that the models linked
to these matrices can accurately categorise examples within
each class. Even though all the matrices are very accurate,
the last one has a little different structure because of mistakes
in the fourth, sixth, and thirteenth classes. Another thing:
the system has absolutely no idea who was in [9, 9]. The
total performance, nevertheless, is unaffected by these few
misclassifications.

8) RECEIVER OPERATING CHARACTERISTIC CURVE AND
AREA UNDER CURVE
The model’s performance across multiple classes is evalu-
ated by plotting the Receiver Operating Characteristic (ROC)
curve. One popular way to see the trade-off between sensi-
tivity and specificity at different categorisation thresholds is
via a ROC curve. Here, we determine the Area Under the
Curve (AUC) for every one of the 59 classes by computing
ROC curves. By selecting the classes with the highest AUC,
we can see how well the model discriminates against those
classes by plotting their ROC curves. The definitions of FPR
(False Positive Rate) and TPR (True Positive Rate) are shown
in Eqs. (9) and (10) [31].

False Positive Rate (FPR) =
FP

FP + TN
(9)

7True Positive Rate (TPR) =
TP

TP + FN
(10)

A predetermined probability threshold can determine the
label for the final prediction, and the probability is the total
output value for a classification model. When you change the
threshold value, the TPR and FPR will change as well. If the
ROC curve is as close to the top left corner of the graph as
possible a sign of a successful model and TPR= 1 and FPR=

0 then the classification scenario is excellent [31].

FIGURE 13. Evaluating the efficacy of visible facial recognition algorithms
through ROC analysis.

The ROC curve, shown in Figure 13, is a useful tool for
comparing a classifier’s performance across various users or
scenarios. A perfect score of 1.0 for a particular class indi-
cates flawless facial recognition, and it is used as a measure

of the classifier’s accuracy. For example, a perfect score of
100% indicates that all faces were accurately matched to their
respective identities, with no cases of misidentification. The
results of a model that uses many classes for categorisation
are shown by this ROC curve. Some classes are predictedwith
100% accuracy, while others are predictedwith less precision,
demonstrating varying levels of discriminating ability across
different classes. Class 0 and Class 1 are the best-case sce-
narios when the face recognition algorithm accurately detects
these specific face classes, with AUCs of 100%.

The system’s accuracy varies among classes, as seen by
the range of AUC values in Figure 13. Factors like as light-
ing, facial expressions, backdrops, occlusions, or underlying
similarities between faces may contribute to the system’s less
consistent face recognition for classes like 15, 3, 13, and
others, as indicated by lower AUC values for these classes.

The classifier’s performance in differentiating a specific
face from the entire dataset may bemore easily evaluatedwith
the help of the color-coded curves for each class. These curves
appear to be measuring the system’s performance at distinct
threshold levels, given their shape with steps and edges.
Maybe this level of detail is a reflection of how sensitive
the face recognition system is to changes in the probability
criteria that determine if a face is a match or not.

Reliability and security in multi-class face recognition
systems depend on the correct recognition of each class.
Differences in AUC and ROC curves reveal which face recog-
nition classes the system excels at and fails miserably at
detecting; this information might inform future training and
development efforts.

FIGURE 14. Evaluation of thermal facial recognition: ROC curves and
class performance.

Figure 14 demonstrates a variety of curves that are associ-
ated with different people or facial expressions as recorded by
thermal imaging. The x-axis displays the FPR, which is the
proportion of faces that do not match that were mistakenly
marked as matches; the curves, on the other hand, indicate
the various classes. The TPR, or the proportion of properly
detected real-matching thermal pictures, is shown on the
y-axis. A better fit between the curve and the ROC space’s
left and top borders indicates a more accurate categorisation.

The dotted diagonal line on the graph depicts an AUC
of 0.5 for a random estimate. A point in the top left corner
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would represent an ideal classifier with an area under the
curve (AUC) of 1. Figure 14 shows that the thermal facial
recognition system successfully distinguished between Class
0 and Class 1 with an AUC score of 100%.

On the other hand, class recognition becomes more chal-
lenging as we go to further classes and the AUC values drop.
While Class 16 and Class 10 both have AUCs above 80%,
suggesting great accuracy, Class 19 has an AUC of 95.91%,
which is still exceptional. Class 15, Class 12, and Class 17 all
have AUC values that indicate average performance. The
system’s facial recognition capabilities may be compromised
in certain classes. This might be due to the fact that thermal
imaging has some limitations, such as a reduced ability to
show facial features compared to visible light imaging clearly.

In conclusion, our findings indicate that the thermal facial
recognition system excels in some classes but might benefit
from further training data or tuning to achieve better accuracy
in all classes. Different facial thermal signatures, changes
in heat patterns caused by expressions or the environment,
or sensor resolution issues could all explain the different
performances seen between classes.

FIGURE 15. Evaluation of Infrared face recognition system performance
using ROC curve analysis.

Figure 15 represents a ROC curve likely utilised for
assessing an infrared facial recognition system. Each curve
represents distinct classes, which might correlate to different
persons or circumstances observed in infrared imaging. These
classes are crucial for detecting characteristics not apparent in
the regular spectrum.

Each line on the graph reflects a distinct class, presumably
indicating a single individual or a distinctive facial expres-
sion captured under infrared imaging settings. The AUC is a
single numerical measure that ranks classifiers based on their
ability to differentiate between positive and negative classes.
An AUC of 1.0 indicates flawless identification, whereas an
AUC of 0.5 implies a lack of discriminatory ability.

Class 1 shows an optimal situation with an AUC of
100%, indicating that the infrared facial recognition system
has accurately categorised these faces. Class 0 demonstrates
exceptional performancewith anAUC of 99.42%,while there
is a little margin for error.

Figure 15 indicates different degrees of accuracy for addi-
tional classes as well. Classes with AUCs of around 80%,

including Class 15, 19, and 5, demonstrate strong classifica-
tion performance. Classes 18, 10, and 3, with AUCs ranging
from 70% to 80%, have intermediate classification ability.
The differences may be caused by the distinct difficulties
associated with infrared imaging, such as fluctuating heat pat-
terns resulting from physiological or environmental factors.
The color-coded curves provide a rapid visual comparison of
each class’s performance, emphasising the infrared system’s
capacity to distinguish one class from the rest efficiently.
Steep shifts in the curve indicate distinct threshold values
employed in classification, affecting the system’s ability to
distinguish between genuine and false positives.

The ROC curve study of an IR face recognition sys-
tem demonstrates its superior performance in low-light or
nighttime circumstances compared to typical visible-light
facial recognition systems. The variation in AUC values
among different classes indicates inconsistent performance
of the system, possibly influenced by factors like image
quality, facial heat signature distinctiveness, environmental
conditions, and algorithm sensitivity to infrared image fea-
tures. Overall, our findings suggest that the diversity of the
approach is very beneficial for certain classes but also high-
lights areas that require development. Additional examination
indicates possible improvements, like refining the classifi-
cation methods, modifying threshold values, or augmenting
the training dataset with a wider variety of infrared face
photos. These actions will enhance the system’s precision and
durability in the infrared spectrum.

Figure 16 displays several classes, some of which have an
Area Under Curve (AUC) of 100%, indicating perfect classi-
fication with no false positives or false negatives for those
specific conditions or individuals. Classes 10 and 19 have
AUCs close to 100%, signifying excellent classification per-
formance.

On the other hand, classes like 7, 2, 17, 12, and 16 have
lower AUCs, indicating a less accurate performance. A lower
AUC reflects a higher chance of misclassification. In the
context of face recognition, this could mean that the system
is less able to distinguish between different individuals or
the same individual under varying conditions (e.g., different
lighting or angles).

A detailed analysis would consider the specifics of the face
recognition system being evaluated, including the technology
used (visible light, infrared), the database of faces, and the
operational requirements of the system (e.g., whether it is
used for verification or identification, and inwhat sort of envi-
ronmental conditions it must operate). The high-performing
classes could represent more distinct individuals or condi-
tions that are easier for the system to identify, while the
lower-performing classes may represent more challenging
cases for the system.

The steps and borders of the curves give information about
the categorisation threshold levels. At any given threshold,
the system’s capacity to distinguish between positive and
negative classes is proportional to the steepness of the cor-
responding curve. Our results conclude that this ROC curve
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adequately assesses the face recognition system’s perfor-
mance over a range of VIS-IR pictures for different classes.
Class identification is successful for some, but not all; this
might be because it is difficult to combine visible and infrared
data, which could require fine-tuning the system or using
sophisticated computational techniques.

Every classification algorithm in this novel fusion tech-
nique links a rank with every registered characteristic in the
network, when it has a higher rank that means a good match.
It combines numerous UBSmatcher outcomes and calculates
a new rank to assist in predicting the final choice [32], [33].
For identification rather than verification, rank-level fusion
is commonly used. The working techniques, in this case, are
as follows: firstly, construct a rank of IDs ordered by all
modalities. Secondly, the rating for every person is provided
for different fused modalities using any type of fusion. Lastly,
the identification with the lowest score is recognised as the
right one [34].

FIGURE 16. Evaluating the performance of visible-infrared face
recognition systems using ROC curve measurements.

Apart from ordering the IDs depending on similar-
ity/distance, it does not require any normalising tech-
nique [35]. This strategy is more accurate than just picking
the appropriate match with one modality. In contrast to match
score level fusion, it is simple to compare the rankings from
multiple biometric modalities. Therefore, making a choice is
quite simple [34].

Nevertheless, there is one drawback to this form of fusion.
In the case of MBSs, when several identities are generated
from several matching modules, some identities of just one
matcher emerge, and incorrect findings pose a danger of
reaching rank-level fusion [36]. Rank level fusion, in contrast
to match score level fusion, delivers less data. It is superior
since it assigns a rank to various matches and allows weights
to be provided to specific classifiers [34]. Earlier research
on rank-level fusion using fusion techniques and modalities
merged is detailed in [32], [36], [37], [38], and [39] as an
instance. In general, it is still vastly understudied.

Our approach also investigates Rank-level Fusion, which
merges neural networks and Cosine Similarity predictions.
It scores all of the predictions and uses accuracy as an eval-
uation metric for performance. To demonstrate how well the

model identifies relevant occurrences, the Rank-level Fusion
accuracy is shown against the number of topmatches or ranks.

Rank-level fusion curves are used to measure the suc-
cess of biometric recognition systems. The following graphs
show the relationship between rank and the recognition rate,
as shown in Figure 17. There are four distinct modalities for
face recognition: VIS, Th, IR, and a combined VIS-IRmodel.

FIGURE 17. Evaluation of rank-level fusion in facial recognition using
visible, thermal, infrared, and a combination of visible and infrared
modalities.

Figures 17a and b illustrate that the recognition rate is at or
just under 100% across all levels, maintaining a consistently
high level. Regardless of rank, this shows that the recogni-
tion rate is nearly flawless, with nearly every query image
accurately matching its associated identity in the database.
The system’s efficacy in these two modalities under the
testing settings is demonstrated by the flatness of the curve,
which shows that the top-ranked findings are frequently true.
Figure 17c displays a different trend, but the identification
rate is low at the beginning and rapidly climbs until it reaches
a plateau at about the 20th rank. This indicates that the best
match for an IR image might not always be at the top of the
results but could be farther down the page. Possible causes
for the system’s less reliable performance in this modality
compared to VIS and Th modalities include poor IR picture
quality, unfavourable ambient circumstances, or algorithmic
constraints while processing IR data.

A high, flat slope similar to the VIS and Th plots may be
observed in Figure 17d as well. So, it is clear that merging
visible and infrared data produces excellent identification
rates at every level. This area shows promising results, which
may indicate that the system’s person identification accuracy
is improved by using a more complete picture derived from
visible and infrared spectra.

Our research shows that both the VIS and Th modalities
consistently produce high-quality results with reliable identi-
fication rates. Nevertheless, there is room for development
as the IR modality alone displays variability. Conversely,
it appears that the VIS-IR combinationmodality compensates
for the IR modality’s limitations, leading to very accurate
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FIGURE 18. Accuracy performance of rank-level fusion in face
recognition: visible, thermal, infrared, and a combination of visible and
infrared modalities with threshold variation.

identification. This is why multimodal biometric systems are
so beneficial.

Lastly, the threshold for combined predictions is varied to
construct a Rank-level Fusion Curve. You can see the model’s
identification rate under various settings, as well as how
the accuracy varies when the threshold is increased, on the
curve. This comprehensive review sheds light on the model’s
efficiency and adaptability to various dataset circumstances.

Figure 18 demonstrates the accuracy of face identification
for several modalities, shown versus the threshold parameter.
These modalities include VIS, Th, IR, and VIS-IR.

The presence of flat, almost 100% accuracy lines in Fig-
ures 18a and b indicates that, for these modalities, nearly
all genuine matches are reliably identified regardless of the
threshold value. This demonstrates that the system is robust
and dependable over different threshold levels, which is
indicative of a high degree of accuracy in face recognition.

Figure 18c shows that when the threshold rises, the accu-
racy varies significantly. At certain threshold values, accuracy
improves dramatically, as shown by the multiple steps in
the curve. There appears to be a correlation between the
threshold parameter and the system’s IR performance, as seen
by the progressive rise. Accuracy may be greatly improved
with the correct threshold setting, however calibration may
be necessary to prevent misidentification.

In addition, a flat line that is highly accurate, like the VIS
and Th modalities, is shown in Figure 18d. This suggests
that a robust system, less vulnerable to changes in threshold
and maintaining high accuracy across varied threshold levels,
is produced by merging VIS and IR data.

One possible interpretation of the threshold parameter is a
cutoff value for determining the truth or falseness of a match.
When it comes to face recognition systems, a lower threshold
might lead to a larger false match rate (more candidates
being deemed matches) and a higher false non-match rate
(more actual matches being excluded) than a lower criterion.
An important finding for the dataset we used, where lighting
conditions and face angles might fluctuate, is that the systems
are resistant to these variations, producing correct matches

TABLE 4. Comparative analysis of facial recognition technologies across
diverse methodologies and applications.

over a broad range of threshold settings. This is supported
by the flat curves for VIS, Th, and VIS-IR, according to our
study. On the other hand, the IR system’s performance ismore
unpredictable, which suggests that finer-grained threshold
adjustment is necessary for peak performance.

D. COMPARATIVE ANALYSIS USING THE LATEST MODELS
In this part, we offer a statistical evaluation that compares
the results with those of modern modelsusing the Sejong
Face Database as a dataset. Reliability served as the basis for
the statistical study. The results of our model compared to
the modern models, including the Sejong Face Database, are
summarised in Table 4.

Our proposal presents a novel approach to image recog-
nition using a sequential neural network for classifica-
tion, a VGG16 CNN for feature extraction, and PCA for
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dimensionality reduction. We highlight the importance of
transfer learning, dimensionality reduction, and neural net-
works in achieving robust and efficient image recognition
that performs well across different modalities. Our proposed
approach achieves 100% accuracy in visible (VIS) and ther-
mal (Th) modalities, as well as in a combination of visible and
infrared (VIS-IR). Infrared (IR) accuracy is slightly lower.

V. CONCLUSION AND FUTURE WORK
The integration of CNNs, PCA, and sequential neural net-
works to improve facial verification across different imaging
modalities has been presented and analysed. The imaging
modalities included visible light, thermal, infrared, and a
combination of visible light and infrared images from the
Sejong face database. The proposed approach utilises the pre-
trained VGG16 framework on the ImageNet dataset to extract
features. PCA is subsequently employed to decrease the
dimensionality, resulting in quicker calculations. The method
is improved by using a sequential neural network model for
classification, combining the benefits of transfer learning and
dimensionality reduction.

Conclusion:
Our study demonstrates that the VGG16-PCA-NNmethod

achieves high accuracy across multiple modalities, particu-
larly excelling in combined VIS-IR scenarios. While these
results are promising, further testing on diverse datasets and
real-world conditions is essential to validate these findings
comprehensively.

This work enhances facial recognition by introducing a
robust approach that addresses variations in lighting and
physical obstacles. With high accuracy rates, it shows
significant potential for multi-modal applications. It will sig-
nificantly contribute to the advancement of more secure and
dependable biometric verification systems.

An analysis of the constraints of the suggested facial recog-
nition system, emphasising opportunities for enhancement.
One of the shortcomings of the system is its inconsistent accu-
racy when dealing with different classes. This inconsistency
can be related to several aspects such as lighting conditions,
facial emotions, face angle, backdrops, occlusions, or similar-
ities across faces. This heterogeneity indicates the necessity
for further training and development initiatives to improve
performance consistently in all categories. In certain situa-
tions, the thermal facial recognition system is effective, but it
has obstacles in other cases. These challenges may arise from
the limits of thermal imaging in accurately capturing facial
characteristics, as contrasted to visible light imaging. This
suggests that accuracymight be enhanced by the utilisation of
further tuning or training data. The diversity observed in the
IR modality performance can be attributed to factors such as
suboptimal IR picture quality, adverse environmental circum-
stances, or computational constraints in IR data processing.
This emphasises the necessity for improvement in the IR
modality to attain recognition rates that are as dependable
as those of the VIS and Th modalities. In addition, our
work examines the difficulties related to rank-level fusion,

namely the incorporation of numerous identities produced by
different matching modules. Inaccurate results in this process
might potentially affect the outcomes of rank-level fusion.
Although this fusion approach requires less data compared
to match score level fusion, it still poses issues that need to
be further examined. These limits highlight the necessity for
continuous research and development to tackle these issues,
enhance system performance in different modalities, and
guarantee the dependability of face recognition technology.

One critical area for future research is improving the
system’s robustness against presentation attacks, such as
spoofing. Integrating techniques like liveness detection or
adversarial training into the VGG16-PCA-NN framework
will strengthen security and resilience in real-world applica-
tions, making the system more robust to potential threats.

Future research in multi-modal facial recognition will
focus on (i) integrating additional modalities, comparing
them with individual modalities, (ii) refining algorithms for
increased accuracy, (iii) applying the technology in real-time
scenarios, (iv) utilising PCA for eigenvalues, and eigenvec-
tors, as well as VGG16 for feature extraction and neural
network classification, and (v) three different algorithms
will be used and compared, namely VGG16-RF (Ran-
dom Forest)-NN, VGG16-LR (Logistic Regression)-NN, and
VGG16-SVM (Support Vector Machine)-NN.
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